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Abstract

As already known [14], the mu-calculus [17] is as ex-

pressive as the bisimulation invariant fragment of monadic

second order Logic (MSO). In this paper, we relate the ex-

pressiveness of levels of the fixpoint alternation depth hier-

archy of the mu-calculus (the mu-calculus hierarchy) with

the expressiveness of the bisimulation invariant fragment of

levels of the monadic quantifiers alternation-depth hierar-

chy (the monadic hierarchy).

From van Benthem’s result [3], we know already that the

fixpoint free fragment of the mu-calculus (i.e. polymodal

Logic) is as expressive as the bisimulation invariant frag-

ment of monadic Σ0 (i.e. first order logic). We show here

that the ν-level (resp. the νµ-level) of the mu-calculus hi-

erarchy is as expressive as the bisimulation invariant frag-

ment of monadic Σ1 (resp. monadic Σ2) and we show that

no other level Σk for k > 2 of the monadic hierarchy can

be related similarly with any other level of the mu-calculus

hierarchy.

The possible inclusion of all the mu-calculus in some

level Σk of the monadic hierarchy, for some k > 2, is also

discussed.

1 Introduction

The propositional modal fixpoint calculus (or mu-

calculus for short) introduced by Kozen [17] is considered

in this paper. The mu-calculus was initially introduced as a

specification formalism for processes modeled as states in

transition systems.

However, using the mu-calculus as a logic of processes

has a major drawback : the model-checking problem, which

is to decide if a (finite) model (given as input) satisfies a

formula (also given as input), remains somehow difficult.

More precisely, the best model checking algorithms known

so far - see [16] for the lastest development - have (time)

complexity O((mn)⌈d/2⌉+1) where m is the size of the in-

put graph, n is the size of the formula and d is the fixpoint

alternation-depth of the formula which depends on the in-

put formula. Moreover the restriction to mu-calculus for-

mulas with a bounded fixpoint alternation-depth is (theo-

retically) not an issue because it also strictly reduces the

expressive power of the logic. Indeed, Bradfield [4] and,

in some weaker sense, Lenzi [18], prove that the hierarchy

induced by the fixpoint alternation-depth (the mu-calculus

hierarchy) is strict.

In practice, temporal logics [6], which all belong to low

levels of the alternation depth hierarchy, are often preferred

to the full mu-calculus since in that case the model check-

ing problem has a low degree polynomial (even linear) time

complexity.

It is also known that the model-checking problem be-

longs to NP∩co-NP [15]. From Fagin’s famous corre-

spondence between the class NP and the existential frag-

ment of second order logic [7], this upper bound tells us

that all mu-calculus formulas belongs to the level Σ1 ∩ Π1

of the second order quantifier alternation hierarchy.

Since all mu-calculus formulas can be translated into

monadic second order logic (MSO) one may ask whether

similar descriptive complexity results are available for the

monadic quantifier alternation hierarchy (the monadic hier-

archy) which is known to be strict (even over finite models

as shown by Matz and Thomas [20]). More precisely, since

the mu-calculus is as expressive as (or equivalent to) the

bisimulation invariant fragment of MSO [14], one may ask

whether the full mu-calculus or any level of the mu-calculus

hierarchy is equivalent to the bisimulation invariant frag-

ment of some level of the monadic hierarchy.

Van Benthem [3] already shows that the fixpoint free

fragment of the mu-calculus (i.e. Polymodal Logic also

called Hennessy-Milner logic among computer scientists)

is equivalent to the bisimulation invariant fragment of
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Levels of the mu-calculus Levels of the monadic hierarchy Reference

Mu-calculus Monadic Second Order Logic Janin-Walukiewicz 1996

Polymodal Logic FOL Van Benthem 1976

ν-level of the mu-calculus monadic Σ1 shown here

νµ-level of the mu-calculus monadic Σ2 shown here

Properties (all1) of arbitrary levels monadic Σ3 shown here

Figure 1. Correspondance between levels of the mu­calculus hierarchy and levels of the bisimulation

invariant fragment of the monadic hierarchy

monadic Σ0 (i.e. FOL).

Here, we complete the picture showing that :

Theorem 1.1 The ν-level (resp. the µ-level) of the mu-

calculus hierarchy is equivalent to the bisimulation invari-

ant fragment of the level Σ1 (resp. Π1) of the monadic hier-

archy.

and

Theorem 1.2 The νµ-level (resp. the µν-level) of the mu-

calculus hierarchy is equivalent to the bisimulation invari-

ant fragment of the level Σ2 (resp. Π2) of the monadic hier-

archy.

From Arnold’s proof of the strictness of the mu-calculus

hierarchy [2], we also show that :

Theorem 1.3 For each integer k > 2 there exists a bisimu-

lation invariant formula of monadic Σ3 that does not belong

to the kth level of the mu-calculus hierarchy.

In other words, no other equivalence similarly relates lev-

els of the mu-calculus hierarchy with levels of the monadic

hierarchy.

The question whether the mu-calculus is equivalent to

the bisimulation invariant fragment of monadic Σk, for

some integer k > 2, remains, strictly speaking, open. How-

ever, the following theorem, which is a consequence of the

work of Courcelle [5], shows that, on a quite general class

of graphs (or the class of all graphs1), this is already true

with monadic Σ3.

Theorem 1.4 Over the class of graphs of bounded degree

(or bounded tree-width) all mu-calculus formulas can be

translated into monadic Σ3 formulas.

Figure 1 above summarizes all these results. One must

be aware that, for these results, we are considering arbitrary

finite and infinite models. Rosen [28] shows that van

Benthem’s result still holds over finite models only. All

other statements mentioned in Figure 1 are open problems

over finite models.

1provided, as in MS2 in [5], quantification over edges is available !

Allthough these new results essentially have a theoretical

flavor they can also be seen as a general toolkit to analyse,

from syntax, the model-checking complexity of logics of

programs. Indeed, most logics of programs are (implicitly

defined as) particular fragments of the bisimulation invari-

ant fragment of MSO. The result above says that, as soon

as these logics can be translated into monadic ∆1 (resp.

monadic ∆2) then the model checking complexity is linear

(resp. quadratic) in the size of the input program.

Related works

The study of various bisimulation invariant fragments of

logical formalisms leads to some other results.

Following Hafer and Thomas [10] logical characteri-

zation of CTL∗ over the binary tree, Moller and Rabi-

novich [21] obtain a similar characterization of CTL∗ over

arbitrary trees : CTL∗ is as expressive as the bisimulation

invariant fragment of MSO over trees with path quantifiers

instead of general set quantifiers.

With a more expressive language than the mu-calculus,

Grädel, Hirsch and Otto show the expressive completeness

of the guarded fixpoint calculus w.r.t. the bisimulation in-

variant fragment of guarded second order logic [9].

Over finite models, Otto gives a fixpoint characterization

of bisimulation invariant PTIME [25].

In his PhD thesis [11], Hollenberg also characterizes the

bisimulation invariant fragment of MSO via bisimulation-

quantifiers [8]. It is an open question whether his approach

extends to the bisimulation invariant fragment of monadic

Σ1 or monadic Σ2.

Investigating bisimulation invariance inside MSO also

leads to apply works on MSO over trees. The pioneer-

ing works of Rabin [26][27] on the monadic second or-

der theory of the binary tree (S2S) are obviously relevant

here. Also the many automata characterization of various

mu-calculi over trees which starts in the early 80’s with the

results of Niwinski [24] or Street and Emerson [32] among

others are fundamental. In this paper, we use one of the last

and most achieved extension of these techniques and results

obtained by Walukiewicz [33].



Note however, Theorems 1.1 and 1.2 are not immediate

consequences of these results.

For the analysis of bisimulation invariance inside

monadic Σ1, the restriction to trees is even misleading

since, with properties definable in monadic Σ1, bisimula-

tion invariance over trees is less restrictive than bisimula-

tion invariance over arbitrary graphs. Indeed, the monadic

Σ1 formula ∃xp(x), although bisimulation invariant over

trees, would mean, as a bisimulation invariant property over

graphs, that there is a directed path from a distinguished ver-

tex (the root of the graph) to some vertex x where p holds.

This property is at least as difficult to express as directed

reachability which, as shown by Ajtai and Fagin [1], is not

expressible in monadic Σ1.

For the analysis of bisimulation invariance inside

monadic Σ2, it is true that bisimulation invariance over trees

or graphs coincides. But then, there is no real characteriza-

tions of FOL or monadic Σ1 logic of trees so no simple in-

ductive proof is available. To prove Theorem 1.2, we shall

extend to all trees a new similar result of Lenzi [19], re-

proved by Skurcziński [31] in a more automata theoretical

way, which says that, on the binary tree, languages defin-

able in monadic Σ2 are exactly the languages recognizable

by tree automata with Büchi conditions.

Overview

The paper is organized as follows. First we recall the

definition of bisimulation equivalence. Then, in relation

with it, we present the notions of κ-expansions which pro-

vide, in some sense, canonical representatives of bisimula-

tion equivalences classes of graphs.

In the third part, we recall the definitions of Monadic

Second Order Logic and the modal and counting mu-

calculus. We also recall most of the known results relating

these languages.

In the fourth part, we give a definition of tree automata

which, with various acceptance criteria, will constitute the

main technical tools to prove our results.

In the fifth and sixth parts, bisimulation invariance in

monadic Σ1 and in monadic Σ2 are analyzed. Sketch of

proofs for Theorem 1.1 and Theorem 1.2 are given.

In the last part, the case of levels Σk for k > 2 is consid-

ered and Theorem 1.3 and Theorem 1.4 are proved.
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2 Graphs, Bisimulation and Expansion

We recall here the notions of transition systems, bisim-

ulation equivalence and expansion of transition systems.

Since a transition system is simply a directed graph with

a distinguished vertex called its source or root, we use in

the following the vocabulary of (directed) graphs.

Also, in order to simplify statements and proofs, we only

consider here unlabeled directed graphs (built over a single

binary relation symbol). One can check that all the results

presented here can easily be generalized to (finitely) labeled

directed graphs, i.e. graphs built over a finite set of binary

relation symbols.

Let Prop be a set of unary predicate symbols and let R
be a binary relation symbol. A graph with a root, simply

called graph in the sequel, is a tuple:

M = 〈SM , rM , RM , {pM}p∈Prop〉

with a set SM of vertices, a root rM ∈ SM , a binary suc-

cessor relation RM ⊆ SM × SM and for each p ∈ Prop, a

subset pM ⊆ SM .

GraphsM andN are called bisimilar when there exists a

relationR ⊆ SM ×SN , called a bisimulation relation, such

that (rM , rN ) ∈ R and for every (s, t) ∈ R and p ∈ Prop,

s ∈ pM iff t ∈ pN , and whenever (s, s′) ∈ RM for some s′,
then there exists t′ such that (t, t′) ∈ RN and (s′, t′) ∈ R,

and whenever (t, t′) ∈ RN for some t′, then there exists s′

such that (s, s′) ∈ RM and (s′, t′) ∈ R.

Given any set κ (disjoint from SM ), a κ-indexed path in

M is a non empty finite or infinite wordw ∈ SM .(κ.SM )∞

such that whenever w = u.s.k.s′.v with u ∈ (SM .κ)∗,

s ∈ SM , k ∈ κ, s′ ∈ Sm and v ∈ (κ.SM )∞ one has

(s, s′) ∈ RM . The length |w| of κ-index path w is defined

as the number of occurrences of elements of SM in w, e.g.

when w = s0.k1.s1. · · · .kn.sn we put |w| = n+ 1. In this

case, we say s0 is the source of w, sn is the target of w and

w is a (κ-indexed) path from s0 to sn.

Remark that (up to isomorphism) the notion of κ-indexed

path only depends on the cardinality of κ. In particular,

when κ is a singleton, κ-indexed paths are nothing but the

usual (directed) paths in a graph.

The κ-expansion Tκ(M) of system M is defined as fol-

lows : set STκ(M) is the set of all finite κ-indexed paths

of M with root rM , the root rT
κ(M) equals rM , relation

RTκ(M) is the set of all pairs of the form (u.s, u.s.k′.s′) ∈
STκ(M) × STκ(M) with u ∈ (SM .κ)∗, s and s′ ∈ SM and

k′ ∈ κ such that (s, s′) ∈ RM , and, for any p ∈ Prop,

pT
κ(M) is the set of all κ-indexed path of the form u.s ∈

STκ(M) with u ∈ (SM .κ)∗ and s ∈ pM .

Any κ-expansion is a tree. Moreover, when κ is a single-

ton, the κ-expansion ofM , from now on denoted by T (M),
is nothing but what is usually called the unwinding or un-



raveling of graph M from its root rM . Vertices of T (M)
are all finite paths from the root.

When M is a tree, i.e. when M and T (M) are isomor-

phic, we shall use the notation ≤M for the order relation

induced by the tree-structure of M , i.e. relation ≤M is the

reflexive and transitive closure of relation RM .

The notion of κ-expansion gives in some sense canonical

representatives of equivalence classes under bisimulation as

illustrated by the following fact.

Fact 2.1 For any infinite set κ and for any graphsM andN
of cardinality at most |κ|,M andN are bisimilar iff Tκ(M)
and Tκ(N) are isomorphic.

3 First order and monadic second order logic

and the propositional µ-calculus

In this section we define first order logic (FO) and

monadic second order logic (MSO) and two variants of

the propositional µ-calculus [17]. All logics are inter-

preted over transition systems. Note that a transition sys-

tem M , as defined above, is a FO-structure with domain

dom(M) = SM on the vocabulary {r, R} ∪ Prop with r a

constant symbol standing for the root, R a binary relation

symbol and Prop a set of unary relation symbols.

3.1 FO and MSO

Let var = {x, y, · · ·} and Var = {X,Y, · · ·} be respec-

tively some disjoint sets of first order and monadic second

order variable symbols.

First order logic over the vocabulary {r, R} ∪ Prop can

be defined as follows. The set of FO formulas is the small-

est set containing formulas p(t), t = t′, R(t, t′), X(t) for

p ∈ Prop, X ∈ Var and t ∈ var ∪ {r} and closed under

negation ¬, disjunction ∨, conjunction ∧ and existential ∃
and universal ∀ quantifications over FO variables.

Monadic second order logic over the vocabulary {r, R}∪
Prop can be defined as follows. The set of MSO formulas is

the smallest set containing all FO formulas and closed under

negation ¬, disjunction ∨, conjunction ∧ and existential ∃
and universal ∀ quantifications over set variables.

For any MSO formula, we use the notation

ϕ(x1, · · · , xm, X1, · · · , Xn) for the formula ϕ with

free first order variables among {x1, · · · , xm} and free set

variables among {X1, · · · , Xn}. For any graph M , any

elements s1, . . . , sm ∈ SM , any sets S1, . . . , Sn ⊆ SM ,

we use the notation

M |= ϕ(s1, · · · , sm, S1, · · · , Sn)

to say that formula ϕ is true in M , or M satisfies ϕ, under

the interpretation of each FO variable xi by the vertex si

and each set variable Xj by the set Sj . We do not repeat

here the definition of this satisfaction relation.

A class C of graph is said MSO definable when there

exists a sentence ϕ ∈ MSO, i.e. a formula with no free

variable, such that M ∈ C iff M |= ϕ. A class C of tran-

sition systems is bisimulation closed (resp. closed under

unwinding) if whenever M ∈ C and M ′ is bisimilar to M
then M ′ ∈ C (resp. if for any M , M ∈ C iff T (M) ∈ C).

A sentence ϕ is bisimulation invariant (resp. unwinding in-

variant) if the class of transition systems it defines is bisim-

ulation closed (resp. closed under unwinding). Remark that

bisimulation invariance implies unwinding invariance since

any graph M is bisimilar to its unwinding T (M).
The notion of bisimulation invariance (or unwinding in-

variance) extend to arbitrary formula ϕ(X1, · · · , Xn) with

no free FO variable considering graphs over the set of pred-

icate symbols Prop′ = Prop ∪ {X1, · · · , Xn}. Since fix-

point formulas, which we will consider later, may have free

set variables, we shall implicitly consider this extension of

graph to Prop′ whenever there is no ambiguity.

Finally, the monadic quantifier alternation-depth hierar-

chy is defined as follows. The first level Σ0 = Π0 is defined

as the set of all formulas of first order logic. Then , for each

integer k, level Σk+1 (resp. level Πk+1) is defined as the

set of all formulas of the form ∃X1 · · · ∃Xnϕ with ϕ ∈ Πk

(resp. ∀X1 · · · ∀Xnϕ with ϕ ∈ Σk). The bisimulation in-

variant (resp. unwinding invariant) fragment of the level Σk

of MSO formulas is defined as the set of all bisimulation in-

variant (resp. unwinding invariant) formulas of Σk with no

free first order variables.

3.2 Modal and counting µ­calculus

The set of the modal µ-calculus formulas is the smallest

set containing Prop ∪Var which is closed under negation,

disjunction and the following formation rules:

• if α is a formula then ✸α and ✷α are formulas,

• if α(X) is a formula and X occurs only positively

(i.e. under even number of negations) in α(X) then

µX.α(X) and νX.α(X) are formulas.

The set of counting µ-calculus formulas is defined as above

replacing standard modalities ✸ and ✷ by counting modal-

ities ✸k and ✷k for any integer k.

We use the same convention as for MSO with free set

variables, i.e. we denote by α(X1, · · · , Xn) a formula with

free variables among {X1, · · · , Xn}. For convenience, we

may also omit these free set variables in formula α consid-

ering then implicitly that graphs have been built over the set

of unary predicate symbols Prop′ = Prop∪{X1, · · · , Xn}.

In the sequel, we call fixpoint formula any formula of the

modal or counting µ-calculus.



Atomic formulas : ϕp = p(r), ϕX = X(r),
Boolean connectives : ϕα∧β = ϕα ∧ β, ϕα∨β = ϕα ∨ β and ϕ¬α = ¬ϕα

Modalities : ϕ✸α = ∃z R(r, z) ∧ ϕα[z/r], ϕ✷α = ∀z R(r, z) ⇒ ϕα[z/r]
Counting modalities : ϕ✸kα = ∃z1, · · · , zk diff(z1, · · · , zk) ∧

∧
i∈[1,k]R(r, zi) ∧ ϕα[zi/r]

and ϕ✷kα = ∀z1, · · · , zk (diff(z1, · · · , zk) ∧
∧

i∈[1,k]R(r, zi)) ⇒
∨

i∈[1,k] ϕα[zi/r]

Fixpoints : ϕµX.α(X) = ∀X(∀zϕα(X)[z/r] ⇒ X(z)) ⇒ X(r)
and ϕνX.α(X) = ∃X(∀zX(r) ⇒ ϕα(X)[z/r]) ∧X(r)

Figure 2. Semantics of fixpoint formulas

The meaning of a fixpoint formula α in a transition sys-

tem M can be defined as an MSO formula ϕα with no free

first order variables and with the same free set variables.

The inductive definition of ϕα is described in Figure 2 be-

low. In this figure, diff(z1, · · · , zk) is the quantifier free FO

formula stating that zi 6= zj for all i 6= j, α and β are ar-

bitrary formulas, k is any integer, X any second order vari-

able, and z, z1, . . . , zk any FO variables. Formula ϕα[z/r]
is the formula obtained from ϕα by replacing any occur-

rence of r by z, provided FO variable z has been chosen

in such a way it is never captured by a FO quantification

during this replacement.

Remark that one can choose FO variables in such a way

that, for any modal mu-calculus formulas α, formula ϕα is

defined using at most two FO variables and, for any count-

ing mu-calculus formulas α, ϕα is defined using at most

k + 1 variables where k is the greatest integer such that

modality ✸k or ✷k occurs in α.

For any fixpoint formula α, we shall write M |= α when

M |= ϕα. We say that an MSO formula ϕ is equivalent to

a fixpoint formula α when |= ϕα ⇔ ϕ.

The following fact follows from the above definitions :

Fact 3.1 For any fixpoint formula, if α is a modal (resp.

counting) mu-calculus formula then ϕα is bisimulation in-

variant (resp. unwinding invariant).

The following theorems show that the above invariance

properties characterize in some sense the expressive power

of these fixpoint calculi.

Theorem 3.2 (from Walukiewicz [33]) A MSO sentence

is invariant under unwinding iff it is equivalent to some

counting mu-calculus formula.

and

Theorem 3.3 (Janin-Walukiewicz [14]) A MSO sentence

is invariant under bisimulation iff it is equivalent to some

modal mu-calculus formula.

Finally, the (modal or counting2) fixpoint alternation-

depth hierarchy defined as follows. The first levelN0 =M0

is defined as the set of all (modal or counting) fixpoint free

formula with negation only applied to propositional con-

stants of Prop. Then, for each integer k, level Nk+1 (resp.

levelMk+1) is defined as the closure ofNk∪Mk under dis-

junction, conjunction, substitution - provided no free vari-

able becomes bounded during the substitution process - and

greatest fixpoint construction (resp. least fixpoint construc-

tion). In the sequel, we shall also call ν-level (resp. µ-level)

or νµ-level (resp. µν-level) of the fixpoint hierarchies, the

level N1 (resp. M1) or N2 (resp. M2).

Theorem 3.4 (Bradfield [4]) For each integer k there is a

modal mu-calculus formula α ∈ Nk which is not equivalent

to any modal mu-calculus formula in Nk′ with k′ < k.

Arnold [2] shows that the above result still holds restricted

to the binary tree. From this stronger result we also have :

Theorem 3.5 (From Arnold [2]) For each integer k there

is a counting mu-calculus formula α ∈ Nk which is equiva-

lent to no counting mu-calculus formula inNk′ with k′ < k.

Proof. Observe first that the binary tree is definable in the

counting mu-calculus with a formula ofN1. Moreover, over

the binary tree (with distinct left and right successors) the

counting and the modal mu-calculus are - level by level -

equally expressive. So Arnold’s result extends to the count-

ing fixpoint hierarchy. ✷

4 Infinite tree automata

We define here tree automata that characterize the ex-

pressive power of the two mu-calculi defined above. Al-

though the main ideas and proof techniques go back to,

at least, the work of Streett and Emerson on the mu-

calculus [32], it took some times for these techniques to

2depending on the modalities one allows



be really understood and generalized to wider settings than

the non emptiness or the model checking problem for the

modal mu-calculus alone. In this section, we more or less

follow Walukiewicz’s general approach [33].

In the sequel, the alphabet Σ is defined as the powerset

P(Prop) of Prop. The intuition behind this is that a vertex

x in a tree M is labeled by the “letter” λ(x) ∈ Σ defined as

the set λ(x) = {p ∈ Prop : x ∈ pM}.

An alternating counting tree-automaton is a tuple

A = 〈Q,Σ, q0,Ω, δ〉

for a finite set of states Q, the finite alphabet Σ, an initial

state q0 ∈ Q, a parity index function Ω : Q → IN and

the transition function δ : Q × Σ → L(Q) where L(Q)
is the set of positive FO sentences, called transition specifi-

cations, built on the vocabulary Q where each state q ∈ Q
is seen as a unary predicate, i.e. the least set of FO for-

mulas containing formulas q(x), x = y, x 6= y, and closed

under conjunction, disjunction, existential and universal FO

quantifications.

Remark that here counting means that the automaton is

capable, via equality and inequality inside transition speci-

fications, to count up to some bound the number of succes-

sors of vertices.

A tree-automaton A is called an alternating modal tree-

automaton when, for each q ∈ Q, each a ∈ Σ, the FO

formula δ(q, a) is built without the atomic formulas x = y
and x 6= y.

A tree-automaton A is called a non deterministic count-

ing tree-automaton when, for each q ∈ Q, a ∈ Σ, δ(q, a) is

a disjunction of formulas of the form

∃x1, · · · , xkdiff(x1, · · · , xk) ∧ qi1(x1) ∧ · · · ∧ qik(xk) ∧

∀z, diff(z, x1, · · · , xn) ⇒
∨

q′∈Q′

q′(z)

with any states qi1 , . . . , qik not necessarily distinct and any

Q′ ⊆ Q where, again, diff predicates only says that each

variable is distinct from any other.

Note that non derministic modal automata can also be

defined (see [13]) but, apart for the non emptiness problem,

they don’t have all the interesting properties of usual notions

of non deterministic automata such as, for instance, closure

under projection. This comes from the fact the modal mu-

calculus (or even polymodal logic) is not closed under set

quantifiers as shown by the “formula” ∃X(✸X ∧✸¬X).

Given a graph M , a run of A over M is a graph ρ which

set of vertices V ρ is some subset of the set of pairs (s, q) ∈
SM ×Q with (rM , q0) ∈ V ρ and which set of edges Eρ ⊆
V ρ × V ρ is such that : for any pair (s, q) ∈ V ρ, given

the local structure Lρ
s,q over the vocabulary Q defined by

dom(Lρ
s,q) = {s′ ∈ SM : (s, s′) ∈ RM} and, for each

p ∈ Q, pL
ρ
s,q = {s′ : ((s, q), (s′, p)) ∈ Eρ}, one has

Lρ
s,q |= δ(q, λ(s))

A run ρ is called functional when, for any s ∈ SM there is

at most one q ∈ Q such that (s, q) ∈ V ρ.

A run ρ of A over M is an accepting run when, for each

infinite path π in ρ of the form π = (rM , q0).(s1, q1). · · ·
the minimum min{Ω(qi) : |{j ∈ IN : qi = qj}| = ∞} is

even.

The next lemma shows that, although runs are defined

over arbitrary graphs, these automata implicitly “read” trees

as input.

Lemma 4.1 For each graphM there is an accepting run of

A over M iff there is an accepting run of A over T (M).

Proof. From left to right just notice that the unwinding of

an accepting run of A over M is an accepting run of A over

T (M). The converse, less immediate, can be proven within

parity game theory, the existence of an accepting run of A
over M being equivalent to the existence of a memoryless

winning strategy in some parity game built from A and M .

✷

For the next lemmas and theorems, we shall concentrate

on trees.

Given an automaton A, we denote by L(A) the class

of all trees M such that there exists an accepting run of

A over M . The class L(A) is called the language of trees

recognized by A.

The following theorem can be obtained from the results

presented in [33]. It also follows from [12].

Theorem 4.2 For each class of tree L, the following state-

ments are equivalent :

1. L is definable with an MSO sentence,

2. L is definable with a counting mu-calculus formula,

3. L = L(A) for some alternating counting tree automa-

ton A,

4. L = L(A) for some non deterministic3 counting tree

automaton A.

and the next one follows from [32] and [14]

Theorem 4.3 For each class of tree L, the following state-

ments are equivalent :

1. L is definable with a bisimulation invariant MSO sen-

tence,

2. L is definable with a modal µ-calculus formula,

3. L = L(A) for some modal tree automaton A.

Some particular subclasses of tree-automaton that will

be useful in the sequel. Automaton A = 〈Q,Σ, q0,Ω, δ〉

3possibly with more parity indices



is called a ν-automaton (resp. νµ-automaton or Büchi au-

tomaton) when Ω(Q) = {0} (resp. when Ω(Q) = {0, 1}).

These automata characterize the ν-levels and νµ-levels

of the counting and modal mu-calculi in the following

sense.

Lemma 4.4 (Expressiveness) A class of tree L is recog-

nized by a (counting or modal) ν-automaton (resp. νµ-

automaton) iff L is definable by a (modal or counting) mu-

calculus formula of the ν-level (resp. of the νµ-level).

Proof. This lemma is a particular case of the well-known

correspondence between level of the mu-calculus hierarchy

and the number of parity indices needed in alternating tree-

automata. This correspondance was first achieved, in the

case of the binary tree, by Niwiński [24]. See [33] for a

proof in the counting mu-calculus case. ✷

This implies in particular that the classes of languages

recognized by ν-automata or νµ-automata are closed under

union and intersection.

For counting automata more properties are available :

Lemma 4.5 The class of languages recognizable by count-

ing ν-automata (resp. by counting νµ-automata) is closed

under projection.

Proof. This lemma follows from the next two. ✷

Lemma 4.6 (Simulation) A language recognized by a

counting ν-automaton (resp. a counting νµ-automaton)

is also recognized by a non deterministic counting ν-

automaton (resp. a non deterministic counting νµ-

automaton).

Proof. Extension to arbitrary trees of (a part of) Muller and

Schupp’s simulation theorem [23] for alternating tree au-

tomata over the binary tree. ✷

and

Lemma 4.7 (Projection) The projection of a language rec-

ognized by a non deterministic counting automaton is also

recognized by a non deterministic automaton with the same

set of states and parity function.

Proof. When A is non deterministic counting one can re-

strict runs (over trees) to be functional without changing

the language recognized by A. Closure under projection

immediately follows from this restriction. ✷

To conclude this section on automata, we recall here the

heart of the bisimulation invariance result presented in [14]

as the following lemma which will be used in the sequel :

Lemma 4.8 For each non deterministic counting tree au-

tomaton A there exists a modal automaton B, with the same

set of states and parity function, such that, for each tree M ,

any infinite set κ, Tκ(M) ∈ L(A) iff M ∈ L(B).

Proof. See [14] for a complete proof. The main idea is to

define B as the automaton obtained from A by replacing all

equalities or inequalities in the FO formula of δ by some

true formula.

✷

5 Bisimulation invariance in monadic Σ1

In this section, we prove theorem 1.1. For this, we first

prove the analogue for unwinding invariance, from which,

applying Lemma 4.4 and Lemma 4.8, we obtain the desired

result.

So our goal is to prove the following theorem :

Theorem 5.1 The unwinding invariant fragment of the

level Σ1 (resp. Π1) in the monadic hierarchy equals the

ν-level (resp. the µ-level) of the counting mu-calculus hier-

archy.

Proof. By duality, it is sufficient to prove the result

for monadic Σ1. Moreover, it is a classical result, from

Lemma 4.4 stated above, that properties definable in the ν-

level of the counting mu-calculus are definable in monadic

Σ1. So it remains to prove that :

Lemma 5.2 Any unwinding invariant formula of monadic

Σ1 is equivalent to a formula of the the ν-level of the count-

ing mu-calculus.

In order to do so, one must understand that, as stated in

the introduction, it is not sufficient to restrict our analysis

to trees - although an unwinding invariant property is fully

determined by its models among trees - because over trees,

monadic Σ1 is strictly more expressive than the ν-level of

the counting mu-calculus as the (even FO) formula ∃xp(x)
shows.

First, remark that an unwinding invariant property only

speaks about the vertices reachable from the root because

any graph M has the same unwinding as the subgraphs in-

duced by these vertices. This leads to the following defini-

tions. Let c(rM ) be the set of all vertices which are reach-

able from the root rM via a (directed) path (called in the

sequel the directed connected component induced by rM ).

For each MSO sentence ϕ, let us define ϕc as the formula

ϕ relativized to the directed connected component c(r) of

r, i.e. ϕc is obtain from ϕ replacing any first order or set

quantification by quantifications over vertices or subsets of

c(r). With this definition and the previous remark it appears

that if ϕ is invariant under unwinding then ϕ is equivalent

to ϕc; in particular, if ϕ is in monadic Σ1 then ϕc is also

(definable) in monadic Σ1.

So let ϕ be an unwinding invariant monadic Σ1 formula.

By the Gaifman normal form theorem for first order logic,

there is some integer k such that ϕ is of the form

ϕ = ∃~Z.ϕ1



with ~Z a finite vector of sets variables and ϕ1 is a finite

boolean combination of FO formulas G(~Z) of the form

G(~Z) = ∃u1, . . . , ul.θ(u1, . . . , ul, ~Z)

where θ(u1, . . . , ul, ~Z, ~Y ) is a formula stating that for all

distinct indices s and t among [1, l], dist(us, ut) > 2k

and Ball(us, k) |= ψs(~Z) for some FO formulas ψs(Z),
with dist(x, y) defined as the length of the shortest undi-

rected path from x to y and Ball(x, k) is defined as the

substructure of M induced by the set of all vertices y such

that dist(x, y) ≤ k.

For notational simplicity we assume that ϕ is of the form

ϕ = ∃~Z.G(~Z) ∧ ¬G′(~Z)

with G(~Z) of the form ∃uθ(u, ~Z) and G′(~Z) of the form

∃u′θ′(u′, ~Z). One can check that this proof easily extends

to the general case.

The relativization ϕc of ϕ to the strongly connected com-

ponents of r is then given by :

ϕc = ∃~Z.Gc(~Z) ∧ ¬G′c(~Z)

with Gc(~Z) given by ∃u ∈ c(r).θc(u, ~Z) and G′c(~Z) given

by ∃u′ ∈ c(r).θ′c(u′, ~Z).
Now, we know that the formula ϕc cannot have for ar-

bitrarily large integers n a model Mn, where the points of

c(r) satisfying θc have (directed) distance more than n from

r. Otherwise, the ultraproduct of the Mns modulo any non

principal ultrafilter, would not satisfy ϕc, contrary to the Σ1

definability of ϕc and Łos ultraproduct theorem (see for in-

stance [29]) which says that the class of models of any Σ1

formula is closed under ultraproduct.

So given integer n such that no model Mn for n > n
satisfies ϕc, it turns out that formula ϕc is equivalent to for-

mula ∃~Z.¬G′c(~Z) ∧Gn(~Z) with

Gn(~Z) = ∃u ∈ cn(r).θ
c(u, ~Z)

and cn(r) the set of all points directly accessible from r in

at most n steps.

Now it is not difficult to see that ¬G′c(~Z) is a fixpoint

formula of the ν-level over trees (i.e. unwindings) and

Gn(~Z) is even a fixpoint free formula on unwindings as

well. By unwinding invariance, this says that ϕ is equiva-

lent to some formula of the form ∃~Zϕα′(~Z) with α′ ∈ N1.

Then, over trees, Lemma 4.5, ensures ∃~Zϕα′(~Z) is

equivalent to some ϕα for some α in the ν-level as well

hence, again by invariance under unwinding, ϕ is equiva-

lent over arbitrary models to ϕα. ✷

6 Bisimulation invariance in monadic Σ2

In this section, we prove theorem 1.2. For this, again,

we first prove the analogue for unwinding invariance, from

which, applying Lemma 4.4 and Lemma 4.8 we obtain the

desired result. So our goal is to prove the following theo-

rem :

Theorem 6.1 The unwinding invariant fragment of the

level Σ2 (resp. Π2) in the monadic hierarchy equals the

νµ-level (resp. the µν-level) of the counting mu-calculus

hierarchy.

Proof. By duality, it is again sufficient to prove the result for

monadic Σ2. Moreover, it is again a classical result, from

Lemma 4.4, that properties definable in the νµ-level of the

counting mu-calculus are definable in monadic Σ2. So it

remains to prove that :

Lemma 6.2 Any unwinding invariant formula of monadic

Σ2 is equivalent to a formula of the the νµ-level of the

counting mu-calculus.

Proof. Somehow, the proof in the case of Σ2 is simpler than

Σ1 for it is true that, over trees, any monadic Σ2 formula is

equivalent to a νµ-formula which remains to be shown.

For this, we use definability in weak monadic second

order logic as an intermediate step. Remember that weak

monadic second order logic is monadic second order logic

with set quantification restricted to finite sets.

A priori, using weak MSOL doesn’t make sense. In-

deed, over arbitrary trees, weak MSOL is incomparable

with MSOL. However, Theorem 4.2 and the definition of

tree automata show that analyzing MSOL over trees can be

made over finitely branching trees only. In fact any MS for-

mula satisfiable over the class of trees has a model which is

finitely branching, i.e. with finitely many successors from

each vertex.

For this reason, we can restrict our study to finitely

branching trees and then weak MSOL is a fragment of

MSOL since, in this case, finite sets are definable in MSOL.

The sketch of the proof is then the following. First we

prove

Lemma 6.3 Any language of (finitely branching) trees de-

finable in monadic Σ1 is definable in weak MSOL.

Then, by closure of weak MSOL under negation, this shows

that monadic Π1 is also included into weak MSOL. Hence

monadic Σ2 is included into the existential projection of

weak MSOL. Now, because the class of languages de-

finable by νµ-automaton is closed under projection (see

Lemma 4.5) we prove

Lemma 6.4 Any languages of (finitely branching) trees de-

finable in weak MSOL is recognizable by a νµ-automaton.

which conclude the proof of Lemma 6.2. ✷

In order to prove Lemma 6.3 we can adapt the work of

Lenzi [19], to the case of finitely branching trees. Another



approach, following the idea of Skurcziński [31], is to use

weak νµ-automaton as an intermediate step.

We recall here that a tree automaton A is a weak au-

tomaton when, for any q ∈ Q, any a ∈ Σ, for each states q′

occurring in formula δ(q, a), Ω(q) ≤ Ω(q′).
Then, adapting the proof presented in [30] for the k-ary

case, one has :

Lemma 6.5 Any FO definable tree languages is recogniz-

able by a weak strongly non deterministic νµ-automaton.

But then, since languages recognizable by strongly non de-

terministic weak νµ-automaton are closed under projection,

it is sufficient to show that

Lemma 6.6 Any languages of (finitely branchinbg trees)

recognizable by a weak automaton is definable by a weak

MSOL formula.

And this last lemma is an adaptation of similar result, by

Mostowski [22], over the binary tree. ✷

For Lemma 6.4, it shall be clear that it can be proved ex-

tending, in a quite straightforward way an analogous proof

due to Rabin [27] in the binary case.

This concludes the proof of Theorem 6.1 for, applying

Lemma 4.4, languages recognizable by νµ-automata equal

languages definable by (counting) fixpoint formulas of the

νµ-level. ✷

7 Above the level Σ2

In this section, we prove Theorem 1.3 and Theorem 1.4.

For this, we assume that the reader has a general knowledge

of the theory of parity games4. If not, Jurdziński’s [16] gives

an appropriate, and up to date, overview of the topic.

From [4] we know that, given an integer k, expressing

the fact that a position in an arbitrary parity game with sets

of parity indices [0, k] cannot be done with any mu-calculus

formula of the level Nk. From [2] we know that this is still

the case restricted to games of degree two.

Remark that in monadic second order logic, this may

also be difficult to express because in some sense it requires

some, at least implicit, construction of a (memoryless) strat-

egy for player 0 which is winning for any plays starting in

the distinguished position. And winning strategies are pe-

culiar sets of edges which are, in general, not even definable

in MSOL.

Still we prove Theorem 1.3 redefining binary games on

graphs (over a more complex signature) on which guessing

a winning strategy will become possible with a single ex-

istential set quantification. The main difficulty is only to

4with the winning criteria defined as an even minimal index met in-

finitely often. . . !

ensure that such a definition leads to bisimulation invariant

class of parity games.

More precisely, given some integer k > 2, given Prop

defined by Prop = {pl, pr, p0, · · · , pk}, any graph M such

that both {pMl , p
M
r } and {pM0 , · · · , p

M
k } are partitions of the

set of vertices SM reachable from the source r - which is a

bisimulation invariant property - is from now on interpreted

as a parity game as follows :

1. any position (reachable from the root) is a position of

player 0,

2. a move from such a position is made as follows : player

0 chooses one predicate px ∈ {pl, pr} and then player

1 chooses the new position y ∈ SM such that y ∈
pM (y) and (x, y) ∈ RM ,

3. disjoint predicates p0, . . . , pk encode the parity indices

of each of these positions.

Theorem 1.3 is then a consequence of the following lemma :

Lemma 7.1 For each integer k > 2, the class W k
0 of (en-

coded) games over the set of indices [0, k] where the root is

a winning position for player 0 is bisimulation closed, de-

finable with a monadic Σ3 formula and not definable in the

level Nk of the mu-calculus.

Proof. First observe that any bisimulation relation relates

winning positions for player 0 to winning position for player

0 so the class W k
0 is indeed bisimulation closed.

Then, it is clear that any binary game can be encoded in

such a way. Moreover, computing with a mu-calculus for-

mula the fact that the root r is a winning positions for player

0 in this encoding is as difficult - in terms of number of al-

ternations of least and greatest fixpoints - as computing the

fact that the root r is a winning position for the same player

in binary games so, following the result of Arnold [2], it

requires at least k + 1 alternations of least and greatest fix-

points.

Now, to conclude the proof it is sufficient to show that

the class W k
0 is definable in monadic Σ3. But this can eas-

ily be achieved as follows : first, with some existential set

quantifier, one can guess a winning strategy for player 0,

e.g. guessing the set of positions X from which player 0
chooses predicate pr. Then it is clear that a µν-formula of

the mu-calculus (henceforth a monadic Π2 formula) is suffi-

cient to check that this setX is indeed a winning strategy for

player 0 in any plays that start at the root. Indeed, one has to

check the minimal parity condition on any cycle reachable

from the root when player 0 follows the strategy given by set

X . In the intended µν-formula, one least fixpoint enables

us to reach any of these cycles and then, one nested greatest

fixpoint enables us to check that the minimum parity index

met on each of these cycles is even.



Guessing a winning strategy and checking that it is win-

ning for player 0 can thus be expressed in monadic Σ3. ✷

The proof of Theorem 1.4 is also almost done. Indeed,

from the proof of previous lemmas it is clear that with one

existential quantification over sets of edges the winning po-

sition for player 0 can be expressed as a monadic Σ3 unary

predicate. But it also follows from Lemma 4.4 that checking

a fixpoint formula on a graph can be done via a monadic Σ1

transduction which leads to computing winning positions

with as many parity indices as the alternation depth of the

formula. Moreover, if the input graph is of bounded de-

gree (or bounded tree-width) then the resulting parity game

is also of bounded degree (or bounded tree-with). Now

Courcelle shows that over graphs with bounded degree (or

tree-width) quantification over edges can be “simulated” by

quantifications over vertices via, again, a monadic Σ1 trans-

duction. Altogether, this says that over graphs of bounded

degree (or bounded tree-width) mu-calculus formulas can

be translated into monadic Σ3 formulas. This concludes the

proof of Theorem 1.4. ✷
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