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Abstract

It is proposed to compare strategies in a parity game by comparing

the sets of behaviours they allow. For such a game, there may be no

winning strategy that encompasses all the behaviours of all winning

strategies. It is shown, however, that there always exists a permissive

strategy that encompasses all the behaviours of all memoryless strate-

gies. An algorithm for finding such a permissive strategy is presented.

Its complexity matches currently known upper bounds for the simpler

problem of finding the set of winning positions in a parity game. The

algorithm can be seen as a reduction of a parity to a safety game and

computation of the set of winning positions in the resulting game.

1 Introduction

An interaction of a controller and an environment can be seen as a game
between two players. A correct controller is a winning strategy in such a
game (see [1]). There may be many winning strategies in a given game.
Often one looks for a most permissive strategy, i.e., the one that restricts the
behaviour of the environment as little as possible. In general such a most
permissive strategy may not exist. In this paper we propose and study a
notion of permissive strategy, which is intended to capture the idea that a
strategy allows “sufficiently many” behaviours.

In this paper we concentrate on parity games. These are two-player infi-
nite games with perfect information. A game is played on a finite graph with
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a natural number assigned to each vertex. A move of a player is to prolong
a path constructed so far. The result of an infinite play is an infinite path
through the graph. A play is winning for player 0 if the smallest number
among those labelling infinitely many vertices in this infinite path is even.
Finding a winning strategy in a given parity game is a prominent problem in
computer aided verification as many model checking problems can be effec-
tively reduced to it [6, 12]. Here, we are interested in the synthesis problem
when the interaction of a controller and an environment is described by a
parity game [17, 1].

In the context of synthesis, the advantage of considering parity games is
that in a finite parity game there is a finite winning strategy whenever there
is a winning strategy at all. In other words, if there is a controller then there
is a finite controller. This follows from the results of Büchi [3] and Gurevich
and Harrington [9] who showed that whenever there is a strategy in a game
with regular winning conditions then there is a strategy with finite memory.
For parity games, that are a special case of games with regular conditions,
even a stronger result holds [7, 14]. It says that no memory is needed. So
if there is a winning strategy in a parity game then there is a memoryless

winning strategy that is just a subgraph of the game graph.

When considering program synthesis, correctness and size of the program
is not the only criterion. For example in the theory of discrete controller
synthesis [15, 2, 4] one is usually interested in the most permissive winning
strategy, i.e., the one that allows most behaviours. In case of games with
infinitary conditions there may be no most permissive winning strategy. Ac-
tually, as we show here, under suitable definitions most permissive strategies
exist only in safety games for player 0. In such games player 0 wins if he
manages to avoid a designated set of bad positions. This is one of the reasons
why discrete controller synthesis theory concentrates on safety games.

Still, the setting of safety games may not be sufficient for some control
synthesis problems. In fact, infinitary conditions such as fairness or liveness
cannot be expressed in the context of safety games. This justifies the ex-
tension of the setting to parity games. This class of games is sufficiently
expressive, as every game with regular conditions can be encoded as a parity
game [13, 18].

Even though there may be no most permissive strategy in a parity game,
we think that it is reasonable to compare strategies by looking at the set
of behaviours they allow. A strategy permitting more behaviours is better
because it is less prone to transient errors (i.e. errors that do not permit a
controller to make some choices for a limited period of time). Imagine that
we are in such an error situation. A more permissive strategy instead of
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waiting until the error will be resolved may be able to take a different action.
More permissive strategy is also good for modular design. Imagine that later
we are going to refine computed strategy (controller). If a strategy is too
restrictive then it may not allow some admissible behaviours, and hence may
not allow the required refinement.

In this paper we propose a notion of a permissive strategy. A strategy for
a given game is permissive if it allows all the behaviours of all memoryless
winning strategies in the game. We show that for every game there is a
permissive strategy with finite memory. This strategy can be computed in
O(nd/2+1) time and O(nd log(n)) space, where n is the number of vertices in
the game and d is the number of different integers that are labelling vertices of
the game. This matches known upper-bound for the simpler problem of com-
puting a set of positions from which the given player has a winning strategy.
The algorithm actually turns out to be the same as strategy improvement
algorithm of Jurdzinski [11].

To work with permissive strategies we introduce a reduction from parity
to safety games. We find this reduction very useful. It implies that to
solve parity games, it is enough to know how to solve safety games. Of
course the resulting safety game may be exponentially bigger, but then the
problem reduces to clever exploration of the search space. For example, the
algorithm mentioned in the previous paragraph needs only linear space in the
size of the initial parity game. This reduction may be useful when considering
distributed or on-the-fly algorithms for game solving or model-checking [8].

The plan of the paper is as follows. In the preliminaries section we intro-
duce parity games and strategies. We also define a permissiveness ordering
on strategies and the notion of permissive strategy. In section 3 we show
that only safety games have a maximally permissive strategy. Section 4
shows how to reduce the problem of finding a permissive strategy in a game
to the problem of finding a maximally permissive strategy in a safety game.
In the next section we discuss some additional properties of our permissive
strategies. These are used in Section 6 to show correctness of the algorithm
finding a permissive strategy. In the conclusions section we discuss some
open problems.

2 Preliminaries

In this section we introduce parity games, winning strategies and permissive
strategies. Our definitions will allow nondeterministic strategies, i.e., the
strategies that may permit more than one move from a given position.
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Definition 1 (Parity game) A parity game is a labelled graph

G = 〈V, V0, V1, E ⊆ V × V, I, Ω : V → I〉

with the partition V0, V1 ⊆ V of the set of vertices V . Additionally, I is a
finite set of natural numbers, called priorities and Ω is a function assigning
a priority to each vertex. We say that a vertex v′ is a successor of a vertex
v if E(v, v′) holds.

A play from some vertex v ∈ V proceeds as follows: if v ∈ V0 then player
0 chooses a successor of v otherwise it is player 1 who makes the choice.
Then the play enters the newly chosen vertex v′ and the process repeats.
It continues like this ad infinitum unless one of the players cannot make a
move (i.e. he has to make a choice and the vertex has no successors). If
a player cannot make a move he looses. The result of an infinite play is
an infinite path vv1v2 . . . This path is winning for player 0 if it satisfies the
parity condition which is:

lim inf
i→∞

Ω(vi) is even.

In other words, the condition says that the smallest among priorities appear-
ing infinitely often in the sequence should be even.

A strategy σ for player 0 is a function assigning to every sequence of
vertices ~v ending in a vertex v from V0 a set σ(~v) ⊆ V of successors of v. We
require that σ(~v) 6= ∅ if v has a successor. Intuitively a strategy depends on
the sequence ~v of moves made so far, moreover it should allow some move
if a move is possible. A play respecting strategy σ is a finite or infinite path
v0v1 . . . such that vi+1 ∈ σ(v0 . . . vi) for every i with vi ∈ V0. A maximal play

is an infinite path or a finite path ending in a vertex with no successors. So,
a maximal play is winning for player 0 if it satisfies the parity condition or
ends in a vertex from V1.

Definition 2 A strategy for player 0 is winning from a vertex v iff every
maximal play starting in v and respecting the strategy is winning for player
0. We say that a strategy for player 0 is winning if it is winning from every
vertex from which there is a winning strategy for player 0.

A strategy with memory M is a triple:

c : M × V0 → P(V ), up : M × V → M, m0 ∈ M

The role of the initial memory element m0 and the memory update function
up is to abstract some information from the sequence ~v. This is done by
iteratively applying up function:

up∗(m, ε) = m and up∗(m,~vv) = up∗(up(m,~v), v)
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This way each sequence ~v of vertices is assigned a memory element up∗(m0, ~v).
Then the choice function c defines a strategy by σ(~vv) = c(up∗(m0, ~v), v).
When up and m0 will be clear from the context, we will sometimes use σ to
denote the function c.

A memoryless strategy is a strategy with memory M which is a singleton
set. Alternatively one can see it as a function σ : V → P(V ).

Comparing strategies The following are the main definitions of the pa-
per. We define the set of behaviours allowed by a strategy. Then we say that
a strategy subsumes another strategy if it allows more behaviours. Finally,
we say that a strategy is permissive if it subsumes all memoryless strategies.

Definition 3 If σ is a strategy and v is a vertex of G from which σ is winning
then Beh(G, v, σ) is the set of all plays starting in v and respecting σ. If σ
is not winning from v then we put Beh(G, v, σ) = ∅.

The intuition behind this definition is that we are only interested in the
part of σ which guarantees win for player 0. Note that Beh(G, v, σ) is prefix
closed.

Lemma 4 All maximal paths in Beh(G, v, σ) are winning for player 0. If all
prefixes of some infinite path belong to Beh(G, v, σ) then the path belongs
to Beh(G, v, σ).

Proof
The first statement follows directly from the definition. For the second state-
ment observe that if all the prefixes of a path are allowed by σ then the whole
path is allowed by σ. �

We can compare the strategies by comparing the behaviours that they
allow.

Definition 5 A strategy σ′ is subsumed by σ, which is denoted σ′ v σ, if
Beh(G, v, σ′) ⊆ Beh(G, v, σ) for all v ∈ G.

Definition 6 A strategy σ is permissive if σ′ v σ for every memoryless
strategy σ′.

Example: Here is a game that has two v-maximal memoryless strategies.
All the positions are for player 0. The priorities of vertices are as indicated.

?>=<89:;2 ++

��>
>>

>>
>>

>>
?>=<89:;2kk

ii

?>=<89:;1

@@���������
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The first maximal memoryless strategy allows all but the edge from the
leftmost vertex to 1. The second strategy allows all but the edge from the
rightmost to the leftmost vertex.

Any permissive strategy for this game needs a memory. In the the right-
most vertex the strategy should allow to go to the leftmost vertex only if we
have not passed through 1 at any time before. There are other permissive
strategies. For example, a strategy can allow to go from the rightmost to the
leftmost vertex provided we have passed through 1 less then, say, 5 times.
This is intuitively the reason why there does not exist the most permissive
strategy. �

Remark: One may ask why to limit oneself to permissive strategies. It would
be the best just to find the v-biggest strategy. Unfortunately, as explained
in the next section, such strategies exist only for very simple games.

Remark: One can define M-permissive strategies, which would be the
strategies subsuming all strategies with memory of size M . The approach
presented here extends to this setting, but we have chosen not to consider
such strategies due to a substantial notational overhead.

3 Safety games

A safety game is a special kind of parity game where player 0 wins a play if
it never enters any of forbidden positions. More formally, a safety game is a
game

G = 〈V, V0, V1, E ⊆ V × V, I, Ω : V → I〉

with I = {0, 1} and the property that for every vertex v of priority 1:

• if v ∈ V0 then all successors of v must have priority 1, and

• if v ∈ V1 then there must exist a successor of v with priority 1.

The definition may at first seem too complicated, but we want it to be general
and we also need to forbid situations like having a vertex for player 1 with
no successors. According to our definition, such a vertex would be winning
for player 0.

Fact 7 In a safety game player 0 has a v-biggest winning strategy. This
strategy is memoryless.

Proof
To calculate the set W of winning positions for player 0 in a game G, one can
proceed as follows. First, one sets W = {v : Ω(v) = 0}. Then, repeatedly
one tries to find a vertex v such that either:
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• v ∈ V0 and all successors of v are not in W , or

• v ∈ V1 and there is a successor of v not in W .

One removes v from W and repeats the process. The loop ends when there
are no more vertices to remove. It is not difficult to show that from every
removed vertex player 1 can force the play to a vertex of priority 1. On the
other hand player 0 has a strategy to stay in W . This strategy is given by
σ(v) = {v′ ∈ W : E(v, v′)}. The strategy is maximal as no winning strategy
can allow a play to get outside W . �

The following fact shows that if there is a v-biggest strategy σ in a game,
then the game is essentially a safety game, and σ is the “stay in the winning
set” strategy.

Fact 8 If a game G has a v-biggest winning strategy σ, then one can assign
to each vertex of G a priority in {0, 1} in such a way that the result G′ is a
safety game and σ is also the v-biggest winning strategy in G′.

Proof
Let W be the set of winning positions in G. If every path through W is
winning for player 0 then we are done. We put Ω(v) = 0 for all the vertices
in W and Ω(v) = 1 for all other vertices.

Suppose that there is a maximal path P in W which is not winning for
player 0. This cannot be a finite path as every vertex in W ∩ V0 has a
successor in W .

We show that if there is an infinite path P in W which is not winning
then there is no v-biggest winning strategy for player 0. Take some winning
strategy σ. For every finite prefix ~u of P we are going to define a strategy
σ~u that extends σ by allowing moves along ~u. When the play goes out of ~u,
or the ~u finishes, the strategy becomes the same as σ. Formally:

σ~u(~vv) =











σ(~vv) ∪ {v′} if ~vvv′ is a prefix of ~u

σ(~v1v) if ~v = ~v0~v1 and v0 is the longest common prefix

of ~v and ~u.

Every play respecting σ~u has a suffix which is a play starting from some
v ∈ W and respecting σ. Hence, every play respecting σ~u is winning.

Suppose that we have τ such that Beh(G, v, σ~u) ⊆ Beh(G, v, τ) for all
prefixes ~u of P . Then we have P ∈ Beh(G, v, τ) as all its prefixes are in the
set. But this is impossible as P is not winning. �
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Remark: The above fact does not hold if we only require that there is a v-
biggest among memoryless strategies in G. A simple example is the following
game where all vertices are for player 0 and the priorities are as indicated.

?>=<89:;1 ++ ?>=<89:;2kk ii

In this game player 0 wins from both vertices and there is a unique memo-
ryless strategy. Still there is a path that is loosing for player 0. So “stay in
the winning set” strategy is not winning for him.

Remark: In the above fact we consider relabelings that do not change the
biggest strategy. In other words, the biggest strategies in the original and the
relabeled game are the same. Let us explain why we have not considered the
relabelings that only preserve the sets of winning vertices. According to this
weaker requirement every game can be relabeled to a safety game. One just
puts Ω(v) = 0 for all the vertices winning for player 0 and Ω(v) = 1 for all the
vertices winning for player 1. After this relabeling the sets of winning vertices
do not change as player 0 has a strategy to stay in his winning vertices, and
player 1 has a strategy to stay in his winning vertices. For example, consider
the game from the remark above. If one changes the priorities of both vertices
to 0 then one gets a game with the same set of winning positions but with a
new v-biggest winning strategy. This strategy allows a path going infinitely
often through vertex 1. This path was loosing in the original game.

4 Finding permissive strategies

In this section we will show that there are finite memory permissive strategies.
It can be shown that there cannot be a memory size that is sufficient for a
permissive strategy in every game. Still we can hope to have one uniform
memory for all the games of fixed size. There is a similar situation in the
case of games with Muller conditions [18, 20, 5]. There, the size of memory
also cannot in general be bounded, but there is a finite memory sufficient for
all games with conditions over some fixed set of elements.

For the rest of this section let us fix a set I = {0, . . . , d + 1} of priorities
and a number np for each odd priority p ∈ I. For convenience let us assume
that d is odd. Let ~n = (n1n3 . . . nd). This vector will be used to bound the
size of considered games.

Definition 9 A game is ~n bounded if its set of priorities is included in
{0, . . . , d + 1} and there are at most np vertices of priority p, for each odd p.
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In this section we will show a uniform construction of permissive strategies
in ~n-bounded games. For this we define a memory set M(~n) that will be
used by our strategies.

M(~n) =
∏

1≤p≤d, p odd

{0, . . . , np}

An element ~m ∈ M(~n) is a tuple of numbers (m1, m3, . . . , md) with 0 ≤
mi ≤ ni. We can consider such a tuple as a counter representing the number
∑

i=1,3,...,d mi

(
∏

j=i+2,i+4,...,d(nj +1)
)

. So the most significant digit is the first
one and each position p is in base np. For example, in the simple case when
np = 1 for all p, we get a binary encoding of numbers up to 2(d+1)/2 − 1.

The plan for finding a permissive strategy is the following. First, we
will take M>(~n) which is an extension of M(~n) with an element > standing
for overflow. Then, we will define a uniform memory update function up :
M>(~n) × I → M>(~n). We call it uniform because it does not depend on
vertices of a particular game but only on the priorities (and these are the
same for all the games in question). Memory M>(~n) will allow to reduce a
game G to a safety game G⊗. The biggest strategy in this game will in turn
be used to get a permissive strategy in G.

To define the memory update function we need to define two kinds of
auxiliary functions on memories: ~m|p and incp(~m) for every p ∈ I. The first
is just resetting to 0 all the positions bigger than p:

(m1, m3, . . . , md)|p = (m1, . . . , mp, 0, . . . , 0)

This operation is also defined for even p in an obvious way.
The other operation is like adding 1 to position p when considering ~m as

a counter; if the value on this position is already np then we try recursively
to add 1 to the position p − 2:

incp((m1, . . . , md)) =











(m1, . . . , mp + 1, . . . , md) if mp < np

incp−2((m1, . . . , md)) if mp = np and p ≥ 3

> otherwise

The intuition for the last case of the above definition is that if the value of
the counter on first p positions is n1n2 . . . np then adding 1 is impossible and
the value is > which denotes an overflow.

Now, we can define a generic update function up : M>(~n) × I → M>(~n),

up(m, p) =

{

m|p for p even

incp(m) for p odd
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Of course we also have up(>, p) = > which means that there is no possibility
to recover from the overflow. Observe that in the above we have stopped to
write vectors over m. We will do it often for clarity.

Using the memory M>(~n) and the function up we can reduce any ~n
bounded game G to a safety game. Let us take an ~n-bounded game G =
〈V, V0, V1, E, I, Ω〉. Define a safety game G⊗ = 〈V ⊗, V ⊗

0 , V ⊗
1 , E⊗, {0, 1}, Ω⊗〉,

where:

• V ⊗
i = V0 × M>(~n), for i = 0, 1;

• E⊗((v, m), (v′, m′)) if E(v, v′) and m′ = up(m, Ω(v));

• Ω⊗((v, m)) = 0 if m 6= > and Ω⊗((v,>)) = 1.

So player 0 wins in G⊗ from a position (v, m) if he has a strategy to avoid
vertices with > in the second component. By Fact 7, in such a game there
is always a maximal memoryless winning strategy.

A memoryless strategy σ⊗ in G⊗ gives a strategy σ with memory M(~n)
in G. The strategy is defined by σ(m, v) = σ⊗((v, m)), the initial memory
element is m0 = (0, . . . , 0) and the memory update function is up(m, v) =
up(m, Ω(v)).

Lemma 10 For every ~n bounded game G. If σ⊗ is a memoryless strategy
winning from (v, m) in G⊗ then σ is a winning strategy from v with initial
memory m.

Proof
The main observation is that if we have an infinite play (v1, m1)(v2, m2) . . .
and > does not appear in the sequence, then the sequence v1v2 . . . satisfies
the parity condition. Suppose the contrary; then some odd priority p would
be the smallest one appearing infinitely often in v1v2 . . . But then, by the
definition of up function, we will get > after meeting (n1 ·n3 · · ·np+1) times a
vertex of priority p and not meeting any vertex of smaller priority in between.

To see that σ is winning from v with initial memory m it is enough to
note that for every play vv1v2 . . . from v respecting σ there is a sequence
of memories mm1m2 . . . such that (v, m)(v1, m1)(v2, m2) . . . is a play from
(v, m) respecting σ⊗. �

There is also a construction in the opposite direction. A memoryless
strategy τ in G defines a memoryless strategy τ⊗ in G⊗ by:

τ⊗(v, m) = {(v′, up(m, Ω(v))) : v′ ∈ τ(v)}
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Lemma 11 For every ~n bounded game G and every memoryless strategy
τ for player 0. If τ is a winning strategy from v then τ⊗ is winning from
(v, (0, . . . , 0)) in G⊗.

Proof
Suppose that τ⊗ is not winning from (v, m0) where ~m0 = (0, . . . , 0). Then
there is a finite path (v, ~m0)(v1, ~m1)(v2, ~m2) . . . (vk+1, ~mk+1) such that ~mk+1 =
>. This can happen only because ~mk = (n1, n3, . . . , nq, . . . ) and Ω(vk) = q,
i.e., the counter ~mk+1 overflows.

Let i be the smallest integer such that mi,p = np, where p = Ω(vi) and
~mi = (mi,1, mi,3, . . . ). So we take the first vertex where the counter reaches
the maximal value on the position corresponding to the priority of the vertex.
Unlike in the paragraph above we do not require that all smaller positions
have maximal values. So p may be different from q. Take the largest j < i
s.t. Ω(vj) is both even and less than p (or take j = −1 if there is no such
vertex). By definition of up function we have mj+1,p = 0. By the choice of i,
in all memories up to i no position reaches its maximal allowed value. So by
the definition of up function, the value on position p can increase only when
we see a vertex of priority p. Hence, there must exist np + 1 occurrences of
vertices of priority p between vj and vi. As game G is ~n bounded, some vertex
must occur twice. This is a contradiction with the fact that vv1v2 . . . vk is a
play respecting τ . On such a play there cannot be a loop through a vertex
of odd priority p without a vertex of smaller priority on this loop since τ is
winning. �

Theorem 12
For a given ~n = (n1, n3, . . . , nd). For every ~n-bounded game G there is a

permissive strategy on G using memory M>(~n).

Proof
Let σ⊗ be the maximal winning strategy in the game G⊗. This defines in G a
strategy σ with memory M>(~n). The strategy is winning by Lemma 11. We
want to show that it is a permissive strategy. For this we take some memo-
ryless winning strategy τ in G and show that Beh(G, v0, τ) ⊆ Beh(G, v0, σ)
for every v0.

Take v0v1 · · · ∈ Beh(G, v, τ). By Lemma 11, there are memories such
that (v0, m0)(v1, m1) . . . ∈ Beh(G⊗, (v, m), τ⊗). Next, by the maximality of
σ⊗, we have Beh(G⊗, (v, m), τ⊗) ⊆ Beh(G⊗, (v, m), σ⊗) for every (v, m). So,
(v0, m0)(v1, m1) . . . ∈ Beh(G⊗, (v0, m0), σ

⊗). Finally, by the definition of σ
we have that v1v2 · · · ∈ Beh(G, v, σ) �

Remark: The memory as defined above is essentially nothing more than a
deterministic automaton accepting sequences satisfying a parity condition.
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The important point is that this automaton is a safety automaton. It is well
known that deterministic safety automata cannot recognize the language of
all the sequences satisfying a parity condition [16]. We overcome this problem
by limiting the number of odd priorities that can appear in the sequence
without a smaller even priority in between. Some other solutions are also
possible giving some other memories and some other permissive strategies.

5 Small representations of permissive strate-

gies

In the previous section we have seen that for every game G there is a per-
missive strategy that can be represented as the biggest strategy in G⊗. The
size of G⊗ is (|G| · n1 · n3 · · ·nd), hence it is exponential in the size of G.
So at first glance it may seem that we need this much space to describe a
permissive strategy. Fortunately it is not the case. Here we will show that
a permissive strategy can be determined by a function Mmax : V → M(~n),
i.e., a function assigning one memory value to each node.

The key observation is that the lexicographic ordering on memories is
also a “permissiveness” ordering. We say that ~m′ = (m′

1, m
′
3, . . . , m

′
d) is

lexicographically smaller than ~m = (m1, m3, . . . , md), denoted ~m′ <L ~m, if
there is a p such that m′

p 6= mp, and m′
p < mp for the smallest such p. We

extend this ordering by two new elements ⊥ and > with ⊥ <L ~m <L >
for every ~m ∈ M(~n). These two elements signify undefined and overflow
respectively. Element > was already introduced in the previous section.

Lemma 13 For every game G⊗: if player 0 has a winning strategy from a
position (v, ~m) then he has a winning strategy from position (v, ~m′) for every
~m′ <L ~m.

Proof
For the proof it is enough to observe that up function is monotonic, i.e., for
every priority p: up(~m′, p) ≤L up(~m, p) if ~m′ ≤L ~m. In particular for overflow
it means that: if up(~m′, p) = > and ~m′ <L ~m then up(~m, p) = >. �

For each vertex v, let Mmax(v) be the <L-supremum of all the memories
m such that (v, m) is winning for player 0 in G⊗. So, if there is no such
memory then Mmax (v) = ⊥. By Lemma 11, Mmax (v) = ⊥ iff v is not
winning for player 0 in G. By definition, Mmax (v) can never be >.

We can use Mmax(v) to get a permissive strategy. It is defined by telling
for every v for which memories m the position (v, m) is winning in G⊗. As
Mmax (v) gives the biggest such m, we know that (v, m) is winning for exactly
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those m that are lexicographically not bigger than Mmax (v). So in a vertex v
with memory m ≤L Mmax(v) the strategy is σ(m, v) = {v′ : up(m, Ω(v)) ≤L

Mmax (v′)}.

6 Algorithmic issues

Here we will describe how to use the reduction from G to G⊗ in algorithms
for solving parity games, i.e., algorithms that find the set of vertices from
which player 0 has a winning strategy.

A simple algorithm for solving a ~n bounded game G is to construct G⊗

and solve this safety game. This can be done by any alternating reachability
algorithm. The size of G⊗ is (|G| · n1 · n3 · · ·nd), where np is the number
of vertices of priority p in G. Hence, the time complexity of this algorithm
is as good as the best known upper bounds for solving parity games. The
weakness of this approach, however, is that a memory needed for alternating
reachability algorithm is proportional to the size of the game, and hence
exponential in the number of priorities.

Yet, a better approach is available. The idea is to calculate Mmax func-
tion in a bottom-up way. Before presenting the algorithm we need to define
a function down. For a memory m and a priority p, we put

down(m, p) = max{m′ : up(m′, p) ≤ m}

Hence, the value of down(m, p) can be ⊥ if m = (0, . . . , 0). It is easy to check
that down(m, p) can be defined in a similar way to up(m, p):

down(m, p) =

{

m|p if p even

decp(m) if p odd

where

(m1, . . . , mp)|
p =(m1, . . . , mp, np+2, . . . , nd)

decp(m1, . . . , md) =











(m1, . . . , mp − 1, . . . , md) if md > 0

decp−2(m1, . . . , md) if mp = 0 and p ≥ 3

⊥ otherwise

The algorithm calculating function Mmax will work with the auxiliary as-
signment F : V → (M(~n)∪{⊥}). Initially we put F (v) = ~n for each v; recall
that ~n = (n1, n3, . . . , nd). Afterwards, we start a loop were we find a vertex
v such that

F (v) >L down(m′, Ω(v))
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where

m′ =

{

max{F (v′) : v′ successor of v} if v ∈ V0

min{F (v′) : v′ successor of v} if v ∈ V1

For such v we set F (v) = down(m′, Ω(v)) and repeat the loop. We stop when
we cannot find a vertex with the above property. We show below that at the
end F (v) = Mmax (v) for all vertices v.

Remark: The algorithm is just a computation of the greatest fixpoint of
some operator on V → (M(~n) ∪ {⊥}). The lemmas below make it more
explicit.

Lemma 14 If F : V → (M(~n) ∪ {⊥}) is such that the value of no vertex
can be decreased then F (v) ≤L Mmax (v) for all vertices v.

Proof
It is enough to show that for every v with F (v) 6= ⊥ the position (v, F (v))
in G⊗ is winning for player 0. The observation we need is that if F is as in
the assumption of the lemma then for every v s.t. F (v) 6= ⊥ we have:

• if v ∈ V0 then there must be a successor v′ with up(F (v), Ω(v)) ≤L

F (v′);

• if v ∈ V1 then for all successors v′ of v we have up(F (v), Ω(v)) ≤L F (v′).

Now the strategy for player 0 is to choose in every v ∈ V0 a successor v′

such that up(F (v), Ω(v)) ≤L F (v′). By the above this is possible for every
vertex with F (v) 6= ⊥. To see that this strategy is winning take a play
(v1, m1)(v2, m2) . . . respecting the strategy where m1 = F (v1) 6= ⊥. Using
the property above we get by induction on i that mi ≤L F (vi). Hence,
mi 6= > for all i, which means that the play is winning. �

Lemma 15 After each iteration of the above loop we have F (v) ≥L Mmax (v)
for all vertices v.

Proof
The proof is by induction on the number of iterations. The statement is true
at the beginning when F (v) = ~n for all v. For the induction step we assume
that F (v) ≥L Mmax (v) holds for all v and we choose one v for which F (v)
can be decreased.

Suppose that we have chosen v ∈ V0 and it is to be decreased. We need
to show that the new value of F (v) is still not smaller than Mmax (v). If
Mmax (v) = ⊥ then we are done. Otherwise, as Mmax (v) is a memory that
still guarantees a win for player 0, we know that v has a successor v′ with
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up(Mmax(v), Ω(v)) ≤L Mmax (v′). Applying down function to both sides we
get:

Mmax(v) ≤L down(up(Mmax(v), Ω(v)), Ω(v)) ≤L down(Mmax(v′), Ω(v))

The first inequality follows by the property: m ≤L down(up(m, p), p) for
every m ∈ M(~n). The second inequality follows from the monotonicity of
down. The new value of F (v) is not smaller than down(F (v′), Ω(v)). So we
are done as

down(F (v′), Ω(v)) ≥L down(Mmax (v′), Ω(v)) ≥L Mmax (v)

The case for v ∈ V1 is similar. �

Corollary 16 At the end of the algorithm F (v) = Mmax (v).

Let us calculate the complexity of the algorithm. It cannot do more than
than (|G|·n1·n3 · · ·nd) steps. This is because at each step the F value of some
node is decreased and the value of a node cannot be decreased more than
n1 · n3 · · ·nd times. The algorithm uses linear memory, as it needs to store
just the current values of F assignment. This matches the best known upper
bounds for solving parity games [11]. The known upper bound presently
known for the strategy improvement algorithm [19] is actually worse: (n/d)d

instead of (n/d)pd/2q.

7 Conclusions

Learning from the experience of discrete control synthesis theory, it seems
to be a good idea to compare strategies by comparing the sets of behaviours
they allow. As we presented above, there are parity games where there is
no winning strategy that allows all the behaviours of all possible winning
strategies in the game. Given this, we propose a more lax notion of per-
missive strategy which is a strategy that allows all the behaviours of all
memoryless strategies. We show that a permissive strategy exists for every
game and that the algorithm finding it has not worse complexity than cur-
rently known algorithms for a simpler problem of deciding if there is any
winning strategy from a given vertex. Actually, the algorithm we obtain is
exactly the signature improvement algorithm presented in [11]. Hence, we
show that this algorithm computes more than just a set of winning vertices
(and some winning strategy).

There are at least two interesting open problems. The first concerns
the size of permissive strategy. We have shown that for an ~n = (n1, . . . , nd)

15



bounded game there is a strategy with memory of size n1 ·n2 · · ·nd. We don’t
known whether there can be a memory of smaller size. Actually if there were
a memory of size polynomial in n1 + n2 + · · · + nd then it would give a
PTIME algorithm for solving parity games. Our reduction to safety games
shows that the question about minimal memory is equivalent to the question
about automata on infinite words. The goal is to find a minimal automaton
accepting all paths that are admitted by some memoryless strategy in some
~n-bounded game.

The other problem also concerns complexity. We have shown that a
permissive strategy in a game is defined by a function Mmax : V → (M(~n)∪
⊥). This function is unique for a given game. Hence, if we were able to check
in PTIME that a given function F : V → (M(~n) ∪ ⊥) is exactly the Mmax

function then we would show that solving parity games is in UP∩co-UP.
This would be interesting as the known arguments for UP∩co-UP bound are
indirect and go through discounted payoff games [10, 21].
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[10] M. Jurdziński. Deciding the winner in parity games is in UP∩co-UP.
Information Processing Letters, 68(3):119–124, 1998.
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