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Abstract. A specific class of partially entangled states known as Knill-Laflamme-Milburn
states (or KLM states) has been proved to be useful in relation to quantum information
processing [1]. Although the usage of such states is widely investigated, considerably less
effort has been invested into experimentally accessible preparation schemes. This paper
discusses the possibility to employ a tunable controlled phase gate to generate an arbitrary
Knill-Laflamme-Milburn state. In the first part, the idea of using the controlled phase gate
is explained on the case of two-qubit KLM states. Optimization of the proposed scheme is
then discussed for the framework of linear optics. Subsequent generalization of the scheme to
arbitraryn-qubit KLM state is derived in the second part of this paper.
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1. Introduction

Important developments have been demonstrated in quantum information processing (QIP) in
the past few decades [2, 3, 4]. Several outcomes of this scientific field such as quantum
cryptography [5, 6, 7, 8] or random number generation [9, 10, 11, 12, 13] have already
found their industrial applications. In other cases a lot of effort has yet to be invested
into the research. Mainly the lack of some experimental tools (e.g. strong optical non-
linearity [14]) prevents from developing efficient quantum devices. An important discovery
has been achieved by Knill, Laflamme and Milburn [1], when they have derived that a specific
class of partially entangled states (so called Knill-Laflamme-Milburn states, or simply KLM
states) can be used to significantly improve the efficiency of quantum computing. They
have proposed a nearly deterministic teleportation based protocol for quantum computation
using the KLM states as ancillas. In this protocol the overall success probability of quantum
computation goes asymptotically to unity with growing number of photons in the ancillary
KLM state. Their work has been followed by several other related proposals and experiments
[15, 16, 17]. Fransonet al.[15] have generalized the original KLM scheme so that the success
probability of quantum computing scales better with growing number of photons, but at the
expense of lower fidelity of the output states. Several schemes for preparation of KLM states
have also already been proposed. The general preparation idea has been mentioned in the
original KLM paper [1] though there was no specific recipe. The first explicit scheme for
preparation of the KLM states was proposed by Fransonet al.and it uses non-deterministic
controlled sign gates and single photon interference to generate arbitrary photon-number
KLM states [18]. Another scheme limited only to 2-photon KLM states, but not requiring any
post-selection, was also proposed [19] and subsequently experimentally implemented [20].

This paper investigates yet another approach for experimentally accessible preparation of
KLM states using the controlled phase gate (c-phase gate). The advantage in using this gate is
the fact that the c-phase gate is considered an important part of the QIP toolbox [21, 22]. The
Fransonet al. scheme also employs the controlled phase gates (or in their case controlled
sign gates) but with constant phase shift set toπ. In this paper a fully tunable controlled
phase gate is considered and a scheme for it’s usage as a resource for KLM state generation is
developed. By this strategy the overall success probability of the KLM state preparation can
be increased considerably for some KLM states as it is shown in this paper. The presented
scheme is fully general and allows to prepare KLM states of arbitrary number of qubits. Also
no previous entanglement between the input qubits is required as the entangling capability of
the gate itself is sufficient. The fully tunable controlled phase gate capable of imposing any
phase shift in the range from 0 toπ has already been both proposed theoretically [23] and
implemented experimentally [24] on the platform of linear optics and thus can be considered
experimentally accessible.

2. Basic 2-qubit scheme

Using the qubit representation, one can express then-qubit KLM state in the form of

|ψ〉KLM =
n∑

j=0

αj |1〉j |0〉n−j . (1)

The original definition by Knill, Laflamme and Milburn setsαj = 1√
n+1

for j = 0, ..., n, but
the subsequent research carried out by Fransonet al. [15] indicates, that additional benefits
can be found in using general amplitudesαj . Their research revealed that one can increase
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Figure 1. Scheme of the proposed procedure for generation of two-qubit KLM states. The
signal and control input qubit undergo a c-phase gate with tunable phase shiftϕ yielding the
two-qubit KLM state.

the efficiency of teleporation based quantum computing for instance by choosing triangular
shaped amplitudesαj (that isα0 = αn = 0 and alpha linearly growing towards maximum at
αn/2 and then decreasing). This improvement is obtained at the expense of lower fidelity of
the output state. (For more details please consult [15]).

In the first part of this paper let us consider the preparation of two-qubit KLM states (see
figure 1). The generalization to an arbitrary number of qubits would be presented later. Using
the general definition for the KLM states (1) one can find that the two-qubit KLM states are
in the form of

|ψ〉2-QUBIT KLM = α0|00〉 + α1|10〉 + α2|11〉, (2)

whereαj (for j = 0, 1, 2) are arbitrary complex amplitudes following the normalization
condition

∑2
j=0 |αj |2 = 1. Having the target state well defined let us now inspect the

properties of the c-phase gate.
The c-phase gate is a two-qubit quantum gate whose action in the gate’s computational

basis reads

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |10〉
|11〉 → eiϕ|11〉 (3)

with numbers in brackets denoting first and second qubit state. General c-phase gate can be
set to impose an arbitrary phase shiftϕ to the two-qubit state|11〉.

Any signal and control qubit can be expressed in terms of the gate’s computational basis

|ψc,s〉 = cos θc,s|0c,s〉 + eiφc,s sin θc,s|1c,s〉, (4)

where indexesc ands denote the control and signal qubit. Please note that this state can
always be prepared with high fidelity using only single qubit transformations (e.g. wave-plates
in the case of photon polarization encoding). The separable input state|ψcψs〉 is transformed
by the gate yielding

|ψ〉OUT = cos θc cos θs|00〉 + eiφs cos θc sin θs|01〉 +
+ eiφc sin θc cos θs|10〉 +
+ ei(φc+φs+ϕ) sin θc sin θs|11〉. (5)

Using the expression for signal qubit (4), the output state can be rewritten to the following
form

|ψ〉OUT = cos θc|0ψs〉 + eiφc sin θc

(
τ |1ψs〉 + ε|1ψ⊥

s 〉
)
, (6)
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where|ψ⊥
s 〉 is the orthogonal state to|ψs〉 so that〈ψ⊥

s |ψs〉 = 0 and the parametersτ andε
are defined as

τ = 〈ψs|
(
cos θs|0〉 + ei(φs+ϕ) sin θs|1〉

)
=

= cos2 θs + eiϕ sin2 θs,

ε = 〈ψ⊥
s |

(
cos θs|0〉 + ei(φs+ϕ) sin θs|1〉

)
=

= eiφs sin θs cos θs

(
1 − eiϕ

)
. (7)

After performing the single qubit transformation

|ψs〉 → |0〉, |ψ⊥
s 〉 → |1〉 (8)

in the signal mode, one can clearly recognize the two-qubit KLM state in the output state of
the gate

|ψ〉OUT = cos θc|00〉 + eiφcτ sin θc|10〉 + eiφcε sin θc|11〉, (9)

The remaining task is to map the complex amplitudes in (9) to the original amplitudesαj and
to show that any two-qubit KLM state is achievable.

First let us consider the relative amplitude ratio and phase betweenα0 and(α1 + α2).
Any amplitude ratio can easily be set just by the choice of theθc parameter of the input control
state

|α1|2 + |α2|2

|α0|2
= tan2 θc. (10)

As for the phase, the freedom in setting any value ofφc assures that any phase shift between
α0 on one side andα1 andα2 on other side is achievable.

The relation betweenα1 andα2 is also simple. For instance setting the phase shiftϕ = π
simplifies the amplitude ratio to

|α2|
|α1|

=
|ε|
|τ | = tan2θs (11)

and an arbitrary phase shift betweenα1 andα2 can be set by the choice ofφs. Please note that
settingϕ = π allows to cover the whole class of KLM states. This fact will be used for the
discussion in section 5. The equations (10 and 11) manifest that any amplitude ratio between
α0, α1 andα2 is achievable sincetan goes from 0 to∞.

3. Success probability optimization

One may conclude that the tunability of the gate in the phase shiftϕ is a redundant feature.
However this parameter can be used for optimization of the procedure. One of the most
promising platforms for QIP is linear optics [25, 26, 27, 28, 29]. For this reason let us now
focus on the optimization of the proposed procedure for linear optics. Recently Kielinget al.
[23] have identified the maximum success probability of a c-phase in the framework of linear
optics as

PC(ϕ) =
(

1 + 2
∣∣∣sin ϕ

2

∣∣∣ + 23/2 sin
π − ϕ

4

∣∣∣sin ϕ
2

∣∣∣
1/2

)−2

, (12)

which does not depend on the input state. The optimization of the proposed scheme seeks to
maximize the success probability of the c-phase gate used for KLM state preparation. With
respect to that a numerical simulation (or optimization) has been carried out to reveal the
maximum achievable success probability for several KLM states. The target KLM state
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Figure 2. Maximum achievable|α0/α1 | ratio for a given phase shift of the c-phase gate. The
success probability of the optimal linear optical c-phase gate as a function of its phase shift is
also depicted for reference.

of presented numerical simulation is the mono-parametric class of two-qubit KLM state
motivated by Franson’set al. definition [15] (triangular-shaped amplitude function)

|ψ〉KLM = α0|00〉 + α1|10〉 + α0|11〉. (13)

The amplitudesα0 andα1 are now considered to be real numbers as it has been shown
above that the phase can always be set by the choice ofφc and φs. These phases are
independent of the gate phase shiftϕ and therefore have no effect on the success probability.
The presented optimization will focus on the amplitude ratio|α0/α1| and investigate
the corresponding success probability. First numerical simulation has been performed to
determine the maximum achievable|α0/α1| ratio for a given phase shift. Results of this
simulation are presented in figure 2. One can observe that maximum achievable|α0/α1| ratio
grows monotonously with the phase shiftϕ. For reference the success probability (12) as
a function of the phase shiftϕ is also depicted along with the reference ratio|α0/α1| = 1
corresponding to the original KLM state definition.

The second numerical simulation has been carried out to determine the maximum
achievable success probability for a given|α0/α1| ratio (see figure 3). Also the setting
of the phase shiftϕ and the parameter of the signal qubitθs are depicted to illustrate the
optimal strategy. This strategy is different in two regions separated by the amplitude ratio
|α0/α1| ≈ 0.54. In the first region (|α0/α1| ≤ 0.54) settingθs = π

4 and the phase shiftϕ
accordingly is the optimal way. One tries to minimize the phase shift used for the KLM state
preparation, because the success probability is a decreasing function of the phase shift. To
keep the phase shift minimal, one has to setθs = π

4 , because for a given phase shiftϕ the
settingθs = π

4 maximizes the|α0/α1| ratio.
On the other hand, in the second region (|α0/α1| > 0.54) the previously mentioned

strategy will not yield optimal results. This is because of the success probability not being
monotonous in this region. Settingϕ = π and adjusting theθs instead is the optimal way
here.
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Figure 3. Maximum achievable success probability and corresponding optimalθs and ϕ
parameters are plotted as a function of|α0/α1| ratio. Please note that the optimal setting
of ϕ for |α0/α1| > 0.54 is ϕ = π (this explains the step ofϕ at |α0/α1| = 0.54).

Both this and the original Fransonet al. scheme requiresn− 1 times using the c-phase
gate in order to generaten-qubit KLM state. This leads to the overall success probability for
n-qubit KLM state

PKLM =
n−1∏

i=1

PC(ϕi), (14)

wheren denotes the number of qubits andPC(ϕi) is the success probability of the controlled
phase gate set for the phase shiftϕi used in theith repetition of the c-phase gate. The
Fransonet al. proposal considers onlyϕi = π for all values ofi. So for example in the
2-qubit case, the success probability of Franson scheme would yield a constant value of0.11
(based on the optimal linear optical controlled phase gate). To emphasize the improvement
achieved by the tunability of the phase gate, let us consider an example of|α0/α1| = 0.25.
For this particular choice the success probability of the scheme proposed in this paper would
be0.18, which is a 60% improvement. This improvement in success probability varies with
the particular choice of the target KLM state (see figure 3).

4. Generalization ton-qubit KLM states

The proposed two-qubit scheme can be generalized to prepare KLM states of an arbitrary
number of qubits. For simplicity let us now presume all complex amplitudes of then-
qubit KLM state being equal (original KLM state definition). To illustrate the generalization
procedure the step from two-qubit to three-qubit KLM state is explained and also illustrated
in figure 4). Going from two to three qubit KLM state means to perform the following
transformation

|0102〉 → |010203〉 (15)

|1102〉 → |110203〉 (16)

|1112〉 → |111203〉 + |111213〉, (17)
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Figure 4. Generalization of the two-qubit scheme to an arbitrary number of qubits. Inputn-
qubit KLM state is combined with a new qubit initially in|0〉 state.H denotes the Hadamard
gate andC denotes the c-phase gate (this time set to impose the phase shiftϕ = π

2
).

where indexes 1 and 2 denote the first and second original qubits of the two-qubit KLM state
and the index 3 denotes the newly added qubit. This transformation can be implemented by
addition of a new qubit initially in the state|0〉. This new qubit is firstly subjected to the
Hadamard gate

|0〉 → |0〉 + |1〉. (18)

After that it is propagated through the c-phase gate set to phaseϕ = π
2 along with the last

of the original KLM qubits. At the end an inverse Hadamard gate is placed in the new qubit
mode. One can see that in the case of the last original qubit being|0〉, the phase shift imposed
to the new qubit is zero and the new qubit leaves the scheme in the state|0〉. On the other
hand if the last original qubit is in the state|1〉 the new qubit gets aπ2 phase shift and yields
|0〉 + |1〉 after leaving the inverse Hadamard gate.

The generalization to an arbitrary number of qubits is straightforward. To generate an
(n+ 1)-qubit KLM state from ann-qubit KLM state (n ≤ 2) a new qubit is added at the end
of the original qubits and subjected to the procedure described in previous paragraph. The
general scheme is depicted in figure 4.

5. Optimization of the generalized scheme

The previous section is just a proof of the scalability of the scheme, but does not give optimal
setting with respect to the success probability. A similar optimization as for the two-qubit
KLM states can be considered to maximize the yield of the scheme. Hadamard gates can
be replaced by more general single qubit transformations and together with the tunability of
the phase shift imposed by every controlled phase gate the overall success probability can be
optimized with respect to the selected target KLM state.

One can use the iterative procedure starting fromn-qubit KLM state with amplitudes
α

[n]
j , j = 0...n and going to(n+ 1)-qubit KLM state with amplitudesα[n+1]

j , j = 0...n+ 1.
Here the upper index denotes then-qubit starting KLM state and(n + 1)-qubit target KLM
state. Note that in this case the c-phase gate is applied to the last of the original qubits (nth

qubit) and a newly added (n+1)th qubit. This new qubit can be expressed in the form of|ψs〉
as defined by (4) and the last original qubit takes effectively the form similar to|ψc〉 with

cos θc =

√√√√
n−1∑

j=0

|α[n]
j |2 (corresponding to the|0〉 state)

sin θc = |α[n]
n | (corresponding to the|1〉 state)
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φc = arg
(
α[n]

n

)
(19)

also following the original definition (4). With this mapping one can proceed in the similar
way as explicitly described in the second section. The resulting amplitudesα

[n+1]
j are then

in the form

α
[n+1]
j = α

[n]
j , for j = 0...n− 1

α[n+1]
n = |α[n]

n |eiφcτ

α
[n+1]
n+1 = |α[n]

n |eiφcε, (20)

where φc is defined by (19) andτ and ε by (7). The equations become increasingly
complicated with the growing number of qubits. For this reason one can seek the solution
numerically.

As a result of such a numerical optimization, one can for example prepare a 4-qubit KLM
state of the triangular-shaped amplitudes in the form of

|ψ〉KLM =
1
N

4∑

j=0

αj |1〉j |0〉n−j (21)

α0 = α4 = 1, α1 = α3 = 3, α2 = 6 (22)

(N =
√∑n

j=0 |αj |2) with the success probability of 0.19% while the original proposal would

give only 0.14% success probability (40% improvement). Note that this improved success
probability would allow almost 1.5 times higher rate of preparation of KLM states for the
”nearly deterministic” protocol proposed by Knill, Laflamme and Milburn [1]. The reason
for the improvement in the success probability is the fact that using a tunable phase shift,
one can operate the controlled phase gate at optimal phase shift. Because one can always set
the gate to operate at the phaseπ and set single qubit operations accordingly, the proposed
scheme would never give lower success probability as the one proposed by Fransonet al. The
optimal strategy for setting the phase shift imposed by the gate in every step of the generalized
procedure is similar to the strategy discussed in the Sec. III for the 2-qubit case. This can be
summarized by an inequality

PKLMFranson =
n−1∏

i=1

PC(π) = PC(π)n−1 ≤ PKLMnew =
n−1∏

i=1

PC(ϕi), (23)

where the left-hand side corresponds to the success probability of the Fransonet al. proposal
and the right-hand side corresponds to the success probability of the scheme described in this
paper. In the worst case scenario hereby proposed scheme allows to setϕ = π to generate
any KLM state and in this case the inequality would be saturated.

6. Conclusions

The scheme presented in this paper shows how a tunable controlled phase gate can be used to
generate arbitraryn-qubit KLM states. In comparison with the Fransonet al. proposal, this
scheme gives higher success probability depending of the requested KLM state. It can offer
a significant improvement in generation of ancillary states for efficient quantum computing.
Please note that this paper discusses the improved generation success probability (rate) for
the KLM ancillary states. It should not be confused with the success probability of the
teleportation based KLM scheme that employs these ancillary states and considers them as
already prepared. Several specific KLM states are discussed in this paper and their preparation
success probabilities shown to demonstrate this improvement.
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