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Abstract: One feature of contemporary datasets is that instead of the single point value in the p-dimensional space ℜp seen
in classical data, the data may take interval values thus producing hypercubes in ℜp . This paper studies the vertices principal
components methodology for interval-valued data; and provides enhancements to allow for so-called ‘trivial’ intervals, and
generalized weight functions. It also introduces the concept of vertex contributions to the underlying principal components, a
concept not possible for classical data, but one which provides a visualization method that further aids in the interpretation
of the methodology. The method is illustrated in a dataset using measurements of facial characteristics obtained from a study
of face recognition patterns for surveillance purposes. A comparison with analyses in which classical surrogates replace the
intervals, shows how the symbolic analysis gives more informative conclusions. A second example illustrates how the method
can be applied even when the number of parameters exceeds the number of observations, as well as how uncertainty data can
be accommodated.  2011 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 4: 229–246, 2011
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1. INTRODUCTION

Principal component analysis is a well established

method designed to reduce the dimensionality p of a

dataset into one of dimension s ≪ p, so as to facilitate the

visualization and extraction of the main trends in a high-

dimensional dataset. These techniques have focused on

classical datasets whereby each observation is a single point

in the p-dimensional space ℜp [1]. The goal of this paper is

to review and compare principal component methodology

for interval-valued symbolic data; and to add enhancements

to the so-called vertices method.

Interval-valued data can result from aggregation of a

typically large dataset into one of more manageable size

or one whose focus is on some specific aspect. The

nature of the aggregation would vary depending on the

scientific questions of interest. For example, in the faces

dataset (considered in Section 5), facial characteristics
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were determined from a series of images by measuring

the number of pixels for each image. Aggregating these

over the complete set of images produced intervals since

understandably different images would contain differing

numbers of pixels. Interval-valued data can also arise in

their own right such as species. For example, the bat species

Pipistrelle Commune has height from 4 to 7 mm (i.e., the

interval [4,7]) but a particular bat may have a height of 4.3

mm. The list of naturally arising interval data is endless.

In a different direction, some measurements carry an

inherent degree of uncertainty and/or imprecision. For

example, your assessment of the merits of some entity (e.g.,

wine quality) can be along the lines of 90 ± δ with δ = 5

when reasonably sure and δ = 10 when the uncertainty

increases. Rather than uncertainty, in order to protect

confidentialities, an actual observation of 24 say may be

recorded as (24 − δ1, 24 + δ2) for arbitrary δ1, δ2 values.

Also, we use such notions on a regular basis when we

measure, for example, pulse rate as 64 ± 1, that is, [63, 65].

Note however that pulse rates of 64 ± 1 and 64 ± 3, while

having the same midpoint have different internal variations,
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and so are differently valued observations. Any analysis

therefore must take into account these internal variations

inherent to symbolic data along with the usual external

variations familiar to us as between (classical) observations,

that is, variance. A review of symbolic data can be found

in refs. [2,3].

The problem of reducing a large number of random

variables p to a smaller number of principal components

s ≪ p remains regardless of how the intervals were formed.

Therefore, in Section 2, the vertices method for performing

a principal component analysis on interval-valued data is

presented. A brief summary of this method was given in

Ref. [4]. In this work, we complete some of those details

and extend the method further. Thus, we make allowance

for intervals to be ‘trivial’ as can happen when a given

variable assumes a classical rather than an interval value;

that is, the data can be hypercubes in p′ ≤ p-dimensions.

General weight functions are introduced in Section 2.2,

and calculation of the underlying variance–covariance

matrix along with practical computational complexity

considerations are presented in Section 2.3. The method is

based on extending the methodology for classical data, and

we show (in Section 2.4) how the basic classical theory

carries through to interval-valued data. Further, we show

how the method allows for completely classical data as a

special case.

Then, we introduce the concept of vertex contributions

to the principal components, a concept not possible in

a classical analysis. Unlike classical data which consist

of single points in p-dimensional space, interval data

consist of hypercubes each consisting of a cloud of

vertices. Therefore, the contribution of an observation to the

principal component can be broken down into contributions

of each vertex. The visualization and hence interpretation of

the vertices principal components can therefore be further

enhanced by focusing on those vertices whose contributions

exceed preassigned bounds (see Section 3).

Other efforts to address interval data include the

methods of Lauro and Palumbo [5]. In an attempt to

improve the factorial visualization of these analyses, they

considered three variants, each based on the interval

midpoints (a special case of the centers method of

Chouakria [6], see also ref. [4]). These are described briefly

in Section 4 and compared with the vertices method. In a

different direction, Palumbo and Lauro [7] and Lauro and

Palumbo [8] use interval arithmetic ideas (of Moore [9])

to calculate the variance–covariance matrix based on

interval means and distances. Gioia and Lauro [10] and

Lauro and Gioia [11] propose an extension of classical

principal components to intervals based on interval algebra

properties and main results on interval eigenvalues and

interval eigenvectors obtained by Deif [12] and Rhon [13].

Unfortunately, interval arithmetic ideas do not work well

for principal component analysis unless the intervals are

short. There is also a series of papers [14–19] which

consider principal component analysis of interval fuzzy

data. However, while fuzzy data can be viewed as a special

case of interval data, they are in general a different domain

from symbolic data; see ref. [3] for examples showing the

distinctions between these two types of data.

In Section 5, we analyze a set of m = 27 faces dataset,

with p = 6 variables, from Leroy et al. [20] investigating

facial characteristics for detection purposes in a surveillance

study. Facial recognition has taken on an added urgency

in the last decade or so. The recent extensive review by

Zhao et al. [21] highlights the relative paucity of statistical

methodology to add to the largely computer-based methods

and draws special attention to the need for techniques

when databases are large. In this sense, our analysis

contributes to the knowledge base for this field in that it

provides a new exploratory method to aid in the process of

detecting which variables are important. More importantly,

however, is the wider applicability of the methodology to

many fields (including the image processing field) when

faced with interval-valued databases, in general. We also

demonstrate, through this dataset, how attempts to analyze

interval-valued data with classically valued surrogates lose

information contained in the data; that is, the symbolic

analysis gives more informative results than does a classical

analysis, lending more importance to the usefulness of the

symbolic approach.

Finally in Section 6, a second example illustrates how the

method can be applied even when the number of parameters

exceeds the number of observations, that is, when m < p,

as well as how uncertainty data can be accommodated.

2. THE VERTICES PRINCIPAL COMPONENTS

METHOD

2.1. Data Matrix

Suppose the data consist of m observations ξ i =

(ξi1, . . . , ξip) where ξij = [aij , bij ] with aij ≤ bij , i =

1, . . . , m, j = 1, . . . , p, are realizations of the random

variable X = (X1, . . . , Xp). An interval [aij , bij ] is defined

to be trivial if it reduces to a single value aij = bij . Notice

that ξ i is a classical observation if ξij for all j = 1, . . . , p,

are trivial intervals.

Let the number of nontrivial intervals in ξ i be qi . Then,

the number of vertices associated with the observation ξ i

in ℜp is

ni = 2qi . (1)

Thus, a classical observation which equates to a point in

ℜp has qi = 0 and hence has 20 = 1 vertex in ℜp; a line

Statistical Analysis and Data Mining DOI:10.1002/sam
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segment has qi = 1 and so has 2 vertices, a rectangle has

qi = 2 with 22 = 4 vertices in ℜp, and so on. Figure 1

displays the hypercube describing each of seven interval-

valued observations measured on p = 3 random variables

along with the corresponding clusters of vertices. We refer

to all observations as being hypercubes H in ℜp. The total

number of vertices for the dataset (ξ 1, . . . , ξm) is

n =

m
∑

i=1

ni =

m
∑

i=1

2qi . (2)

We construct the ni × p data matrix Xξi with ele-

ments (xi
kj ), k = 1, . . . , ni , j = 1, . . . , p, where xi

k =

(xi
k1, . . . , xi

kp) is the point value of the vertex k, k =

1, . . . , ni , associated with the hypercube Hi representing

the observation ξ i , i = 1, . . . , m. Then the data matrix

whose elements represent the vertices of the complete

dataset is the n × p matrix

X = (Xξ1
, . . . , Xξm)′ = ((x1

kj ), . . . , (xm
kj ))

′. (3)

2.2. Weights

As for classical analyses, there are many possible

weighting schemes, generally dictated by the nature of

the application at hand. We present three main symbolic

weighting schemes, where without loss of generality, we

assume observations have been normalized. First, let us

denote the weight of observation ξ i by wi . A symbolic

Fig. 1 Types of hypercubes: clouds of vertices.

observation ξ i has ni vertices each of which can have a

weight factor; let the weight of the vertex k (of ξ i) be

wi
k , k = 1, . . . , ni , i = 1, . . . , m. Further, it follows that we

require

wi =

ni
∑

k=1

wi
k,

m
∑

i=1

wi = 1. (4)

A frequent choice of weight for wi gives equal weight

to all observations, that is,

wi = 1/m, i = 1, . . . , m. (5)

This choice for wi gives equal weight to observations even

when they have different internal variations. For example,

for p = 1, the observations ξ1 = [59, 61] and ξ2 = [57, 63]

would be equally weighted under Eq. (5).

One weighting scheme which gives importance to

differing internal variations of hypercubes is given by

wi = Vi

/

m
∑

i=1

Vi, (6)

where Vi is the volume of the hypercube Hi associated with

ξ i given by

Vi =
∏

aij �=bij

(bij − aij ). (7)

Note that ‘volume’ is a generic nondimensional term, and

could be a ‘surface’ (or ‘length’) in 2 (or 1) dimensions;

it is simply a measure of information contained in the

observation Hi . Under this scheme, observations that form

larger hypercubes (and so have larger internal variability)

receive larger weights. An observation that is a single point

receives a weight of zero. For example, this weighting

scheme might be useful when hypercubes emerge from

aggregation of very large datasets, with larger hypercubes

representing an aggregation of a larger number of individual

observations, or more information, than smaller hypercubes.

In this sense, a hypercube that is a single point in ℜp is but

one distinct observation, and so its zero weight under this

scheme is akin to the notion that the probability of a point

is zero. Along similar but different lines, the weights wi can

be proportional to the number of observations aggregated

to produce each ξ i . Another notion of ‘volume’ is the linear

description potential equal to the sum of the hypercube

edges of ξ i [5,22].

A third scheme is one for which the weights are inversely

proportional to volume, viz.,

wi =
1 − Vi

/
∑m

i=1 Vi
∑m

i=1[1 − Vi

/
∑m

i=1 Vi]
. (8)

Statistical Analysis and Data Mining DOI:10.1002/sam
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In this case, observations with large volumes receive

lower weight. This type of weighting scheme might be

more appropriate for observations if the intervals are

measures of imprecision (x ± δ), with lower weights for

more uncertainty (i.e., larger δ) expressed through the

observation’s interval range.

Consider now the weights for each vertex k. When

the weights for the ni vertices of the observation ξ i (or,

hypercube Hi) are assumed to be equal,

wi
k = wi/ni, k = 1, . . . , ni, i = 1, . . . , m. (9)

For example, for ξ1 = ([3, 5], [10, 16], [7, 9]), ξ 2 =

([3, 5], [13, 13], [8, 8]), these become wi = 1/2 with

w1
k = 1/16, w2

k = 1/4, k = 1, . . . , ni, since from Eq. (1)

n1 = 8 and n2 = 2.

When nothing is known about the internal distribution

across an interval, these weights could be determined with

regard to the means located at the interval midpoints

xc
ij = (aij + bij )/2, which in effect is assuming a uniform

distribution within the intervals. More generally for any

distribution, rather then the midpoints, some suitably

defined reference point x0
ij with aij < x0

ij < bij can be used.

For example, x0
ij can be the mode, it can be the observed

mean across [aij , bij ] for the distribution underlying the

corresponding Xj , or so on. We then set weights wa
ij and

wb
ij on the endpoints aij and bij , respectively, such that

wa
ij + wb

ij = 1 and wa
ijaij + wb

ijbij = x0
ij . (10)

Then, the weights wi
k for the vertex k of ξ i can be given

by

wi
k = wi





qi
∏

j=1

w(xi
kj )



 , (11)

where the weight associated with the j th component of the

k vertex is

w(xi
kj ) = wt

ij , when xkj = tij , t = a, b. (12)

To illustrate, consider a p = 2 observation ξ i = ([ai1, bi1],

[ai2, bi2]) which forms a rectangle hypercube Hi with

ni = 4 vertices. Then for the k = 1, . . . , 4 vertices, we have

wi
1 = wiw

a
i1w

a
i2, wi

2 = wiw
a
i1w

b
i2,

wi
3 = wiw

b
i1w

a
i2, wi

4 = wiw
b
i1w

b
i2.

Then, after applying Eq. (10) for each of j = 1, 2, we have

4
∑

k=1

wi
k = wi{w

a
i1(w

a
i2 + wb

i2) + wb
i1(w

a
i2 + wb

i2)} = wi .

For the case that x0
ij is the interval midpoint xc

ij , the

weights wa
ij = wb

ij = 1/2, and so the particular weights of

Eq. (9) pertain.

It follows that the weight matrix D associated with the

observation vertices matrix X is the n × n diagonal matrix

D = diag(w1
1, . . . , w1

n1
, . . . , wm

1 , . . . , wm
nm

). (13)

2.2.1. Classical data

When all the observations are classical data with aij =

bij for all i = 1, . . . , m, j = 1, . . . , p, it follows that the

number of nontrivial intervals qi = 0 and hence ni = 1 for

all i = 1, . . . , m. Hence, the vertex weights wi
k ≡ wi . All

the results herein carry through as a special case.

2.3. Variance–Covariance Matrix

Principal component analysis includes finding the eigen-

values and eigenvectors of the variance–covariance matrix

of the data. Let us define the variance–covariance matrix

associated with the vertices by V = (vj1,j2
), j1, j2 =

1, . . . , p; then,

V = XTDX, (14)

where X and D are as defined in Eqs. (3) and (13),

respectively. Recalling that the structure of the matrix X

is that it represents the n vertex points in the complete

symbolic dataset and can be viewed as n classical

observations, we can obtain the weighted sample means as

Xj =

m
∑

i=1

ni
∑

k=1

wi
kx

i
kj =

m
∑

i=1

(αa
ijaij + αb

ijbij ), (15)

where αa
ij and αb

ij are the weights for the observation ξ i

when the value of xi
kj is aij and bij , respectively. Therefore,

for t = a, b,

αt
ij =

ni
∑

k=1

wi
k = wt

ijwi whenever xi
kj = tij . (16)

It follows from Eq. (12) that αa
ij + αb

ij = wi .

Then, the variance vjj of Xj can be written as

vjj =

m
∑

i=1

ni
∑

k=1

wi
k(x

i
kj − Xj )

2; (17)

hence,

vjj =

m
∑

i=1

[αa
ij (aij − Xj )

2 + αb
ij (bij − Xj )

2]. (18)

Statistical Analysis and Data Mining DOI:10.1002/sam
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Likewise, the covariance vj1j2
between Xj1

and Xj2
can be

written as

vj1j2
=

m
∑

i=1

ni
∑

k=1

wi
k(x

i
kj1

− Xj1
)(xi

kj2
− Xj2

). (19)

We can show that

vj1j2
=

m
∑

i=1

wi

(wa
ij1

wa
ij2

aij1
aij2

+ wa
ij1

wb
ij2

aij1
bij2

+ wb
ij1

wa
ij2

bij1
aij2

+wb
ij1

wb
ij2

bij1
bij2

)

=

m
∑

i=1

wix
0
ij1

x0
ij2

(20)

from Eq. (10). Hence, the variance–covariance matrix V

based on the vertices is calculated.

2.3.1. Complexity

Since each observation is represented by its ni vertices, it

would seem that when calculating the variance–covariance

matrix V , the order of complexity is O(m2p) when

there are no trivial intervals. If p is large, this can be

considerable. However, this complexity can be reduced to

O(m) by consideration of the relevant variance–covariance

matrix Vc obtained from the reference points x0
ij introduced

in Section 2.2.

We can show that these reference points (e.g., midpoints)

have weighted mean

X
c

j =

m
∑

i=1

wix
0
ij =

m
∑

i=1

(αa
ijaij + αb

ijbij ),

that is, X
c

j = Xj from Eq. (15). We can also show that Vc

has elements vc
j1j2

given by

vc
j1j2

=

m
∑

i=1

wi(w
a
ij1

aij1
+ wb

ij1
bij1

)(wa
ij2

aij2
+ wb

ij2
bij2

).

(21)

Now, when j1 = j2 = j , from Eqs. (20) and (21), we can

show that

vjj = vc
jj + ejj , j = 1, . . . , p, (22)

where

ejj =

m
∑

i=1

wiw
a
ijw

b
ij (bij − aij )

2. (23)

Likewise, from Eqs. (20) and (21) when j1 �= j2, we can

show that vj1j2
= vc

j1j2
.

Hence, the vertices variance–covariance matrix V and

the variance–covariance matrix V c satisfy the relationship

V = V c + E, (24)

where E is a p × p diagonal matrix with diagonal elements

ejj given by Eq. (23). Note that V c represents the

between observations variation and E describes a within

observations or internal variations of the data.

The relationship given in Eq. (24) allows for the

calculation of the vertices variance–covariance matrix V

by calculating the variance–covariance matrix V c and the

difference matrix E, with complexity O(m), instead of

the complexity O(m2p) that pertains when calculating V

directly through the vertices as in Eq. (14). Therefore, the

degree of complexity for the vertices method is reduced

to the order O(m), the same as for a classical principal

component analysis.

2.3.2. Classical data

When the data are all classical observations, we have

from Eq. (23), ejj = 0, for all j . In this case, the

two methods are equivalent throughout and the classical

principal component analysis becomes a special case.

2.3.3. Centers method

Cazes et al. [4] also provided a brief summary of a so-

called centers method. In this case, the reference points

x0
ij are the interval midpoints, that is, x0

ij = xc
ij . Therefore,

the variance–covariance matrix is just Vc, and so ignores

internal variations contained in the data (expressed through

E). See ref. [6] for details of this method.

2.4. Vertices Principal Component Analysis

The data matrix X is a data matrix of n classical point

observations on the random variables (X1, . . . , Xp), with

its associated weighted variance–covariance matrix V of

Eq. (14). Therefore, we can perform a classical principal

component analysis on this X. A detailed description of

how to conduct such an analysis can be found from any

of the numerous texts on multivariate analysis; see, e.g.,

refs. [1,23] for an applied presentation, and ref. [24] for a

theoretical approach.

From Cazes et al. [4], the νth symbolic vertices principal

component for the symbolic observation ξ i represented by

the ni vertices in Xξi is

Y ∗
iν = [ya

iν, yb
iν], ν = 1, . . . , s ≤ p, (25)

Statistical Analysis and Data Mining DOI:10.1002/sam
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where

ya
iν = min

k∈Li

{yi
νk}, yb

iν = max
k∈Li

{yi
νk}, (26)

where Li = {1, . . . , ni} is the set of rows in Xξi which

describe the vertices of the symbolic hypercube Hi and

hence the observation ξ i , and where yi
νk is the value of the

νth principal component for the row k in Li .

This result can be verified as follows. Defining J+ =

{j |eνj > 0} and J− = {j |eνj < 0}, we can show that

ya
iν =

p
∑

j∈J+

eνj (aij − Xj ) +

p
∑

j∈J−

eνj (bij − Xj ), (27)

yb
iν =

p
∑

j∈J−

eνj (aij − Xj ) +

p
∑

j∈J+

eνj (bij − Xj ), (28)

where eν = (eν1, . . . , eνp), ν = 1, . . . , p, is the νth eigen-

vector associated with the νth eigenvalue (λν) of V . Next,

take any point x̃i with x̃ij ∈ [aij , bij ]. Then, the νth prin-

cipal component associated with this x̃i is

P̃Cν =

p
∑

j=1

eνj (x̃ij − Xj ).

It follows that

p
∑

j=1

eνj (x̃ij − Xj )≥

p
∑

j∈J+

eνj (aij −Xj ) +

p
∑

j∈J−

eνj (bij − Xj )

(29)

and

p
∑

j=1

eνj (x̃ij − Xj )≤

p
∑

j∈J−

eνj (aij −Xj ) +

p
∑

j∈J+

eνj (bij − Xj ).

(30)

However, by definition Eq. (26) and from Eqs. (27 and (28),

the right-hand side of Eqs. (29) and (30) are, respectively,

min
k∈Li

{yi
νk} = ya

iν, max
k∈Li

{yi
νk} = yb

iν .

Hence, for all ν = 1, . . . , p, ˜PCν ∈ [ya
iν, yb

iν]; and so Y ∗
iν

as in Eqs. (25) and (26) holds for all xij ∈ [aij , bij ].

A graphical representation of a set of s = 2 principal

components obtained from the projection of the hypercube

Hi with ni = 6 vertices onto the PC1 and PC2 plane

is displayed in Fig. 2. The rectangle formed by the two

interval-valued principal components constitutes a maximal

envelope of the projection points from Hi . Thus, every point

PC2

i2

b
y

Hi

i2

a
y

i1

a
y

i1

b
y PC1

Fig. 2 Projection hypercube Hi to principal component (ν =
1, 2) axes.

in the hypercube Hi when projected to the plane lies inside

this envelope. However, depending on the actual value of

Hi , there can be some (exterior) points within the envelope

that may not be projections of points in Hi . In this sense, the

envelope overestimates the principal component hypercube.

This can be improved by looking at the quality of each

vertex, as introduced in Section 3.

As for classical analyses, the total variance is σ 2
n =

∑p

i=1 λi , Var(PCν) = λν and the proportion of the total

variance explained by PCν is λν/
∑p

ν=1 λν . Also, we can

obtain a correlation measure between the νth principal

component PCν and the random variable Xj as

Cjν = Cor(Xj , PCν) = eνj

√

λν/σ
2
j , (31)

where σ 2
j is the variance of Xj . Note that when the

variance–covariance matrix is standardized, these σ 2
j

reduce to σ 2
j = 1.

3. INTERPRETATION AND VISUALIZATION

In classical principal component analysis, two different

quantities are usually calculated to help in the visualization

and interpretation of the projections of the principal

component values for each observation onto the principal

component axes. One is the cosine of each (classical)

observation Xi onto the νth principal component axis, viz.,

cos(Xi, PCν) = wiy
2
iν/[d(Xi, G)]2,

where d(Xi, G) is the Euclidean distance between the

observation Xi and G is the centroid of all data Xi, i =

1, . . . , n, values. Large values of cos(Xi, PCν) mean that
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the position of Xi is near to its projected value on the

PCν axis and hence we are confident about the position

of this Xi observation’s role in the interpretation of

the principal component analysis results; low values of

cos(Xi, PCν) suggest care is necessary when interpreting

results relative to that Xi and PCν. A second quantity

useful for interpretation purposes in a classical analysis is

the contribution of each observation Xi to the inertia, viz.,

Ctr(Xi, PCν) = wiy
2
iν/λν .

For our symbolic principal component analyses, instead

of a single point observation Xi , we have the hypercube

Hi . We extend these classical quantities to hypercubes

as follows. The relative contribution to a given principal

component PCν by an observation ξ i represented here by

its observed hypercube Hi can be measured by

C1
iν = Ctr(Hi, PCν) = wi

ni
∑

k=1

wi
k(y

i
νk)

2

[d(x i
k, G)]2

, (32)

where yi
νk is the νth principal component for the vertex k

of Hi (see Eq. (26)), wi
k is the weight of that vertex (see

Section 2.2), and where d(xi
k, G) is the Euclidean distance

between the vertex xi
k identified in the row k of Xξi and G

defined as the centroid of all n rows of X. An alternative

measure is the contribution

C2
iν = Ctr(Hi, PCν) =

∑ni

k=1 wi
k(y

i
νk)

2

∑ni

k=1 wi
k[d(xi

k, G)]2
. (33)

The first function C1
iν identifies the average squared

cosines of the angles between these vertices and the axis

of the νth principal component. The second function C2
iν

identifies the ratio between the contribution of all the

vertices of Hi to the variance λν of the νth principal

component and their contribution to the total inertia (or

total variance). Also, since for all positive real numbers

a, b, c, d, the relationship (a + c)/(b + d) ≤ [a/b + c/d)

holds, then it follows that C2
iν ≤ C1

iν .

The absolute contribution of a single observation through

the vertices of Hi to the variance of PCν = λν is measured

by the inertia

Iiν = Inertia(Hi, PCν) =

[

ni
∑

k=1

wi
k(y

i
νk)

2

]

/λν, (34)

and the contribution of this observation to the total variance

is

Ii = Inertia(Hi) =

{

ni
∑

k=1

wi
k[d(x i

k, G)]2

}

/IT, (35)

where IT =
∑p

ν=1 λν is the total variance of all the vertices

in ℜp. It is easily verified that

m
∑

i=1

Iiν = λν,

m
∑

i=1

Ii = IT. (36)

An alternative visual aid in interpreting the results is

that only those vertices whose contribution to the principal

component PCν exceed some prespecified value α, be used

in Eq. (25). That is, we set

Y ∗
iν(α) = [ya

iν(α), yb
iν(α)],

where

ya
iν(α) = min

k∈Li

{yi
νk|Ctr(xi

k, PCν) ≥ α},

yb
iν(α) = max

k∈Li

{yi
νk|Ctr(xi

k, PCν) ≥ α}, (37)

where

Ctr(xi
k, PCν) =

(yi
νk)

2

[d(x i
k, G)]2

(38)

is the contribution of a single vertex xi
k to the νth principal

component.

When α = 0, the principal component interval obtained

from Eq. (26) has an underlying assumption that all n

vertices are equally important in determining that interval

regardless of the respective contributions of individual

vertices calculated from Eq. (37) or (38). Thus, to take

an extreme case, one vertex k = k′ may have a value of

yi
υk′ = 1.0 (say) while all the other vertices k �= k′ in Li

may take values in the range 10.0, . . . ,11.0 (say) for a given

value of ν. Direct use of Eq. (26) gives PCν = [1.0, 11.0].

Suppose however the relative contribution, from Eq. (37),

for that vertex k′ is 0.05, while those for the other vertices

k �= k′ in Li are such that they exceed α = 0.6 (say).

Then, a more meaningful symbolic principal component

interval in this case is PCν = [10.0, 11.0]. On the other

hand, if the k = k′ vertex has a contribution of 0.65 (say),

then now all vertices should be included, and so from

Eq. (37), we have PCν = [1.0, 11.0]. That is, if a particular

vertex contributes relatively little information to a specific

principal component calculation, it is omitted from Eq. (26)

allowing only those vertices which are meaningful to be

retained. For classical data, there is only one vertex (n = 1)

and so this argument does not arise.

An alternative to the criterion of Eq. (37) is to replace

Ctr(xi
k, PCν) by

Ctr(xi
k, PCν1, PCν2) = Ctr(xi

k, PCν1) + Ctr(xi
k, PCν2).

(39)
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In this case, vertices that make larger contributions in

either of the two principal components PCν1 and PCν2 are

retained, rather than only those vertices that contribute to

just one principal component.

To illustrate, consider the projections of the two hyper-

cubes H1 and H2 onto the first and second principal com-

ponent plane as shown in Fig. 3. The principal component

envelope (obtained from applying Eq. (26)) is also dis-

played. The numerical values at each of the projected ver-

tices are the contributions of the respective vertices to the

first (ν = 1) principal component, calculated from Eq. (38).

For example, the five vertices of H1, respectively, con-

tribute 0.8, 0.05, 0.55, 0.35, 0.75, to PC1. When α = 0.2

(say) in Eq. (37), the vertex contributing 0.05, is omitted,

with the resulting principal component envelope being that

shown in Fig. 4. The observation represented by the hyper-

cube H2 has six vertices (see Fig. 3) including a vertex

whose contribution is 0.01. Application of Eq. (37) when

α = 0.2 results in the two vertices whose contributions are

0.01 and 0.15 being dropped. However, the resulting princi-

pal component envelope in this case still includes the vertex

with contribution 0.01.

When for a given ν = ν1 (say) all Ctr(xi
k , PCν1) < α,

then to keep track of the position of the hypercube Hi on

the principal component plane (ν1, ν2) say, we project the

center of the hypercube onto that axis at

yiν1
=

1

ni

ni
∑

k=1

yi
ν1k. (40)

In this case, there is no variability on that principal

component ν1; whereas if there is variability for the other

principal component ν2, there is a line segment on its (ν2)

plane.

Fig. 3 Principal component envelope, α = 0, based on relative
contributions of vertices to PCν, ν = 1, 2.

Fig. 4 Principal component envelope, α = 0.2, based on relative
contributions of vertices to PCν, ν = 1, 2.

4. RANGE BASED METHODS

In an attempt to improve the factorial visualization of

the vertices method, Lauro and Palumbo [5] describe three

variants of the Cazes et al. [4] centers method. It is assumed

all intervals are nontrivial. First they introduced a so-

called Symbolic Object—Principal Component Analysis

(SO-PCA) method in which they performed a principal

components analysis on the interval midpoints. That is,

they used the variance–covariance matrix V c of Section

2.3 for the particular case that the reference points x0
ij

are the midpoints xc
ij for the observed intervals. Principal

component envelopes are then constructed by substituting

the resulting eigenvector values (from V c) into Eqs. (27)

and (28) and by replacing Xj by X
c

j . As for the centers

method, in this SO-PCA method, principal component axes

are totally defined by the midpoints of the hypercubes.

The midpoints are standardized by a variance calculation

through a boolean matrix based on the m2p vertices.

Therefore, this SO-PCA method has a computational

complexity of O(m2p) rather than the complexity of only

O(m) for the pure centers method (see Section 2.3). Lauro

and Palumbo recognized this complexity as problematic,

calling it ‘the curse of dimensionality’. Note that because

of Eq. (24), the vertices method does not have this ‘curse’.

Lauro and Palumbo [5] further proposed two addi-

tional methods based on the range, called the Range-

Transformation-PCA (RT-PCA) method and the Mixed-

PCA method (which combines the SO-PCA and RT-PCA

methods). The RT method performs a classical principal

component analysis on the maximum vertices after being

centered on the minimum vertices. The Mixed-PCA method

performs a principal component analysis on the recoded

midpoints obtained by projecting the midpoints of the

observations onto the factorial axes found from the RT-PCA
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method. Another method using the range variable is that of

Giordani and Kiers [17] in their analysis of fuzzy data. This

approach replaces each interval by two random variables,

the midpoint and range values. Their approach is consid-

ered in Section 5.3 when looking at classical surrogates of

the interval-valued data. The underlying problem identified

there for ranges applies also to the Lauro and Palumbo [5]

method.

5. FACE RECOGNITION APPLICATION

5.1. The Data

The problem of automatic face recognition has gained

added impetus recently especially in the context of security

such as in access to buildings and the like, and in the context

of monitoring and continued surveillance questions. Mech-

anisms for identifying human facial patterns started receiv-

ing attention with the Fischler and Eschlager [25] study

of matching pictorial structures, followed by Baron [26],

among others. Following a brief review by Samal and Iyen-

gar [27], in an excellent and extensive review, Chellappa

et al. [28] looks at face recognition in the law enforce-

ment and commercial sectors as well as the psychophysics

community. The last ten years has witnessed considerable

activity on this vexing issue. Zhao et al. [21] provides an

in-depth review of the recent literature. Much of this work

falls under the broad rubric of image analysis; while some

deal with computer architectural graph matching methods.

There are a few studies involving direct statistical methods,

such as principal component analysis of eigenfaces used

by Turk and Pentland [29], Craw and Cameron [30], and

Moon and Phillips [31], discriminant analysis by Eternad

and Chellappa [32], probabilistic eigenfaces developed by

Moghaddam and Pentland [33], and nearest line features

considered by Li and Chellappa [34] and Li and Lu [35].

Studies such as those by Kass et al. [36], Turk [37], Craw

et al. [38], and Staib and Duncan [39] helped identify those

facial features that should be included in any discrimination

research. Zhao et al. [21] conclude that while progress has

been valuable, much more remains to be done especially

when databases are large.

Our analysis focuses on a dataset from an investigation

by Leroy et al. [20] which uses face recognition features

identified from these earlier studies. The process of

face recognition entails first describing the faces, then

classifying and lastly identifying them. One technique

for describing faces consists of taking a number of

measurements, which identify principal facial features

(width of eyes, nose, etc.). The classification stage is

achieved through a principal component analysis to identify

groupings of faces with the associated interpretations

providing input as to the identification of distinguishing

features. Our methodology provides a new exploratory

technique when the data are intervals instead of the points

of classical data.

The dataset consists of measurements of six random vari-

ables designed to identify each face; specifically, the length

spanned by the eyes X1 (the distance AD in Fig. 5), the

length between the eyes X2 (the distance BC), the length

from the outer right eye to the upper middle lip at the point

H between the nose and mouth X3 (AH), the corresponding

length for the left eye X4 (DH), the length from this point

H to the outside of the mouth on the right side X5 (EH) and

the corresponding distance to the left side of the mouth X6

(GH). For each face image, the localization of the salient

features such as nose, mouth, and eyes is obtained by using

morphological operators. In order to extract the boundary of

these localized elements, a specific active contour method

based on Fourier descriptors able to incorporate informa-

tion about the global shape of each object is used. Finally,

specific points delimiting the extracted boundaries are local-

ized, and then a distance is measured between a specific

pair of points as represented by these random variables, in

Fig. 5. This distance measure is expressed as the number

of pixels on an image of the face. There is a sequence of

such images; so therefore the actual distances measured are

interval-valued. Thus, for example, the eye-span distance

X1 for the subject FRA1 is X1 = [155.00, 157.00] over

this series of images. Note that due to the different con-

ditions of alignment, illumination, pose and occlusion, the

extracted distances will vary across the different images of

the same person. The study involved nine men with three

sequences for each giving a total of m = 27 observations.

The complete dataset is provided in Table 1.

Before carrying out the analysis, let us first make

the following comment that pertains for aggregated data

such as these faces data. As described, there are 27

interval-valued observations. Suppose each observation

A C

E
H

G

X5 X6

X4
X3

X1

X2
B D

Fig. 5 Face: description of random variables.
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Table 1. Faces dataset (distances AD, . . . ,GH as in Fig. 5, see text).

Subject X1 = AD X2 = BC X3 = AH X4 = DH X5 = EH X6 = GH

FRA1 [155.00, 157.00] [58.00, 61.01] [100.45, 103.28] [105.00, 107.30] [61.40, 65.73] [64.20, 67.80]
FRA2 [154.00, 160.01] [57.00, 64.00] [101.98, 105.55] [104.35, 107.30] [60.88, 63.03] [62.94, 66.47]
FRA3 [154.01, 161.00] [57.00, 63.00] [99.36, 105.65] [101.04, 109.04] [60.95, 65.60] [60.42, 66.40]

HUS1 [168.86, 172.84] [58.55, 63.39] [102.83, 106.53] [122.38, 124.52] [56.73, 61.07] [60.44, 64.54]
HUS2 [169.85, 175.03] [60.21, 64.38] [102.94, 108.71] [120.24, 124.52] [56.73, 62.37] [60.44, 66.84]
HUS3 [168.76, 175.15] [61.40, 63.51] [104.35, 107.45] [120.93, 125.18] [57.20, 61.72] [58.14, 67.08]

INC1 [155.26, 160.45] [53.15, 60.21] [95.88, 98.49] [91.68, 94.37] [62.48, 66.22] [58.90, 63.13]
INC2 [156.26, 161.31] [51.09, 60.07] [95.77, 99.36] [91.21, 96.83] [54.92, 64.20] [54.41, 61.55]
INC3 [154.47, 160.31] [55.08, 59.03] [93.54, 98.98] [90.43, 96.43] [59.03, 65.86] [55.97, 65.80]

ISA1 [164.00, 168.00] [55.01, 60.03] [120.28, 123.04] [117.52, 121.02] [54.38, 57.45] [50.80, 53.25]
ISA2 [163.00, 170.00] [54.04, 59.00] [118.80, 123.04] [116.67, 120.24] [55.47, 58.67] [52.43, 55.23]
ISA3 [164.01, 169.01] [55.00, 59.01] [117.38, 123.11] [116.67, 122.43] [52.80, 58.31] [52.20, 55.47]

JPL1 [167.11, 171.19] [61.03, 65.01] [118.23, 121.82] [108.30, 111.20] [63.89, 67.88] [57.28, 60.83]
JPL2 [169.14, 173.18] [60.07, 65.07] [118.85, 120.88] [108.98, 113.17] [62.63, 69.07] [57.38, 61.62]
JPL3 [169.03, 170.11] [59.01, 65.01] [115.88, 121.38] [110.34, 112.49] [61.72, 68.25] [59.46, 62.94]

KHA1 [149.34, 155.54] [54.15, 59.14] [111.95, 115.75] [105.36, 111.07] [54.20, 58.14] [48.27, 50.61]
KHA2 [149.34, 155.32] [52.04, 58.22] [111.20, 113.22] [105.36, 111.07] [53.71, 58.14] [49.41, 52.80]
KHA3 [150.33, 157.26] [52.09, 60.21] [109.04, 112.70] [104.74, 111.07] [55.47, 60.03] [49.20, 53.41]

LOT1 [152.64, 157.62] [51.35, 56.22] [116.73, 119.67] [114.62, 117.41] [55.44, 59.55] [53.01, 56.60]
LOT2 [154.64, 157.62] [52.24, 56.32] [117.52, 119.67] [114.28, 117.41] [57.63, 60.61] [54.41, 57.98]
LOT3 [154.83, 157.81] [50.36, 55.23] [117.59, 119.75] [114.04, 116.83] [56.64, 61.07] [55.23, 57.80]

PHI1 [163.08, 167.07] [66.03, 68.07] [115.26, 119.60] [116.10, 121.02] [60.96, 65.30] [57.01, 59.82]
PHI2 [164.00, 168.03] [65.03, 68.12] [114.55, 119.60] [115.26, 120.97] [60.96, 67.27] [55.32, 61.52]
PHI3 [161.01, 167.00] [64.07, 69.01] [116.67, 118.79] [114.59, 118.83] [61.52, 68.68] [56.57, 60.11]

ROM1 [167.15, 171.24] [64.07, 68.07] [123.75, 126.59] [122.92, 126.37] [51.22, 54.64] [49.65, 53.71]
ROM2 [168.15, 172.14] [63.13, 68.07] [122.33, 127.29] [124.08, 127.14] [50.22, 57.14] [49.93, 56.94]
ROM3 [167.11, 171.19] [63.13, 68.03] [121.62, 126.57] [122.58, 127.78] [49.41, 57.28] [50.99, 60.46]

drew from a sequence of 1000 images. This gives a

total of 27 000 classical point observations in ℜ6. An

underlying assumption of the standard classical analysis

is that all 27 000 observations are independent. However,

this is not what we have here. The data values for

each face form a set of 1000 dependent observations.

Therefore, if we use each image as the statistical unit by

performing a classical analysis, we lose the information

on dependency contained in the 27 000 observations.

The resulting principal component analysis will look for

axes which maximize the variability across all 27 000

images regardless of whether some images belong to

the same sequence. In contrast, by using the interval-

valued observations obtained from each sequence, the

vertices method will extract principal component axes

which maximize the variability of each interval (i.e.,

maximizes the internal variability) and hence retains the

information on dependency between the 1000 images of

each sequence.

5.2. Vertices Principal Components Analysis

We first apply the vertices principal component method to

these data. Observations and their vertices were given equal

weights (Eqs. (8) and (12)). Values of the first three vertices

principal components obtained through the application of

Eq. (26) for each observation are displayed in Table 2. The

plots of these along the first principal component (PC1)

and second principal component (PC2) axes are shown in

Fig. 6. An immediate observation is the proximity of the

three sequences for the three faces for each individual thus

validating their within-subject coherence. Furthermore, we

can distinguish four, or possibly five, classes of faces.

By restricting the calculation of the principal components

to those vertices which have a contribution α or more,

that is, using Eq. (37), we can obtain a clearer picture of

the class groupings. The relative contribution Ctr(xi
k, PCν),

ν = 1, 2, k = 1, . . . , ni , are calculated from Eq. (38) for

each hypercube Hi , i = 1, . . . , 27. Take the face INC2

(i = 8) hypercube. For ν = 1, all the vertices have a

relative contribution Ctr(xi
k, PC1) > 0.2. Therefore, all (of

the 26 = 64 total) vertices enter into the application of

Eq. (37) to give us PC1(α = 0.2) = [−3.662, −1.354].

However, for ν = 2, only 8 of the 64 vertices satisfy the

relation Ctr(xi
k, PC2) > 0.2. Those relative contributions

which satisfy this relation for the vertices of the face

INC2, are given in Table 3. Therefore, only these vertices

are considered in the application of Eq. (37). Hence, we
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Table 2. Vertices principal components, ν = 1, 2, 3: faces.

Subject PC1 PC2 PC3

FRA1 [−2.66, −1.61] [0.27, 1.57] [−0.29, 1.00]
FRA2 [−2.49, −1.03] [−0.11, 1.61] [−0.25, 1.01]
FRA3 [−2.99, −0.81] [−0.40, 1.88] [−0.88, 1.20]

HUS1 [−0.24, 1.10] [0.39, 2.05] [0.64, 2.13]
HUS2 [−0.40, 1.41] [0.56, 2.65] [0.29, 2.32]
HUS3 [−0.24, 1.42] [0.43, 2.52] [0.27, 2.17]

INC1 [−3.77, −2.29] [−0.67, 1.23] [−0.80, 0.69]
INC2 [−3.66, −1.35] [−2.05, 0.92] [−0.88, 1.83]
INC3 [−4.02, −1.86] [−1.20, 1.41] [−1.01, 1.50]

ISA1 [0.80, 2.00] [−1.83, −0.46] [−0.58, 0.58]
ISA2 [0.37, 1.86] [−1.71, −0.08] [−0.64, 0.73]
ISA3 [0.41, 2.11] [−1.84, −0.12] [−0.58, 1.20]

JPL1 [−0.36, 0.92] [0.54, 2.03] [−1.81, −0.43]
JPL2 [−0.34, 1.17] [0.48, 2.37] [−1.85, −0.07]
JPL3 [−0.52, 0.93] [0.50, 2.28] [−1.56, 0.25]

KHA1 [−1.18, 0.39] [−3.07, −1.46] [−1.19, 0.26]
KHA2 [−1.46, 0.15] [−3.17, −1.32] [−0.93, 0.61]
KHA3 [−1.71, 0.25] [−2.95, −0.72] [−1.25, 0.57]

LOT1 [−0.74, 0.61] [−2.51, −0.87] [−0.81, 0.61]
LOT2 [−0.69, 0.40] [−1.94, −0.62] [−0.80, 0.33]
LOT3 [−0.82, 0.34] [−2.12, −0.70] [−0.77, 0.52]

PHI1 [0.22, 1.51] [0.56, 1.84] [−1.40, −0.08]
PHI2 [−0.09, 1.66] [0.33, 2.29] [−1.81, 0.22]
PHI3 [−0.25, 1.38] [0.25, 2.25] [−2.01, −0.12]

ROM1 [2.19, 3.45] [−1.20, 0.29] [−0.51, 0.81]
ROM2 [1.85, 3.63] [−1.30, 0.97] [−0.83, 1.36]
ROM3 [1.48, 3.57] [−1.33, 1.31] [−0.79, 1.79]

obtain the second vertices principal component as PC2(α =

0.2) = [−2.051, −1.644].

Table 4 provides the complete set of vertices principal

components obtained from Eq. (37) when α = 0.2; these

are plotted in Fig. 7. Also given in Table 4 are the

numbers of vertices for which the contribution to the

respective principal components (ν = 1, 2) exceeds α =

0.2. Under this criterion, seven of the observations now

have a principal component for which all (here 64) vertices

contribute less than α = 0.2. In these cases, to anchor

the (other) principal component, we take the average over

the vertices. For example, for the face INC1 (i = 7) no
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Fig. 6 Faces: vertices principal components PCν, ν = 1, 2.

vertex contributes more than 0.2 to the second principal

component. In this case, y7,2 = 0.28 from Eq. (40). This

is reflected as a line (instead of a rectangle) parallel to

the first principal component axis in Fig. 7. Notice that the

face JPL1 also assumes a linear form (parallel to the second

principal component axis). In this case, however, this arises

from Eq. (37) where now only one vertex contributes more

than α = 0.2 to the first principal component.

By comparing the principal components of Fig. 6 (i.e.,

α = 0.0) and of Fig. 7 (α = 0.2), the greater clarity of

the classes is immediately apparent. Similar enhance-

ments emerged as α moved from 0 to 0.6 (not shown).

Specifically, four groups are evident, those containing the

faces of {PHI, JPL, HUS}, {ROM, ISA}, {FRA, INC} and

{LOT, KHA}, respectively. An equivalent analysis using the

second and three principal components PC2 and PC3 sug-

gests this first group could be divided into two, {PHI, JPL}

and {HUS}.

Table 5 gives all the eigenvalues λν , ν = 1, . . . , 6, along

with the percentage and the cumulative percentage of the

total variation explained by each principal component.

Thus, we see that PC1 explains 42.7% of the total variation

and the first two principal components (PC1 and PC2)

together account for 72.7% of the total variation.

Table 3. Faces: vertices contributions to PCν = 1, 2 (i = 8 ≡ INC2).

X1 X2 X3 X4 X5 X6 PC1 PC2 Cor1 Cor2

156.26 51.09 95.77 91.21 54.92 54.41 −2.717 −1.993 0.514 0.277
156.26 51.09 95.77 96.83 54.92 54.41 −2.390 −1.955 0.476 0.318
156.26 51.09 99.36 91.21 54.92 54.41 −2.511 −2.051 0.485 0.323
156.26 51.09 99.36 96.83 54.92 54.41 −2.184 −2.012 0.448 0.380
161.31 51.09 95.77 91.21 54.92 54.41 −2.432 −1.683 0.437 0.209
161.31 51.09 95.77 96.83 54.92 54.41 −2.105 −1.644 0.396 0.242
161.31 51.09 99.36 91.21 54.92 54.41 −2.226 −1.740 0.406 0.248
161.31 51.09 99.36 96.83 54.92 54.41 −1.899 −1.702 0.366 0.294
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Table 4. Faces: vertices principal components, ν = 1, 2,
α = 0.2.

Principal component
# Vertices
retained

Subject PC1 PC2 ν = 1 ν = 2

FRA1 [−2.66, −1.61] [1.12, 1.57] 64 12
FRA2 [−2.49, −1.03] [0.94, 1.61] 64 18
FRA3 [−2.99, −0.81] [0.67, 1.87] 64 17

HUS1 [0.87, 1.10] [0.81, 2.05] 3 49
HUS2 [0.86, 1.41] [0.97, 2.65] 6 56
HUS3 [0.68, 1.42] [0.88, 2.52] 11 50

INC1 [−3.77, −2.29] 0.28 64 0
INC2 [−3.66, −1.35] [−2.05, −1.64] 64 8
INC3 [−4.02, −1.85] 0.11 64 0

ISA1 [0.80, 2.00] [−1.83, −0.70] 64 51
ISA2 [0.67, 1.86] [−1.71, −0.51] 52 38
ISA3 [0.66, 2.11] [−1.84, −0.46] 60 41

JPL1 [0.92, 0.92] [0.60, 2.03] 1 60
JPL2 [0.64, 1.17] [0.79, 2.37] 7 57
JPL3 [0.81, 0.93] [0.59, 2.28] 3 60

KHA1 −0.39 [−3.07, −1.46] 0 64
KHA2 [−1.46, −1.09] [−3.17, −1.32] 4 64
KHA3 [−1.71, −0.83] [−2.95, −0.72] 12 64

LOT1 −0.07 [−2.61, −0.87] 0 64
LOT2 −0.14 [−1.94, −0.62] 0 64
LOT3 −0.24 [−2.12, −0.70] 0 64

PHI1 [0.63, 1.51] [0.63, 1.84] 36 59
PHI2 [0.62, 1.66] [0.66, 2.29] 26 51
PHI3 [0.62, 1.38] [0.62, 2.25] 18 54

ROM1 [2.19, 3.45] −0.46 64 0
ROM2 [1.85, 3.63] −0.17 64 0
ROM3 [1.48, 3.57] [1.28, 1.31] 64 2
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Fig. 7 Faces: vertices principal components PCν, ν = 1, 2:
α = 0.2.

The correlations Cjν between the variable Xj and the νth

principal component PCν were calculated from Eq. (31) and

are shown in Table 6, for ν = 1, 2, 3. These suggest there

is a strong relationship between the right and left distances

and the upper middle lip (X3 = AH and X4 = DH) and

Table 5. Faces: vertices PC inertia.

PCν Eigenvalue λν % Inertia
Cumulative

inertia

PC1 2.560 42.7 42.7
PC2 1.798 30.0 72.7
PC3 0.642 10.7 83.4
PC4 0.476 7.9 91.3
PC5 0.335 5.6 96.9
PC6 0.188 3.1 100

Table 6. Faces: vertices method, correlations Cjν between Xj

and PCν.

Xj PC1 PC2 PC3

AD 0.6444 0.5889 0.1717
BC 0.4903 0.6663 −0.1403
AH 0.8374 −0.1968 −0.3707
DH 0.8913 0.0885 0.1649
EH −0.4749 0.6248 −0.5607
GH −0.4283 0.7554 0.3377

the first principal component PC1 with correlations of 0.84

and 0.89, respectively, followed by the eye-span distance

(X1 = AD) with a correlation of 0.64. These variables relate

to the overall size of a face. The correlations of the variables

with the second principal component PC2 reveal the relative

importance of the interior facial detail, viz., the distance

between the eyes X2 = BC has a correlation equal to 0.67;

likewise X5 = EH and X6 = GH relating to the mouth with

correlations of 0.62 and 0.76, respectively. Not surprisingly,

it is the same set of variables which single out the faces

{ROM, FRA, INC, ISA} relative to the axis of PC1 from

the other faces, and likewise those of {HUS, KHA, LOT}

relative to the axis of PC2 from the other faces; the details

are omitted.

On the basis of these results, we conclude that long

faces (as in relatively long values of AH and DH) or oval

shaped faces are projected into the positive plane of the first

principal component, while the relatively rounder or broad

faces are projected into the positive plane of the second

principal component.

Further insights are obtained by studying the relative

contributions Ctr(Hi, PCν) between the full observation ξ i

and the νth principal component. These values, calculated

from Eq. (33), are given in Table 7 for ν = 1, 2, 3. Thus,

we observe that the faces of {FRA, INC, ISA, ROM} are

highly identified with the first principal component PC1,

while those of {KHA, LOT} have their highest contributions

with the second principal component PC2. It becomes clear

from the preceding discussion that {FRA, INC, ISA, ROM}

distinguish themselves through the importance of the (AH,

DH and AD) variables, that is, they have long and/or oval

faces. Characteristics of the other groups can likewise be

identified.
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Table 7. Faces: vertices method, relative contributions to
vertices PCν, ν = 1, 2, 3.

Subject PC1 PC2 PC3

FRA1 0.70 0.14 0.04
FRA2 0.62 0.15 0.04
FRA3 0.64 0.14 0.05

HUS1 0.06 0.33 0.41
HUS2 0.07 0.45 0.32
HUS3 0.10 0.40 0.29

INC1 0.86 0.03 0.01
INC2 0.61 0.08 0.08
INC3 0.77 0.04 0.05

ISA1 0.51 0.33 0.02
ISA2 0.42 0.28 0.03
ISA3 0.44 0.27 0.07

JPL1 0.04 0.42 0.33
JPL2 0.08 0.43 0.21
JPL3 0.05 0.50 0.14

KHA1 0.04 0.78 0.05
KHA2 0.07 0.77 0.03
KHA3 0.12 0.60 0.06

LOT1 0.02 0.68 0.04
LOT2 0.02 0.54 0.05
LOT3 0.03 0.53 0.05

PHI1 0.24 0.41 0.16
PHI2 0.21 0.43 0.19
PHI3 0.14 0.37 0.29

ROM1 0.86 0.04 0.01
ROM2 0.83 0.04 0.05
ROM3 0.73 0.06 0.08

These conclusions are based on using all the vertices for

a given hypercube as a collective whole. If we return to the

contributions of individual vertices and in particular those

that exceed α (=0.2, in Table 4), our conclusions are further

corroborated and strengthened. For example, take the faces

of LOT (as an extreme case). From Table 7, we observe that

the contributions to the second principal component are the

largest over all faces at 0.68, 0.54, 0.53, respectively, while

those to the first principal component are the smallest of all

faces at 0.02, 0.02, 0.03, respectively. When we considered

individual vertices, all 64 vertices were retained for the

second principal component whereas none were retained

for the first principal component. At the other extreme, we

have the faces of ROM with strong contributions to the

first principal component both collectively as a complete

hypercube and individually as vertices; in this case, the

contributions to the second principal component are weak.

Likewise, enhanced interpretations apply to the other faces,

with the faces of ISA being a ‘central’ face balanced over

both principal components. Notice, from Fig. 7 that the ISA

faces essentially form their own cluster.

Finally, in Table 8, in the first three columns, we pro-

vide the contribution Iiν of the variance λν of the principal

component PCν, ν = 1, 2, 3, for each observation, obtained

from Eq. (34). Then, in the right-hand column, we give this

contribution Ii of each observation to the total variance,

calculated from Eq. (35). Thus, for example, we observe

that the faces INC(Ii1 = 0.13, 0.09, 0.13) and ROM(Ii1 =

0.12, 0.11, 0.09) contribute the most variation to λ1. The

same faces INC(Ii = 0.07, 0.06, 0.07) closely followed by

ROM(Ii = 0.06, 0.06, 0.06) contribute most to the overall

variation.

5.3. Classical Surrogates

In the absence of any methodology for interval-valued

data, it would be necessary to adopt a classical surrogate

for the symbolic data; three are considered. The results

are then compared with the symbolic analysis, from which

it becomes evident that the classical analyses are unable

to capture all the information contained in the original

symbolic data.

One surrogate is the midpoint value obtained by replacing

the symbolic interval x = [a, b] by its classical midpoint

z = (a + b)/2. A standard principal component analysis

can then be conducted on the resulting m × p (= 27 × 6)

Table 8. Faces: vertices method, absolute contributions of
subject to PCν and inertia.

Subject PC1 PC2 PC3 Inertia

FRA1 0.07 0.02 0.01 0.04
FRA2 0.05 0.02 0.01 0.03
FRA3 0.06 0.02 0.01 0.04

HUS1 0.00 0.03 0.12 0.03
HUS2 0.01 0.06 0.11 0.04
HUS3 0.01 0.05 0.10 0.04

INC1 0.13 0.01 0.01 0.07
INC2 0.09 0.02 0.05 0.06
INC3 0.13 0.01 0.03 0.07

ISA1 0.03 0.03 0.00 0.03
ISA2 0.02 0.02 0.01 0.02
ISA3 0.02 0.02 0.02 0.02

JPL1 0.00 0.04 0.08 0.03
JPL2 0.00 0.05 0.07 0.03
JPL3 0.00 0.04 0.04 0.03

KHA1 0.00 0.11 0.02 0.04
KHA2 0.01 0.11 0.01 0.04
KHA3 0.01 0.08 0.02 0.04

LOT1 0.00 0.06 0.01 0.03
LOT2 0.00 0.04 0.01 0.02
LOT3 0.00 0.04 0.01 0.02

PHI1 0.01 0.03 0.04 0.02
PHI2 0.01 0.04 0.05 0.03
PHI3 0.01 0.04 0.08 0.03

ROM1 0.12 0.01 0.01 0.06
ROM2 0.11 0.01 0.03 0.06
ROM3 0.09 0.01 0.04 0.06
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classical dataset. A plot of the first and second principal

components for these data is shown in Fig. 8. One limiting

factor of this surrogate is that it is impossible to retain

any measure of the internal variation; for example, the two

intervals x1 = [155, 157] and x∗
1 = [150, 163] both give

the same surrogate z1 = 156. It is not possible for this

classical analysis to capture the difference between these

two intervals.

Therefore, a possible way to overcome this limitation

is to introduce two surrogate variables for each interval

variable, viz., the interval endpoints. That is, the symbolic

interval variable x = [a, b] is replaced by z1 = a and

z2 = b. Then, a standard principal component analysis can

be performed on the resulting m × 2p (= 27 × 12 here)

classical dataset. Figure 9 shows the plot of the first and

second principal component analysis that ensues.

Except for the scale of the principal components, these

two surrogates produce remarkably similar results. As

for the symbolic analysis, the coherency of the three

observations relating to each of the nine faces is evident.

Four groups emerge, viz., those containing the faces of

{PHI, JPL, HUS}, {FRA, INC}, {ISA, HA, LOT}, and

{ROM}, though it can be argued that the second group

should be broken into the individual faces {FRA} and

{INC}, and the third group into {KHA, LOT} and {ISA}.

Rather than the endpoints, another possible way to

accommodate intervals of differing lengths is to replace the

interval variable by two variables, viz., the midpoint and

range variables, such as used by Giordani and Kiers [17]

and Lauro and Palumbo [5]. Now, the symbolic interval

x = [a, b] is replaced by z1 = (a + b)/2 and z2 = (b −

a). Then, as for the previous two surrogates, a standard
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classical analysis is conducted on the resulting m × 2p

(= 27 × 12) classical dataset. The plot of the first and

second principal components is shown in Fig. 10.

These three surrogate analyses are compared through

Figs. 8–10. While both Figs. 8 and 9 retain the coherences

for the sets of the same three faces observed for the

symbolic analysis, the range surrogate in general loses that

coherence (though it is seen in some cases, e.g., faces LOT,

and KHA albeit to a lesser extent, i.e., the coherence is

not as strong). This is particularly evident when comparing

Fig. 8 for the midpoints with Fig. 10 when ranges are also
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used along with the midpoint variable. It is also clear from

Fig. 10 that clusters are mixtures of faces, for example,

faces {INC1, INC3, FRA3} could be one cluster. One

explanation for these incoherencies may be the fact that

two intervals such as x = [1, 11] and x∗ = [101, 111], say,

with the same range (=10) but very different locations

(6 and 106, respectively) are indistinguishable when the

range variable has a high correlation with a PC value. This

is akin to the problem of two different intervals but with

the same midpoints giving the same results for an analysis

based on midpoints.

5.4. Comparison of Symbolic and Surrogate Analyses

For comparison purposes, consider the vertices principal

component analysis and the midpoint surrogate analysis;

similar conclusions pertain when the endpoints surrogate

analyses are included. However, given the fact that the

ranges surrogates are inconclusive and inconsistent, no

further comparison of those surrogates will be made.

The major difference between these analyses is that

the vertices results reflect all the variations between the

observations including internal variations, whereas the

classical results do not. The classical values plotted in

Fig. 8 are points in space, while the symbolic values

are hypercubes, here rectangles for the s = 2 principal

components plotted in Fig. 6. These rectangles have smaller

(or larger) dimensions whenever the original data are

smaller (or larger) intervals. Compare, for example, ROM1

and ROM3. Here, ROM1 has a smaller PC1 × PC2

rectangle, reflecting the smaller X5 and X6 intervals.

Superimposing rectangles express a similarity between

the corresponding face prototypes, and the size of the

rectangle conveys the amount of variability through the

corresponding 27 acquired face images. That is, the

principal components themselves reflect a measure of

internal variations along with a measure of the variation

between observations. The classical analysis can only detect

measures of the between observation variations, and as

such do not reflect all the variations in the data. Notice

that even the endpoint surrogate analysis fails to identify

these internal variations in the final principal components

(compare Figs. 6 and 9).

For these data, the two analyses produce slightly different

groups of faces (though arguments can be made for

the same groupings). In particular, the classical analysis

suggests the ISA face belongs in the same group as

the KHA and LOT faces, whereas the symbolic analysis

suggests the ISA face is grouped with the ROM face.

Certainly, in Fig. 6, this ISA face has its principal

component region overlapping those of ROM and largely

disjoint from the LOT and KHA regions. This distinction

becomes more pronounced when α = 0.2 (see Fig. 7),

where it is more obvious that the ISA and ROM faces

belong to the same group. Notice too that, from Fig. 7 the

ROM3 face is in closer proximity to the {HUS, JPL, PHI}

group (at least relative to the second principal component)

than to its namesake group {ROM1, ROM2, ISA}. It also

follows from Fig. 7 and Tables 6 and 7 that the faces

LOT express their internal variation almost entirely through

the variables AD, BC, GH, and EH (i.e., on the eyes

and the mouth) and not at all on AH and DH (i.e., the

distances from the eyes to the mouth); while in contrast

the faces INC (and also ROM) are such that their internal

variations are characterized by the eyes to mouth distances

AH and DH and not at all by the eyes and mouth variables

(AD, BC, GH, and EH). Such insight and information

can not be educed from the classical analysis. The types

of clarifications that can emerge for α > 0 in a symbolic

analysis are not possible in a classical approach. These

differences in conclusions are a direct result of the fact

that symbolic analyses are able to incorporate internal

variations in the data into the methodology, thus enhancing

the interpretations and expanding the knowledge gained.

6. WINE TASTERS DATASET

For standard datasets, dimensionality problems exist

when the number of observations m is less than p the

number of variables. However, it is not a problem for the

vertices symbolic methodology unless n < p, where n is

the total number of vertices given in Eq. (2). If there are no

trivial intervals in the dataset, this becomes n = m2p < p.

This is illustrated by performing the vertices principal

component analysis on the data of Table 9. These data are

the first m = 4 tasters of the first p = 6 different wines,

extracted from a larger dataset of 23 wines and 21 wine

tasters. Here, n = 4 × 26 = 256 > 6 = p; so the method-

ology works through routinely. Each of the observations

relates to a wine taster who makes an assessment of taste

on each wine.

Further, the interval taste valuation indicates the extent

of the taster’s uncertainty of the quality of that wine, with

a smaller range representing greater certainty as to its

quality. This suggests that these varying uncertainties are

best accommodated by using inverse weights such as Eq.

(8). In this way, tasters who exhibit a greater uncertainty

on their evaluation are penalized, while values for the more

certain tasters contribute more to the determination of the

principal component axes.

Therefore, by inserting the weights of Eq. (8) into

the methodology, the first and second weighted vertices

principal components are as shown in Table 10, and plotted

in Fig. 11. Again, as for the previous analysis, the sizes

of the principal component hypercubes (here rectangles)
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Table 9. Wine tasters.

Wine 1 Wine 2 Wine 3 Wine 4 Wine 5 Wine 6

Taster 1 [56, 74] [75, 92] [83, 90] [47, 82] [68, 86] [42, 90]
Taster 2 [83, 85] [89, 94] [83, 89] [48, 87] [84, 91] [81, 91]
Taster 3 [84, 90] [86, 92] [87, 93] [82, 86] [88, 95] [86, 90]
Taster 4 [80, 91] [85, 93] [85, 92] [73, 76] [85, 92] [81, 91]

reflect the relative sizes of the original data. Thus, taster 1

has a wider range of uncertainty than did taster 2 (except for

wine 4) and this is reflected by a larger principal component

rectangle. It is also evident that taster 1 has different taste

evaluations overall than do the other three tasters who are

more consistent with each other.

Calculating the principal components for α > 0 can also

be done; but for these data, the two groups G1 = {taster 1}

and G2 = {tasters 2, 3, 4} are already visually distinct

when α = 0. However, the principal component rectangles

when α = 0.2 are also shown in Fig. 11, indicated by the

dashed lines. These rectangles are unchanged for tasters 2

and 4 and that for taster 3 is reduced in size; however,

it is still clear that these three tasters belong to a single

group. Taster 1 is now more obviously a separate identity.

The vertices in the analysis for which this contribution

to the second principal component is less than α = 0.2

revolve around the sixth wine Y6. All vertices for which

Y6 = 42 are retained in Eq. (37) along with a few (four)

vertices with Y6 = 90. That is, vertices with Y6 = 42 are

important in explaining the underlying variations of the

data, whereas vertices with Y6 = 90 are less important.

This in effect corroborates the earlier conclusions from

the relative sizes of the principal component rectangles

that taster 1 is considerably more uncertain than are the

other three tasters, and further that it is the lower levels

of the uncertainty interval that distinguishes taster 1, most

especially on wine 6. These conclusions are even more

pronounced when α = 0.6 (see Fig. 11).

The correlations between the wines and principal compo-

nents (ν = 1, 2, 3) are shown in Table 11. Interpretation is

left to the reader, other than to comment that wines 1, 2, and

6 dominate the distinctions between the tasters. Table 12

provides the cumulative variations by principal compo-

nents. Thus, the first three principal components account

for 60% of the variation.
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Table 11. Wines: correlations.

Xj PC1 PC2 PC3

Wine 1 0.517 0.197 0.056
Wine 2 0.305 0.623 0.176
Wine 3 0.274 −0.196 −0.055
Wine 4 0.264 −0.072 −0.020
Wine 5 0.247 0.124 0.035
Wine 6 0.233 0.712 0.201

Table 12. Wines: PC variation.

λj Variation
Cumulative

variation

PC1 1.687 28.1 28.1
PC2 0.994 16.6 44.7
PC3 0.894 14.9 59.6
PC4 0.860 14.3 73.9
PC5 0.805 13.4 87.4
PC6 0.759 12.7 100

7. CONCLUSION

Symbolic data emerge in numerous ways in contempo-

rary datasets. This work has focused on principal compo-

nent methodology for interval-valued data. In particular,

enhancements were made to the vertices method allowing

Table 10. Wines: weighted vertices principal components.

α = 0.0 α = 0.2 Number of vertices

PC1 PC2 PC1 PC2 ν = 1 ν = 2

Taster 1 [−19.816, 1.065] [−23.960, 1.380] [−19.816, −3.834] [−23.960, −5.133] 38 36
Taster 2 [−6.506, 2.096] [−2.862, 3.817] [−6.506, 2.096] [−2.862, 3.817] 32 19
Taster 3 [−0.824, 5.404] [−2.444, 2.723] [1.745, 5.404] [−2.444, 2.723] 43 12
Taster 4 [−4.275, 4.186] [−4.750, 3.626] [−4.275, 4.186] [−4.750, 3.626] 17 26
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for trivial intervals, weights, constrained observations, and

visualizations involving the vertices of the data hypercubes,

concepts not considered by other interval methods (most of

which usually involved interval midpoints in some fash-

ion). Compared to other available methods, the vertices

method proved superior most especially with respect to

computational complexity and optimum covering envelopes

issues. Further, analyses using classical surrogates produced

results that failed to capture all the variation inherent to the

data. For example, a classical analysis using the interval

midpoints ignores internal variations present in the data;

the centers method has the same limitation. Methods involv-

ing a range variable could not always distinguish between

differing observations with similar range values.

An alternative analysis of the faces data could be

to establish the five-number summaries (minimum, first

quartile, median, third quartile, maximum) introduced by

Tukey [40]. This produces a set of categorical valued

observations. Then, the Ichino [41] approach could be

applied to the resulting dataset.

In addition to intervals, different aggregations of large

databases guided by different scientific questions could

instead produce symbolic datasets consisting of other forms

of symbolic data such as lists, or modal-valued obser-

vations, for example, histograms or probability distribu-

tions. Given the inevitable continued growth in the size

of datasets, it is inevitable that such datasets will become

‘routine’. Therefore, it is important to develop principal

component methodologies for other classes of symbolic

data such as multivalued and histogram-valued data. There

is also a need to develop theoretical underpinnings to all

these methods. These remain as outstanding problems for

future researchers.

Finally, algorithms for executing vertices principal

component analyses for interval data are available at

http://www.ceremade.dauphine.fr/touati/sodaspagegarde.

htm, the SODAS1.4 webpage.
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