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1. Introduction

1.1. Motivation

In the 60’s, Büchi and Rabin [4, 25] proved the decidability of monadic second order logic (MSO) on

infinite words and infinite trees respectively. These two deep results of mathematical logic were obtained

by means of automata theoretic characterizations of the expressive power of MSO on these structures.

In the late 70’s, it was realized [24] that infinite words or trees can be used as models of the behavior of

computer systems. Consequently, the results of Büchi and Rabin, with the underlying theory of automata

on infinite structures, became of direct interest to computer scientists. Since then, a considerable amount

of research effort has been devoted to the development of the theory towards its application in computer

science. This effort has produced a large number of deep and mathematically appealing results relating

logic, automata and fixpoint calculi [29, 2, 9].

A central feature of this theory is that most specification languages (also called temporal logics [7])

that are used for describing and verifying the potential behaviors of programs do share the following

properties:

1. they are fragment of MSO logic; the latter can even be seen as a (high level) assembly like language

into which all these logics can be compiled,

2. they are invariant under bisimulation [23]; indeed, these logics talk about systems’ behaviors and

two bisimilar (models of) systems are most of the time (not to say always) considered to have the

same behavior [18].

This remark motivates the study of the bisimulation invariant fragment of MSO.

Kozen’s mu-calculus [15], an extension of modal logic by means of restricted set quantifiers (namely

inductive and co-inductive definitions of sets), plays there a fundamental role. It is known since some

time [22, 2] that, over trees (say on the binary tree), the mu-calculus is as expressive as MSO. Further

studies show that, over arbitrary graphs, the mu-calculus just equals the bisimulation invariant fragment

of MSO [14] and such a relationship is even richer than expected: as announced in [11], the first levels of

the bisimulation invariant fragment of the monadic quantifier alternation depth hierarchy of MSO equal,

one by one, the first levels of the fixpoint alternation hierarchy of the mu-calculus [3, 1]. More precisely,

Van Benthem first shows that the bisimulation invariant fragment of first order logic (FO, the 0th level

of the monadic hierarchy) equals modal logic (the 0th level of the mu-calculus hierarchy). And actually,

this equality holds up to the level Σ2 of the monadic hierarchy [11].

1.2. Main contribution

The purpose of this paper is to give a clear and complete presentation of the last level correspondence.

Namely, we give here a complete proof of the following result:

Theorem 1.1. The bisimulation invariant fragment of the level Σ2 of the monadic hierarchy equals the

νµ-level of the mu-calculus hierarchy.

In turn, this level is known to be as expressive as (modal) tree automata with Büchi conditions [22, 13].

This result refines Rabin’s own logical characterization of Büchi definable properties of the binary

tree as projections of weak MSO properties [26].
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As a side result, we also prove and use the fact that the languages of trees definable by first-order for-

mulas (FO-formulas) are boolean combination of topologically closed definable languages, i.e. boolean

combination of languages of the µ-level of the mu-calculus hierarchy [12].

1.3. Related works

We shall also mention that, in the binary tree, the main result presented in this paper has already been

announced by the second author [17] with quite a long and technical proof argument. Later a quite

simpler argument, but for a slightly weaker result, has been given by Skurczynski [28]. This last result

is weaker since it handles monadic Σ2 formulas over the binary tree with FO kernels (called principal

formulas) that are weaker than arbitrary FO-formulas as we are using here.

Still, in the following generalization of the binary case, we adopt several arguments from Skurczynski

work and, quite distinctly, we handle FO-formulas by means of topological considerations obtaining thus

a simple though presumably unknown yet automata theoretic bound on the expressive power of FO logic

on trees.

At last, one shall observe that the monadic Σ2 case does not follow (say by simple inductive argu-

ment) from the former characterization of the bisimulation invariant fragment of monadic Σ1 [12]. In

fact, the monadic Σ1 kernel of a bisimulation invariant monadic Σ2-formula is not necessarily invariant.

And, over trees, the bisimulation invariant fragment of monadic Σ1 is strictly weaker than full monadic

Σ1 as illustrated, for instance, by the formula ∃xp(x) that is not bisimulation invariant.

1.4. Organization of the paper

The paper is organized as follows. In Section 2 we review standard notions about graphs, trees and

bisimulation. The central notions of κ-expansions [14] that induce canonical representatives for all

classes of bisimilar graphs is given. We also review the standard definition of the prefix topology on

finitely branching trees.

In Section 3 we review the logics we use. In addition to first-order, monadic second order logic, and

Kozen’s modal mu-calculus, we also define the counting mu-calculus. This calculus is defined in a way

similar to the mu-calculus except that one can use counting modalities instead of standard modalities. It

relates with monadic second order logic over trees in the same way the modal mu-calculus relates with

the bisimulation invariant fragment of monadic second order logic over trees.

In Section 4 we review various definitions of tree automata: alternating and non deterministic Büchi

tree automata in their standard or weak versions. Closure properties and various technical expressiveness

results about the class of languages definable by these automata are given. Definitions of closed or open

automata (that characterize recognizable closed or open languages of trees) are also given.

The last section is devoted to the proof arguments of Theorem 1.1. More precisely, we successively

show that every FO-formula over trees is equivalent to a weak non deterministic automaton. By pro-

jection, this shows that this holds as well for monadic Σ1 formulas. Then, by complementation and

simulation à la Muller and Schupp, we prove that every monadic Π1 is equivalent to a Büchi automaton

and thus, by projection again, every monadic Σ2 formula as well. Then, the counter-saturation technique

that has been developed in [14] can be applied in order to conclude the proof.
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2. Graphs and trees

We review here the definition of transition systems, bisimulation equivalence and κ-expansion of transi-

tion systems which capture in some sense bisimulation equivalence. We also define a notion of counting

bisimulation by adding a “local bijection” constraint to the notion of bisimulation. This new defini-

tion makes statements more uniform: counting bisimulation is the equivalence induced by unraveling as

bisimulation is, in a sense, the equivalence induced by κ-expansions.

Because a transition system is simply a directed graph with a distinguished vertex called its root, we

use the vocabulary of (directed) rooted graphs. In order to simplify statements and proofs, we consider

only graphs built over a single binary relation symbol. All the results presented here can easily be

generalized to (finitely) labeled directed graphs, i.e. graphs built over a finite set of binary relation

symbols.

As trees are important when dealing with bisimulation, we also review some standard notation and

definitions of trees.

2.1. Graphs and trees

Let Prop be a finite set of unary predicate symbols and let E be a binary relation symbol. A rooted

graph, simply called graph in the sequel, is a tuple:

M = 〈V M , rM , EM , {pM}p∈Prop〉

with a set V M of vertices, a root rM ∈ V M , a binary successor relation EM ⊆ V M × V M and for each

p ∈ Prop, a subset pM ⊆ V M .

We say that a vertex v is a successor of u when (u, v) ∈ EM . The set of all successors of u is denoted

by SuccM (u). We also use the notation dom(M) for the domain V M of the graph M .

Given a vertex v ∈ V M , let λM (v) ⊆ Prop be the set of predicate symbols defined by

λM (v) = {p ∈ Prop : v ∈ pM}

and called the color of vertex v. In order to simplify the notation, we may use in the sequel the coloring

function λM instead of the interpretation of each predicate symbol. In the sequel, we may also omit the

superscript M , when there is no ambiguity, thus simply witting M = 〈V, r, E, λ〉 for such a graph.

A directed path in a M is a non empty finite or infinite word

w ∈ V M .(V M )∗ ∪ V M .(V M )ω

such that whenever w = w1.u.u
′.w2 with w1 ∈ (V M )∗, u ∈ V M , u′ ∈ V M and w2 ∈ (V M )∗ ∪ (V M )ω

one has (u, u′) ∈ EM . The length |w| of a finite directed path w is defined as the number of occurrences

of elements of V M in w, i.e. when w = u0.u1. · · · .un then |w| = n + 1. In this case, we say u0 is the

source of w, un is the target of w and w is a directed path from u0 to un.

Given any non zero cardinal κ, a κ-indexed path in M is defined similarly by adding elements of κ
between vertices of a path. More precisely, a κ-indexed path in M is a non empty finite or infinite word

w ∈ V M .(κ.V M )∗ ∪ V M .(κ.V M )ω
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such that the word πV (w) obtained from w by removing all elements of κ is a directed path. length,

source or target of a κ-indexed path w are defined as the length, source or target of the path πV (w).

A tree is a graph M such that, for each vertex v ∈ V M there is one and only one path from rM to v.

When M is a tree, the (directed) distance d(u, v) between two vertices u and v is n − 1 when n is

the length of the unique (directed) path from u to v or from v to u when it exists, ∞ otherwise. For

every integer h ≥ 0, we define the h-prefix Ph(M, v) of a vertex v in M to be the (finite) tree rooted in

v induced by the set of vertices of M at distance at most h from v. When v is simply the root srM we

simply write Ph(M).

If u is a vertex of a graph M , the degree of u is the number of its successors. The degree of a graph M
is the supremum (be it finite or infinite) of the degrees of its vertices. A graph is called finitely branching

if every vertex has finite degree. Observe that a finitely branching graph does not necessarily have finite

degree.

On the set FBT of finitely branching tree, we consider the prefix topology defined by the set of basic

open sets of the form :

OF = {M ∈ FBT : ∃h ∈ ωPh(M) = F}

where F is a finite tree. As shown in [12] for instance, this topology is Hausdorff, i.e. two trees that

belong to the same open sets are equal (up to isomorphism). It is also metric as shown by taking,

for instance the distance d(M,N) between two trees M and N to be d(M,N) = min{1/2h : h ∈
ω, Ph(M) = Ph(N)} if it is defined of 1 otherwise. It even satisfies some weak form of compactness

(again see [12]).

By extension, we say that a class C of arbitrary trees is closed (resp. open) when C ∩ FBT is closed

(resp. open). Observe that, on a topological point of view, this does not make much sense. However, in

this paper, we essentially consider (restricted) classes of trees that are completely characterized by the

finitely branching trees they contain. So this extension makes sense.

2.2. Bisimulation and models’ expansions

Two graphs M and N are called bisimilar when there exists a relation R ⊆ V M × V N , called a bisimu-

lation relation, such that (rM , rN ) ∈ R and for every (u, v) ∈ R and p ∈ Prop, λM (u) = λN (v), and,

whenever (u, u′) ∈ EM for some u′, then there exists v′ such that (v, v′) ∈ EN and (u′, v′) ∈ R, and

whenever (v, v′) ∈ EN for some v′, then there exists u′ such that (u, u′) ∈ EM and (u′, v′) ∈ R.

If, in addition, for each (u, v) ∈ R, R establishes a bijection between Succ(u) and Succ(v), then we

say that R is a counting bisimulation. In this case, we say that graph M and N are counting bisimilar.

The κ-expansion T κ(M) of a system M is defined as follows : let V Tκ(M) be the set of all finite

κ-indexed paths of M with source rM , the root rT
κ(M) equal rM , the relation ETκ(M) be the set of

all pairs of the form (w.u,w.u.k′.u′) ∈ V Tκ(M) × V Tκ(M) with w ∈ (V M .κ)∗, u and u′ ∈ V M and

k′ ∈ κ such that (u, u′) ∈ EM . Moreover, let pT
κ(M) be the set of all κ-indexed paths of the form

w.u ∈ V Tκ(M) with w ∈ (V M .κ)∗ and u ∈ pM .

When κ = 1, the κ-expansion of M , from now on denoted by T (M), is nothing but what we usually

call the unraveling of the graph M from its root rM . In particular, vertices of T (M) are all the finite

paths from the root rM in M .

Observe that for every cardinal κ and for every graph M , the κ-expansion T κ(M) of M is a tree.

Moreover, the particular notion of 1-expansion (or unraveling) allows us to characterize trees in a very
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simple way: a tree is a graph isomorphic to its unraveling.

The notion of unraveling (or 1-expansion) is related to counting bisimulation as follows.

Lemma 2.1. For any graphs M and N , M and N are counting bisimilar if and only if their unravelings

T (M) and T (N) are isomorphic.

Proof:

This fact follows immediately from the following observations: the functional relation from V T (M) to

V M that maps each finite path to its target is a counting bisimulation between T (M) and M ; and, over

trees, a counting bisimulation relation is just an isomorphism. ⊓⊔

In a quite similar way, the notion of κ-expansion also gives in some sense canonical representatives

of equivalence classes under bisimulation.

Lemma 2.2. (see [14])

For any infinite cardinal κ and for any graphs M and N of cardinality at most κ, M and N are bisimilar

if and only if their κ-expansions T κ(M) and T κ(N) are isomorphic.

Proof:

Let R be a bisimulation relation between M and N and let cardinal κ be as above. Let R′ be the relation

between vertices of both T κ(M) and T κ(N) that relates any two κ-indexed paths of the same length

whose targets belongs to R. Relation R′ is a bisimulation relation. Moreover, provided κ is infinite (so

that, with the help of the axiom of choice, κ.κ = κ) and big enough (actually not smaller than the degree

of M and N ), one can check that relation R′ can be refined to become the relation of an isomorphism.

The converse is immediate since any graph M is bisimilar with its κ-expansion T κ(M). ⊓⊔

The assumption, in Lemma 2.2, that κ is infinite is essential. In fact, let M (resp. N ) be the graph

defined by a single edge (resp. two edges only) from the root, with all vertices labeled identically. They

are bisimilar (and not counting bisimilar). However, for any finite cardinal κ distinct from zero, T κ(M)
and T κ(N) are not isomorphic.

3. Logic and modal or counting mu-calculus

In this section we review the definition of first-order logic (FO) and monadic second-order logic (MSO),

and the counting and modal propositional mu-calculus [15]. All logics are interpreted over graphs. Any

graph M , as defined above, is a FO-structure on the vocabulary {r, E} ∪Prop with r a constant symbol

standing for the root, E a binary relation symbol and Prop a set of unary relation symbols.

3.1. First-order and monadic second-order logic

Let var = {x, y, · · · } and Var = {X,Y, · · · } be disjoint sets of, respectively, first-order and monadic

second-order variable symbols.

First-order logic over the vocabulary {r, E} ∪ Prop can be defined as follows. The set of FO-

formulas is the smallest set containing the formulas p(t), t = t′, E(t, t′), X(t) for p ∈ Prop, X ∈ Var
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and t, t′ ∈ var ∪ {r}, which is closed under negation ¬, disjunction ∨, conjunction ∧ and existential ∃
and universal ∀ quantifications over FO variables.

The set of monadic second-order (MSO) formulas over the same vocabulary is the smallest set con-

taining all FO-formulas and closed under negation ¬, disjunction ∨, conjunction ∧ and existential ∃ and

universal ∀ quantifications over FO and MSO variables.

We write ϕ(x1, · · · , xm, X1, · · · , Xn) for an MSO formula ϕ with free first-order variables among

{x1, · · · , xm} and free set variables among {X1, · · · , Xn}. If M , v1, . . . , vm ∈ V M , and V1, . . . ,

Vn ⊆ V M , we write

M |= ϕ(v1, · · · , vm, V1, · · · , Vn)

to say that formula ϕ is true in M , or M satisfies ϕ, under the interpretation mapping each FO variable xi
to the vertex vi and each set variable Xj to the set Vj . This satisfaction relation is defined in the standard

way [27, 6].

A class C of graphs is called MSO definable when there exists a sentence ϕ ∈ MSO, i.e. an MSO

formula with no free variable, such that M ∈ C if and only if M |= ϕ. A class C of transition systems

is bisimulation closed (resp. counting bisimulation closed) if whenever M ∈ C and M ′ is bisimilar

(resp. counting bisimilar) to M then M ′ ∈ C. A sentence ϕ is bisimulation invariant (resp. counting

bisimulation invariant) if the class of transition systems it defines is bisimulation closed (resp. count-

ing bisimulation closed). Observe that bisimulation invariance implies counting bisimulation invariance

since a counting bisimulation relation is a bisimulation relation.

Remark 3.1. Observe, by applying the characterization of bisimulation or counting bisimulation by κ-

expansions (Lemmas 2.1 and 2.2), that if two bisimulation (or counting bisimulation) invariant formulas

are equivalent, for all infinite κ, on κ-expansions of graphs (or trees), they are equivalent on arbitrary

graphs.

Finally, the monadic quantifier alternation depth hierarchy is defined as follows. The first (or zeroth)

level Σ0 = Π0 is defined as the set of all formulas of first order logic. Then, for each integer k, the level

Σk+1 (resp. level Πk+1) is defined as the set of all formulas of the form ∃X1 · · · ∃Xnϕ with ϕ ∈ Πk

(resp. ∀X1 · · · ∀Xnϕ with ϕ ∈ Σk). The bisimulation invariant (resp. unwinding invariant) fragment

of the level Σk of MSOL sentences is defined as the set of all bisimulation invariant (resp. unwinding

invariant) sentences of Σk.

3.2. Modal and counting mu-calculus

The set of the modal µ-calculus formulas is the smallest set containing Prop∪Var which is closed under

negation, disjunction and the following formation rules:

• if α is a formula then <> α and ⊓⊔α are formulas,

• if α is a formula and X occurs only positively (i.e. under an even number of negations) in α then

µX.α and νX.α are formulas.

The set of counting µ-calculus formulas is defined as above replacing standard modalities <> and ⊓⊔ by

counting modalities <>k and ⊓⊔k for any integer k.
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A formula ϕ is said in positive normal form when negation only applies to atomic sub-formulas, i.e.

constant or variable predicates of Prop ∪Var .

We use the same convention as for MSO with free variables, i.e. we denote by α(X1, · · · , Xn) a

formula with free variables among {X1, · · · , Xn}. For convenience, we may also omit these free set

variables in formula α considering implicitly that graphs have been built over the set of unary predicate

symbols Prop′ = Prop ∪ {X1, · · · , Xn}. In the sequel, we call fixed point formula any formula of the

modal or counting µ-calculus.

With each fixed point formula α, we associate a formula ϕα(x) of MSO with one free FO variable

x and the same free set variables as α (implicitly added to the vocabulary) defined as follows. Let

p ∈ Pred, α and β be fixed point formulas, X be a set variable, x and z be FO variables, and z =
(z1, · · · , zk) be a k-tuple of FO variables.

• Atomic formulas :

ϕp(x) = p(x) and ϕX = X(x),

• Boolean connectives :

ϕα∧β(x) = ϕα(x) ∧ ϕβ(x), ϕα∨β(x) = ϕα(x) ∨ ϕβ(x)
and ϕ¬α(x) = ¬ϕα(x)

• Modalities :

ϕ<>α(x) = ∃z E(x, z) ∧ ϕα(z),
ϕ⊓⊔α(x) = ∀z (E(x, z) ⇒ ϕα(z))

• Counting modalities :

ϕ<>kα(x) = ∃z diff (z) ∧
∧

i∈[1,k]E(x, zi) ∧ ϕα(zi),
ϕ⊓⊔kα

(x) = ∀z ((diff (z) ∧
∧

i∈[1,k]E(x, zi)) ⇒
∨

i∈[1,k] ϕα(zi)),

• Fixed points :

ϕµX.α(X)(x) = ∀X((ϕα(X) ⊆ X) ⇒ X(x)),
ϕνX.α(X)(x) = ∃X(X ⊆ ϕα(X)) ∧X(x).

There, diff (z) is the quantifier-free FO-formula stating that zi 6= zj for all i 6= j, ϕα(X) ⊆ X is the

MSO formula ∀z(ϕα(X)(z) ⇒ X(z)), and, similarly, X ⊆ ϕα(X) is the MSO formula ∀z(X(x) ⇒
ϕα(X)(z)).

For any fixed point formula α, we write M |= α when M |= ϕα(r). We say that an MSO sentence

ϕ is equivalent to a fixed point formula α when |= ϕα(r) ⇔ ϕ. Likewise, two fixed point formulas α
and β are said to be equivalent when |= ϕα(r) ⇔ ϕβ(r).

Lemma 3.1. Any fixed point formula is equivalent to a fixed point formula in positive normal form.

Observe that modalities <> and <>1 on the one hand, and modalities ⊓⊔ and ⊓⊔1 on the other hand, have

equal meaning. So the counting mu-calculus is an extension of the modal mu-calculus. This extension

is proper. In fact, it follows from Lemma 3.2 below that, for instance, predicate <>2 p is not definable in

the modal mu-calculus.
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As is well known, the interpretation over a graph M of the predicate defined by µX.α(X) (resp.

νX.α(X)) is the least (resp. the greatest) solution of (the interpretation over dom(M) of) the set equa-

tion defined by X = α(X).

Further analysis of the basic properties of the modal (resp. the counting) fixed point calculus shows

that it does not distinguish bisimilar (resp. counting bisimilar) models.

Lemma 3.2. (Folklore)

For any modal (resp. counting) fixed point formula α, formula ϕα(r) is bisimulation invariant (resp.

counting bisimulation invariant).

The following theorem shows that the bisimulation invariance (resp. counting bisimulation invari-

ance) not only holds but even characterizes modal (resp. counting) fixed point calculi as fragments of

MSO. In fact:

Theorem 3.1. (from Walukiewicz [30])

An MSO sentence is invariant under counting bisimulation if and only if it is equivalent to some counting

mu-calculus formula.

and

Theorem 3.2. (Janin-Walukiewicz [14])

An MSO sentence is invariant under bisimulation if and only if it is equivalent to some modal mu-calculus

formula.

Finally, let us mention that alternation of least and greatest fixed point constructions induces a hier-

archy in modal or counting mu-calculus. More precisely, following Niwiński’s definition, we define the

fixpoint alternation depth hierarchies as follows.

The first level N0 = M0 is defined as the set of all (modal or counting) fixpoint free formulas with

negation only applied to propositional constants of Prop. Then, for each integer k, the level Nk+1 (resp.

level Mk+1) is defined as the closure of Nk ∪Mk under disjunction, conjunction, substitution – provided

no free variable becomes bound during the substitution process – and greatest fixpoint construction (resp.

least fixpoint construction).

In the modal case, the mu-calculus hierarchy has been proven infinite by Bradfield [3]. A similar

result by Arnold [1] shows it is infinite as well in the counting case.

Actually, Arnold’s result is stated for the modal mu-calculus on the binary tree. But this implies the

more general statement above, as both counting and modal mu-calculus are equivalent on the binary tree,

and the binary tree itself is definable in the counting mu-calculus by a formula with greatest fixed point

constructions only.

The standard theory of mu-calculus [2] gives a first relationship between the mu-calculus and the

monadic hierarchy. Namely:

Lemma 3.3. For every k, every counting modal mu calculus formula of class Nk is equivalent to a

MSOL formula of class Σk.

The other way around, various relationships are considered by the authors in [11].
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In this paper we are mainly interested in the second level, N2, of the Niwiński hierarchy. Observe

that all formulas where all ν’s precede all µ’s belong to N2 (actually N2 is a bit larger than that, because

of closure under substitution); for this reason, the level N2 is sometimes called νµ-level.

4. Tree Automata

In this section, we review the definitions and properties of various notion of tree automata. More pre-

cisely, we review the notion of alternating or non deterministic automata with Büchi condition possibly

with the extra requirement of weakness as used by Rabin in his study of the weak monadic theory of the

binary tree [26].

The automata are designed to read arbitrary trees as input, i.e. trees defined with a successor relation

as opposed to the binary tree that is defined by means of two successor functions. It follows that the

notion of transition we use is more involved than in the classical case. As a consequence, we need to

proceed more cautiously when (re)defining non deterministic automata. A similar observation is made

when studying tree-like structures [30].

4.1. Büchi alternating automata

Definition 4.1. (Alternating automata)

A Büchi alternating automaton is a tuple A = 〈Q,Σ, q0, F, δ〉, where Q is a finite set of states, Σ is a

finite set called the alphabet (in general Σ = P(Prop)), q0 ∈ Q is the initial state, F ⊆ Q is the set of

accepting states, and δ : Q× Σ → FOL+(Q) is the transition function, where FOL+(Q) is the set of

all first order formulas with equality over one unary predicate Pq for any q ∈ Q, where every Pq occurs

only positively. As a particular case, an automaton is called a modal automaton when, for any q ∈ Q,

any σ ∈ Σ, (.q, σ) does not contain the equality (nor disequality) predicate.

We say that an alternating automaton A is a closed automaton (resp. an open automaton) when

F = Q (resp. F = ∅).

The semantics of the alternating automaton A can be given by a game.

Definition 4.2. (Model-checking game)

For any tree T = 〈V, r, E, λ〉, we defined a game G(A, T ) played by two players, whom we call Marker

and Selector.

Positions in the game are pairs of Q× V . The initial position is (q0, r).

From a position (q, v), where q is a state of A and v is a vertex of T :

1. the Marker chooses a “marking relation” m ⊆ Q × Succ(v) that satisfies the local constraints

expressed via the transition function, i.e. when m is seen as the (flat) first order structure m =
〈Succ(v), {qm}q∈Q〉 over the vocabulary Q with, for each q ∈ Q, qm = {v′ ∈ Succ(v) : (q, v′) ∈
m}, one must have m |= δ(q, λ(v)),

2. and the Selector chooses a pair (q′, w) ∈ m and this pair becomes the new position.

If either player cannot move, the other wins. Otherwise, we have an infinite play; if along the play some

state of F occurs infinitely often, then Marker wins; otherwise Selector wins.
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The automaton A accepts the tree T if the Marker has a winning strategy in G(A, T ). The language

defined by A is the set of all trees accepted by A.

Lemma 4.1. Every alternating Büchi automaton is equivalent, over arbitrary trees, to a counting mu-

calculus formula of class N2. If, moreover, the automaton is a closed (resp. open) automaton, then it is

equivalent to a formula of class N1 (resp. M1).

Proof:

Let A = 〈Q,Σ, q0, F, δ〉 be an alternating Büchi automaton. Following the standard techniques of the

mu-calculus theory [2], we essentially have to translate the transition specification δ of the automaton

into counting formulas in order to build an equivalent counting mu-calculus formula and this can be done

by standard argument in logic.

More precisely, for every q ∈ Q and every a ∈ Σ, the formula δ(q, a) is a positive first order formula

(with equality and disequality) over unary predicates. By known results about first order logic [5], every

positive first order formula over unary predicates can be rewritten as a positive boolean combination of

|b| ≥ k, and |¬b| < k, where b is a positive boolean combination of predicates, |b| is the cardinal of the

elements satisfying b, and k is a non negative integer.

Now, the fact that the successors of a vertex x in a tree verify |b| ≥ k amounts to say that x verifies

<>k b, and that its successors verify |¬b| < k amounts to say that x verifies ⊓⊔kb. Hence, the fact that

the successors of a vertex verify δ(q, a) is equivalent to a counting modal formula α(q, a), positive in the

predicates Pq′ for all q′ ∈ Q.

Let a range over the alphabet of the automaton. Let us view the states of the automaton as fixpoint

variables. Following the general theory of fixpoint calculi [2] to the mu-calculus given by all the counting

modalities <>k and ⊓⊔k, the automaton is equivalent to the component q0 of a system of “least and

greatest fixpoint equations” consisting of two consecutive, finite sequences of equations: a first sequence

of greatest fixpoint equations of the form q =ν

∨
a a ∧ α(q, a) (q ∈ F ) and a second sequence of least

fixpoint equation of the form q =µ

∨
a a ∧ α(q, a) (q /∈ F ). Then, it is known that such a system of

equations can be transformed (by “sequencing” equations as defined in [2] definition 1.4.9, page 32) into

a single counting mu-calculus formula of class N2.

As a particular case, if the automaton A is a closed (resp. open) automaton then the mu-calculus

formula obtained in such a way belongs to class N1 (resp. M1). ⊓⊔

4.2. Büchi non deterministic automata

Intuitively, we can think of a position (q, v) of the model-checking game above as a copy of the au-

tomaton which is running on vertex v in state q. In general, it may occurs that several distinct copies

of the automaton are running in different states on the same vertex v. This possibility is a major source

of difficulties and complexity. The notion of functional runs and the related notion of non deterministic

automata (or, more accurately, non alternating automata) is a way to handle these difficulties.

Definition 4.3. (Functionnal acceptance)

With the same notation as above, a (functional) run of A on T is a (partial) function ρ : V T → Q,

from the vertices of T to Q, such that ρ(rT ) = q0 and, for each vertex v in the domain of ρ, the marking

induced by ρ on the successors of v verifies the transition specification δ(ρ(v), λT (v)).
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A run ρ is called accepting if along all infinite paths v0.v1. · · · .vi. · · · of vertices in the domain of ρ
there is some state in F that occurs infinitely often in the sequence of states ρ(v0).ρ(v1). · · · .ρ(vi). · · · .

A tree T is functionally accepted by A if there is an accepting run of A on T . The language of trees

functionally defined by A is the set of all trees functionally accepted by A.

Observe that every tree functionally accepted is accepted in the usual sense. In fact, every accepting

functional run gives a winning strategy for marker. But the converse is false in general. For instance,

consider an automaton on one letter a and three states, q0 (initial), q1 and q2 (accepting), and the rules

δ(q1, a) = δ(q2, a) = true and δ(q0, a) = ∃x, y.q1(x) ∧ q2(y). In fact, the tree consisting of the root

and one successor is accepted by this automaton, but not functionally accepted. Indeed, the transition

specification δ(q0, a) does require that two copies of the automaton in state q1 and q2 are sent on the

same successor of the root. For non deterministic automata, as defined here, the equivalence does hold.

Definition 4.4. (Non deterministic automata)

Let us define basic disjunctive formula as any FO-formula of the form

∃x1, · · · , xndiff (x1, · · · , xn) ∧
∧

i∈[1,n]

pi(xi) ∧ ∀ydiff (x1, · · · , xn, y) →
∨

j∈[1,m]

qj(y)

with p1, . . . , pn and q1, . . . , qm two lists (possibly with repetitions) of states interpreted as unary predi-

cates. Let us also define disjunctive formulas as any finite disjunction of basic disjunctive formulas.

Following [13], we say that an alternating automaton is non deterministic (or, more accurately, non

alternating) if its transition formulas are disjunctive formulas.

We observe first that automata acceptance simplifies with non deterministic automata.

Lemma 4.2. For non deterministic automata, functional acceptance and ordinary acceptance coincide.

Proof:

Let D be a disjunctive formula and let FUN be the first order formula saying that every element satisfies

at most one predicate q for exactly one q ∈ Q. If we view models as markings, that is, sets of pairs, one

can observe that every model of D includes a model of D ∧ FUN .

Hence, applying this facts along plays, if Marker has a winning strategy in the model checking game

G(A, T ) of a nondeterministic automaton A on a tree T , then it has one where in each vertex, exactly

one copy of the automaton is sent in each successor. And the latter strategy gives an accepting functional

run. ⊓⊔

Non deterministic automata can even be seen as some normal form for automata “restricted to”

functional acceptance. And, conversely, one can use the more flexible syntax of alternating automata

with functional acceptance instead of that of non deterministic automata. More precisely:

Lemma 4.3. For every alternating automaton A there is a nondeterministic automaton A′, such that the

tree language functionally defined by A equals the language defined by A′.

Proof:

Let Q be the state set of A. From the analysis of first order logic over unary predicates given in [5] it
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follows that, for every first order formula ϕ ∈ FOL(Q+), there is a disjunctive formula D such that

D ∧ FUN ⇔ ϕ ∧ FUN . Let A′ be the automaton obtained from A by replacing ϕ with D. Then A′

is non deterministic, and the languages functionally defined by A and A′ coincide. But by the previous

lemma, the language functionally defined by A′ coincides with the language defined by A′ in the usual

sense. ⊓⊔

The next property of non deterministic automaton is an essential feature in many proofs in automata

theory.

Lemma 4.4. The tree languages definable by non deterministic automata are closed under projection.

Proof:

It is enough to prove the same closure result for automata with functional acceptance. Let A = 〈Q,Σ1×
Σ2, q0, F, δ〉 be an automaton on an alphabet which is a Cartesian product of two sets Σ1 and Σ2. Let

π1 : Σ1 × Σ2 → Σ1 be the first projection associated to the Cartesian product. If L is the language

functionally defined by A, an automaton which defines functionally π1(L) is B = 〈Q,Σ1, q0, F, δ
′〉

where δ′(q, σ) =
∨

τ∈Σ2
δ(q, (σ, τ)). In fact, a function ρ is a run of A on a tree T if and only if it is a

run of B on the tree π1(T ). So, A accepts functionally T if and only if B accepts functionally π1(T ). ⊓⊔

4.3. Weak alternating automata

Weak automata are obtained from Büchi automata by restricting the structure of automata. They play

a fundamental role in the analysis of the expressive power of FO and monadic Σ1 on trees. They have

been used as a characterization of weak MSO (or the alternation free mu-calculus) on trees [20, 19, 16].

Definition 4.5. A Büchi alternating automaton A = 〈Q,Σ1 × Σ2, q0, F, δ〉 is called weak automaton

if there is a partially ordered set I and a partition of Q, Q =
⋃

i∈I Qi, such that F is a union of some

of the Qi’s, and for every q ∈ Qi, δ(q, σ) ∈ FOL+(
⋃

j≤iQj): this means that along plays, the index

decreases, or remains the same.

The sets Qi included in F are called the accepting components of the automaton. The other Qi’s are

called rejecting components.

Lemma 4.5. The tree languages definable by weak alternating automata are closed under complemen-

tation.

Proof:

Let A = 〈Q =
⋃

i∈I Qi,Σ, q0, F, δ〉 be a weak alternating automaton. We define the automaton B to be

the automaton

B = 〈Q =
⋃

i∈I

Qi,Σ, q0, Q \ F, δd〉

where δd(q, a) is the dual formula of δ(q, a): δd(q, a) = ¬δ(q, a)[¬q/q : q ∈ Q].

Observe that automaton B is a weak automaton. In general, the winning condition of the dual of a

Büchi automaton shall be a co-Büchi condition, i.e. the dual condition of the Büchi condition. However,

the weakness assumption makes Büchi and co-Büchi condition equivalent.
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More precisely, in the model-checking game, a play is winning for the Marker with the Büchi con-

dition when infinitely many accepting states occur. By duality, a play is winning for the Marker with

the co-Büchi condition when finitely many non accepting states occur. In general, this makes that Büchi

automaton are not closed under complement. However, under the assumption of weakness, there cannot

be an infinite alternation of accepting and rejecting states in the model-checking games, so Büchi or

co-Büchi criteria are equivalent.

It is then a classical feature of alternating automata, following for instance [21], that the automaton

B defined above do recognize the complement of L(A).
More precisely, one can check that for any tree T , any winning strategy for Marker in the game

G(A, T ) induces a winning strategy for Selector in the game G(B, T ) and vice versa, any winning

strategy for Selector in the game G(A, T ) induces a winning strategy for Marker in the game G(B, T ).
Since model-checking games are determined, this conclude the proof. ⊓⊔

Lemma 4.6. The tree languages definable by weak non deterministic automata are closed under union

and intersection.

Proof:

By Lemma 4.2 it is enough to show the same for weak automata with functional acceptance.

Now the idea is that to define the union (resp. the intersection) of two automata by means of a

product. More precisely, given two weak automata A = 〈Q =
⋃

i∈I Qi,Σ, q0, F, δ〉 and B = 〈Q′ =⋃
j∈J Q

′
j ,Σ, q

′
0, F

′, δ′〉. we define the automaton C = 〈Q×Q′,Σ, (q0, q
′
0), F

′′, δ′′〉 where F ′′ = F×Q′∪
Q×F ′ for the union (resp. F ′′ = F ×F ′ for the intersection), and, given π1 and π2 the projections of the

Cartesian product Q×Q′, the transition function defined in such a way that, for each (q, q′) ∈ Q×Q′,

each a ∈ Σ, a marking m satisfies δ′′((q, q′), σ) if the projected marking π1(m) satisfies δ(q, σ) and the

projected marking π2(m) satisfies δ′(q′, σ).
The automaton C does functionally recognize the union (resp. the intersection) of the languages

functionally recognized by B and B. Moreover, it is a weak automaton with Q′′ =
⋃

(i,j)∈I×J Qi × Q′
j

with I × J ordered with the product order. ⊓⊔

Lemma 4.7. The tree languages definable by weak non deterministic automata are closed under projec-

tion.

Proof:

The construction given in the proof of Lemma 4.4 for non deterministic automata just applies similarly

to weak non deterministic automata. ⊓⊔

Finally, adapting Muller and Schupp’s simulation theorem [21]:

Theorem 4.1. (Simulation)

Any alternating weak (resp. closed or open) automaton A is equivalent to a non deterministic Büchi

(resp. non deterministic closed or open) automaton An.

Proof:

Over binary trees, this result follows from Muller and Schupp’s construction [21]. For the modal mu-

calculus, it follows from the construction given in [13]. It relies on standard techniques presented in a
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quite general setting in [10, 2]. It has also been proved again in the modal case with slightly different

techniques in [16].

Here, we essentially explicit the construction. The proof of its correctness is left as a (standard)

exercise.

Let A = 〈Q =
⋃

i∈I Qi,Σ, q0, F, δ〉 be a weak alternating automaton. We define the Büchi automa-

ton A′ = 〈Q′,Σ, q′0, F
′, δ′〉 as follows:

1. Q′ = P(Q× {0, 1} − F × {0}),

2. q′0 = {(q0, 1)},

3. F ′ = P(Q× {1}),

4. for each P ∈ Q′, each a ∈ Σ, a marking m′ ⊆ Q′ × V on the set of predicate Q′ satisfies δ′(P, a)
when, for each (q, x) ∈ P , there is a marking m1 ⊆ Q× V such that:

(a) m1 |= δ(q, a) (local constraint satisfied),

(b) for each (q1, v1) ∈ m1, one has ((q1, y), v1) ∈ m′ such that:

i. y = 1 when q1 ∈ F

ii. y = 0 or y = x when q1 6∈ F , depending on wether P ∈ F ′ (global reset of the winning

condition) or P /∈ F ′ (local updating of the winning condition),

We claim that a tree is accepted by the alternating automaton A if and only if it is functionally accepted

by the automaton A′. Then, applying Lemma 4.3, on can build out of A′ a non deterministic automaton

that recognizes the language of trees functionally accepted by A′.

Observe that this construction holds starting from an arbitrary alternating Büchi automaton A. In

general, even if automaton A is a weak automaton, automaton A′ is not a weak automaton. However,

starting from a closed or open (weak) automaton (with F = Q or F = ∅ respectively) the construction

simplifies and the resulted automaton can be defined as a closed or open (weak) automaton (with F ′ = Q′

or F ′ = ∅ respectively).

More precisely, when F = ∅, observe that all reachable state from q′0 (but the initial state q′0 that only

appear initially) belong to P(Q× {0}) so we can restrict Q′ to be the set P(Q× {0}) with q′0 = (q0, 0)
and F ′ = ∅ without changing the language of trees functionally recognized by A′. Quite similarly, when

F = Q, all reachable states from q′0 belongs to P(Q× {1}). This means we can restrict Q′ to be the set

P(Q× {1}) with F ′ = Q′ without changing the language of trees functionally recognized by A′.

⊓⊔

5. The main results

In this section, we prove Theorem 1.1 by a series of lemmas that easily follows from the results presented

in the previous sections.

Lemma 5.1. (From FO to non deterministic weak)

On arbitrary trees, every first order formula is equivalent to a non deterministic weak automaton.
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Proof:

In order to do so, applying Gaifman theorem, we first show that FO-formulas define languages of trees

that are finite boolean closure of closed languages in the sense of the prefix topology. Then, in turn, clas-

sical results of automata theory ensure that these languages are definable by means of non deterministic

weak automata.

Let d be a positive integer. A FO-formula ϕ(x) with a single free variable x is called basic d-local

when all quantifications in ϕ(x) are relativized to vertices at distance at most d from x, i.e. vertices

reachable from x by a undirected path of length at most d.

Theorem 5.1. (Gaifman [8])

Let ϕ be a FO-formula on trees. There exist d ≥ 0 such that ϕ is equivalent to a finite boolean combina-

tion of formulas of the form

∃x1 · · ·xn
∧

i 6=j

d(xi, xj) > d ∧ ϕi(xi)

where ϕ1(x), . . . , ϕn(x) are basic d-local formulas and d(xi, xj) > d means that there is no undirected

path between xi and xj of length smaller than or equal to d.

Then we have:

Corollary 5.1. Every FO-definable language of tree is a finite boolean combination of closed languages.

Proof:

The negation of a formula ϕ of the form

ϕ ≡ ∃x1 · · ·xn
∧

i 6=j

d(xi, xj) > d ∧ ϕi(xi)

defines a closed language. In fact, assume there is a sequence of trees {Tn}n∈ω that converges towards

a limit T . If Tn |= ¬ϕ for all n ∈ ω then T |= ¬ϕ. Otherwise, if T |= ϕ there is a finite depth h such

that the satisfiability of ϕ is witnessed by vertices that belong to the h-prefix of T . Since the sequence

{Tn}n∈ω converges towards T , there is also an N such that for all n ≥ N , Tn and T have isomorphic

h-prefix hence Tn |= ϕ which contradicts the hypothesis. ⊓⊔

Now, we have:

Lemma 5.2. FO-definable closed languages are definable by means of finite closed non deterministic

automata. And, similarly, FO-definable open languages are definable by finite open non deterministic

automata.

Proof:

The case of closed languages is proved in [12]. By complementation (Lemma 4.5), this also shows

that FO-definable open languages are recognizable by means of open alternating automata. But then,

the Simulation Theorem 4.1 shows that these languages are then recognizable by means of open non

deterministic automata. ⊓⊔

Since closed and open non deterministic automata are special case of non deterministic weak au-

tomata this, by applying also Lemma 4.6, concludes the proof of Lemma 5.1. ⊓⊔
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Remark 5.1. We could have given an explicit construction of such an automaton. In fact, from Gaifman

normal formal form, it is quite an easy exercise. Remind however that the satisfiability problem for a

FO-formula on tree is non elementary. Hence, the automaton translation of a FO-formula is also non

elementary.

Then we prove:

Lemma 5.3. (From Π1 to weak)

On arbitrary trees, every monadic Π1 formula is equivalent to a weak automaton.

Proof:

Since weak non deterministic automata are closed under projection (Lemma 4.7) we know, by applying

Lemma 5.1 that the languages definable by monadic Σ1 formula are recognizable by means of alternating

weak automaton. Then, applying Lemma 4.5 concludes the proof. ⊓⊔

Now we have:

Lemma 5.4. (From Σ2 to Büchi)

On arbitrary trees, every monadic Σ2 formula is equivalent to a Büchi automaton.

Proof:

By applying Lemma 5.3, every Π1 formula is equivalent to a weak alternating automaton. So, by apply-

ing Simulation Theorem 4.1, it is also equivalent to a non deterministic Büchi automaton. Now, closure

under projection (Lemma 4.4) concludes the proof. ⊓⊔

We prove then the analogous of Theorem 1.1 for counting bisimulation.

Theorem 5.2. The counting bisimulation invariant fragment of monadic Σ2 equals the νµ-level of the

counting mu-calculus.

Proof:

Since any νµ-formula of the counting mu-calculus is equivalent to a (counting bisimulation invariant)

monadic Σ2 formula, it is sufficient to prove the converse.

Let ϕ be a monadic Σ2 formula counting bisimulation invariant.

First, by Lemma 5.4, we know that, over trees, formula ϕ is equivalent to a Büchi automaton. By

applying Lemma 4.1 it is thus equivalent, over trees, to a νµ-formula α of the counting mu-calculus.

Since both ϕ and α are counting bisimulation invariant, by Remark 3.1, we conclude that they are

equivalent on arbitrary models. ⊓⊔

For bisimulation invariance, we have:

Lemma 5.5. (Saturation)

For arbitrary infinite cardinal κ, on κ-expansions of trees, every monadic Σ2 formula is equivalent to a

modal Büchi automaton.
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Proof:

Let ϕ be a monadic Σ2 formula. By Lemma 5.4, over κ-expansions, formula ϕ is equivalent to a Büchi

automaton. But, following [14], on κ-expansions, Büchi automaton are equivalent to modal Büchi au-

tomata. ⊓⊔

So we conclude then the proof of Theorem 1.1 that is restated below for the sake of clarity.

Theorem 5.3. The bisimulation invariant fragment of monadic Σ2 equals the νµ-level of the modal

mu-calculus.

Proof:

Since any modal νµ-formula is equivalent to a (bisimulation invariant) monadic Σ2 formula, it is suffi-

cient to prove the converse.

Let ϕ be a monadic Σ2 formula bisimulation invariant.

First, by Lemma 5.5, we know that, over κ-expansions of trees, formula ϕ is equivalent to a modal

Büchi automaton. By applying Theorem 4.1 it is thus equivalent, over trees, to a νµ-formula α of the

modal mu-calculus. Then, by Remark 3.1 they are equivalent on arbitrary models. ⊓⊔
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