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ABSTRACT

Multidrug-resistant Acinetobacter baumannii (MDR-AB) infections are difficult to treat 

owing to the extremely limited armamentarium. The present review reports all 

available treatment options against MDR-AB, including single molecules, 

combination schemes, and alternative modes of antimicrobial administration. 

Additionally, a group of recently reported peptides with anti-MDR-AB activity is 

described.
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1. Introduction

Over the last 10 years, Acinetobacter baumannii has emerged as one of the most 

problematic pathogens as treatment has been limited to only a few antibiotics. A wide 

spectrum of antimicrobial resistance mechanisms is exhibited by A. baumannii. Apart 

from its intrinsic resistance mainly due to the low permeability of the outer membrane 

to certain antibiotics as well as constitutive expression of certain efflux pumps, A. 

baumannii is able to easily acquire and incorporate genetic elements such as 

plasmids, transposons and integrons [1,2]. Multidrug-resistant (MDR) isolates (i.e. 

those with non-susceptibility to three or more classes of drugs) are being increasingly 

reported worldwide [3–8]. Infections due to such resistant microbes are associated 

with increased morbidity and mortality [4,6,9–11]. Carbapenems, which used to be 

the antimicrobials of choice, have been increasingly compromised and no longer 

constitute salvage therapy for A. baumannii infections [1,12–14]. The present review 

aimed to report all available therapeutic options against the MDR A. baumannii

(MDR-AB) isolates and to present all of the latest developments in the field.

2. Polymyxins

Polymyxins are polycationic lipopolypeptide antimicrobials that have been available 

on the market for more than 50 years. They act both on the outer and cytoplasmic 

membranes leading to loss of membrane integrity. Among them, polymyxin B and

polymyxin E [colistin (COL)] are suitable for clinical use. For a long period polymyxins 

were used infrequently owing to concerns of renal toxicity. However, over the last 5

years the emergence of MDR Gram-negative bacteria and the lack of new 
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antimicrobials have led to a revival of polymyxins, especially COL. There are two 

forms of COL: colistin methanesulfonate (CMS) for intravenous (i.v.) or intramuscular

administration; and colistin sulphate for topical skin use (powder) or per os 

administration. Both COL forms can be inhaled.

Clinical use of polymyxins against A. baumannii isolates proved to be extremely 

successful. An 87% cure rate was reported in a retrospective cohort analysis of 

patients receiving i.v. COL for microbiologically documented infections, whereas in a 

large retrospective study a 75% cure rate of ventilator-associated pneumonia (VAP) 

caused by pandrug-resistant (PDR) A. baumannii and Pseudomonas aeruginosa

isolates susceptible only to COL was reported [15,16]. Similar results have also been 

reported by other authors [17–19].

Polymyxins have been tested extensively in combination with other agents against 

MDR-AB. In vitro they have been combined with carbapenems, cefepime, amikacin, 

azithromycin, minocycline and other antimicrobials, with promising results [20–24].

Clinically, the combination of COL with meropenem (MEM) appears to be superior to

the other agents. Falagas et al. [15] reported that patients who were treated with a

COL+MEM combination had a better outcome of infection than patients who received 

COL in combination with other antimicrobials. The authors further noted that although 

no statistically significant difference in clinical outcome was found between COL 

monotherapy and COL+MEM combination therapy, use of the combination is 

preferable since heteroresistance may arise when COL is used alone [15]. Another 

clinically important combination of COL is that with rifampicin (RIF), which will be 

described in detail later.
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Following is a detailed examination of three issues regarding the treatment of MDR-

AB with COL.

2.1. In vitro susceptibility testing

With regard to vitro susceptibility testing of COL, there are three points to be 

considered. The predictive accuracy of the disk diffusion test is limited owing to the 

poor agar diffusion characteristics of COL [25]. Hence, the disk diffusion test is 

reported to be unreliable for detecting COL resistance compared with the gold

standard method of agar dilution [25–28]. Another point of concern is that the 

minimum inhibitory concentrations (MICs) of COL determined by the VITEK® 2 

system (bioMérieux, Marcy l’Etoile, France), a widely used automated susceptibility 

testing system, have been reported to be unreliable [29]. However, this matter is 

controversial since contrary results have been obtained by other researchers [27]. 

Finally, it should be noted that the currently available breakpoints for COL are based 

on colistin sulfate and not CMS that is used intravenously [27].

2.2. Resistance: heteroresistance

The mechanisms of resistance to COL have yet to be adequately clarified. However, 

resistance has been associated with alterations in the outer layer of the bacterial cell, 

such as a reduction in lipopolysaccharides, reduced levels of specific outer 

membrane proteins, reduction of lipid content and reduction in cell envelope Mg+2

and Ca+2 contents [5,30,31]. Furthermore, efflux of potassium has been correlated 

with resistance to polymyxin B in Yersinia spp. [32].
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Resistance to polymyxins is still considered to be rare. However, a number of 

sporadic cases of infections caused by COL-resistant isolates have been reported 

[33–36]. Moreover, Gales et al. [37] reported 2.7% and 1.7% polymyxin B-resistant A. 

baumannii isolates collected in Europe and in North and Latin America, respectively. 

Souli et al. [38] reported a 3% COL resistance rate among 100 A. baumannii strains 

derived from Intensive Care Unit patients in Greece. Notably, Ko et al. [7] reported 

extremely high resistance rates (27.9%) among 214 isolates of A. baumannii from 

two South Korean hospitals.

For the first time in 2006, Li et al. [39] reported the phenomenon of heteroresistance 

to COL in MDR-AB clinical isolates. Using population analysis profiles (PAPs) of 16 

clinical isolates with MICs of COL in the range 0.25–2 g/mL, the authors detected 

the presence of subpopulations (<0.1% of inocula) that were able to grow in the 

presence of COL at 3–10 g/mL. The resistant subpopulations were not detected by 

either the disk diffusion susceptibility test or by commercial automated systems. 

Owing to resistant subpopulations, significant re-growth was observed at 24 h 

following the rapid initial killing (<2 h) in time–kill studies. Notably, heteroresistance 

occurred in almost all the isolates (15/16) [39]. Hawley et al. [40] found a similar high 

percentage of heteroresistance (100%), whereas in a more recent study by Yau et al. 

[41] the percentage was determined to be 23%. Li et al. [39] found that in the majority 

of clinical isolates a subpopulation of 0.00001–0.000001% grew in the presence of 

10 g/mL COL. This growth indicates that the COL plasma concentrations of 0.5–3.5 

g/mL usually achieved with the recommended dosage regimens of CMS may be 
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unable to eradicate the more resistant subpopulations [28,42–44]. Hawley et al. [40] 

found that the degree of heteroresistance among isolates from patients with previous 

COL treatment was statistically significantly higher than that of isolates not previously 

exposed to COL. Furthermore, Li et al. [39] reported that following exposure to COL 

a substantial increase in the proportion of resistant subpopulations was noted. These 

findings suggest that in order to avoid suboptimal concentrations of COL, further 

pharmacodynamic investigations on dosage optimisation of CMS are required and 

that CMS monotherapy should be avoided. In addition, it has been proposed that 

mini-PAPs with COL at >2 mg/L should be employed for susceptibility reporting in 

clinical microbiological laboratories [41].

2.3. Side effects

The most common potential toxicities of i.v. CMS administration are nephrotoxicity 

and neurotoxicity, with the latter being relatively rare [45]. A high incidence of 

nephrotoxicity was reported in early studies [46,47]. However, a series of recent 

investigations revealed that COL is not as nephrotoxic as initially believed [48–51]. 

Falagas et al. [49] analysed data for 19 courses of prolonged i.v. COL administration 

(mean ± standard deviation duration of administration 43.4 ± 14.6 days). The median 

creatinine value increased by 0.25 mg/dL during treatment compared with the 

baseline, but returned close to the baseline at the end of treatment [49]. Stein and 

Raoult [52] reported that a dose of 1 million units of CMS every 8 h was effective and 

safe, even when administered over a period of 3–6 months for infections associated 

with orthopaedic devices. In another study, i.v. administration of CMS (5.0 mg/kg/24

h in three doses) was generally well tolerated by critically ill patients with normal 
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renal function in whom it was used as salvage therapy [51]. Nevertheless, prolonged 

administration of CMS increases the risk of nephrotoxicity [53]. This risk does not 

appear to be related to the daily dose of CMS but rather the total cumulative dose 

[45,53]. Subsequently, careful monitoring of kidney function in patients requiring 

prolonged therapy with CMS is crucial along with efforts to avoid prolonged treatment 

courses, whenever possible.

3. Tigecycline (TIG)

TIG is a semisynthetic glycylcycline. It represents a modified minocycline and has 

activity against a broad spectrum of Gram-positive (including meticillin-resistant 

staphylococci and vancomycin-resistant enterococci), Gram-negative (including 

extended-spectrum -lactamase- and Amp C-producing Enterobacteriaceae) and 

anaerobic organisms (including Bacteroides spp. and Clostridium perfringens). TIG 

inhibits bacterial protein synthesis by binding to the 30S ribosomal subunit [54]. A 

100 mg loading dose is recommended, followed by 50 mg i.v. every 12 h. Biliary or 

faecal excretion accounts for 59% of the administered dose [55,56].

A serious issue regarding TIG is that the disk diffusion technique, when employed 

either for susceptibility testing or for MIC determination by Etest, may lead to serious 

discrepancies in the results compared with results by the microdilution method

[4,57,58]. The quality of the Mueller–Hinton media plays an important role. TIG 

activity is affected by the cation concentration of the Mueller–Hinton agar and,

moreover, TIG suffers degradation by an oxidation process, leading to loss of 
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potency [4]. Thus, for correct evaluation of susceptibility to TIG, the Mueller–Hinton 

agar must be properly and freshly prepared or anaerobically stored [59,60].

Despite its favourable activity against Gram-positive microorganisms, TIG is mainly 

reserved for use against MDR Gram-negative bacteria owing to the lack of 

therapeutic alternatives against these bacteria. Its use against A. baumannii is off-

label. Moreover, no defined susceptibility breakpoints have been established thus far 

for A. baumannii. Even in their latest editions (2010), neither the Clinical and 

Laboratory Standards Institute (CLSI) [61] nor the British Society for Antimicrobial 

Chemotherapy (BSAC) [62] propose any specific breakpoints for TIG regarding A. 

baumannii owing to insufficient clinical evidence. However, the limited 

armamentarium against A. baumannii and the relatively low MICs obtained in various 

studies rendered the use of TIG against A. baumannii appealing. In 2007 in a major 

global study, Reinert et al. [63] reported MIC90 values (MICs for 90% of the isolates) 

of 1 mg/L for Europe, North America, Latin America and the Asia/Pacific Rim. 

Recently, using a global collection of 6292 isolates, Garrison et al. [64] reported an 

MIC50 (MIC for 50% of the isolates) at 0.5 mg/L and an MIC90 at 1 mg/L, with an MIC

range of ≤0.008–16 mg/L. Furthermore, when testing only the MDR-AB subset (n =

582), the authors reported an MIC50 at 1 mg/L and an MIC90 at 2 mg/L, with an MIC

range of ≤0.008–8 mg/L [64]. Similar in vitro results were also reported by Draghi et 

al. (MIC90 at 2 mg/L) [65], Souli et al. (MIC90 of MDR-AB at 1 mg/L) [38] and Hoban et 

al. (MIC90 of MDR-AB at 2 mg/L) [66].

Whilst TIG retains good in vitro activity against MDR-AB, its clinical efficacy remains 

a matter of controversy. The efficacy of TIG in 17 patients with selected serious 
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infections caused by resistant bacteria was evaluated in a phase III, open-label, non-

comparative, multicentre study [67]. The clinical cure rate with TIG therapy observed 

in microbiologically evaluable patients was 82.4% and the microbiological eradication 

rate was 64.7% [67]. Gordon and Wareham [68] reported an overall 68% positive 

clinical outcome in 34 patients with infections involving MDR-AB. Karageorgopoulos 

et al. [69] reviewed the effectiveness of TIG for MDR-AB infections in eight identified 

clinical studies, reporting retrospective data regarding 42 severely ill patients, 31 of 

whom had respiratory tract infection (in 4 cases with secondary bacteraemia) and 4 

had bacteraemia. TIG therapy (in combination with other antibiotics in 28 patients) 

was effective in 32/42 cases. Poulakou et al. [70] retrospectively analysed adult 

patients who had received TIG for >5 days either as monotherapy (M group) or as 

presumed active monotherapy (PAM group). In the PAM group, all co-administered 

antimicrobial(s) were resistant in vitro against the targeted pathogen(s) or failed 

clinically and microbiologically after ≥ 5 days of therapy despite in vitro susceptibility

[70]. Among the 15 cases of MDR-AB isolation from patients in the M group, the 

clinical response was characterised as improvement or cure in 11 cases. Among the 

13 cases of MDR-AB isolation from patients in the PAM group, the clinical response 

was characterised as improvement/cure in 10 cases, leading to an overall 75% 

(21/28) successful clinical response rate regarding the 28 A. baumannii isolates. In 

contrast to the aforementioned studies, Gallagher and Rouse [71] reported poor 

favourable clinical outcome (improvement/cure) with TIG therapy in MDR-AB 

infections (29%; 8/28 patients). Similarly, a low rate of favourable clinical outcome 

was reported by Anthony et al. [72]. The authors reported that four of five patients 

with serious infections by MDR-AB characterised as intermediately resistant to TIG 

(MIC >2 g/mL or <8 g/mL) succumbed (deaths were related to infection), whereas 
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0 of 4 patients with pre-therapy isolates susceptible to TIG (MIC ≤ 2 g/mL) 

succumbed (P = 0.048) [72]. More information on the clinical efficacy of TIG therapy 

from well designed, prospective studies using a large number of patients is crucial.

In the latter aforementioned study by Anthony et al. [72] it was also reported that one 

patient with an A. baumannii tracheal aspirate isolate that was initially susceptible 

developed resistance during therapy (MIC increased from 2.00 g/mL to 12.00 g/mL

after 14 days). The difficulty arising with the emergence of resistance among MDR 

Gram-negative organisms during therapy with TIG has previously been described. 

Schafer et al. [73] reported that one patient with VAP plus bacteraemia due to MDR-

AB developed resistance to TIG during therapy. A similar case was reported by Reid 

et al. [74] who concluded that clinicians should be aware that TIG MICs for A. 

baumannii isolates may increase during therapy with TIG following only brief 

exposure to the drug. Patients receiving TIG for Acinetobacter should be monitored 

for the development of clinical resistance and isolates should be continuously 

monitored [74].

Superinfections with pathogens inherently resistant to TIG (P. aeruginosa, Proteus

spp., Providencia spp., etc.) are a matter of great concern. A superinfection is 

defined as a new isolate that emerges during therapy at the original site of infection,

with the emergence or worsening of clinical signs and symptoms of infection [67].

Poulakou et al. [70] reported that among 45 patients treated with TIG for MDR or 

PDR infections, 10 episodes of superinfections by inherently resistant pathogens (9

bacteraemias and 1 urinary tract infection) occurred. The possibility of 
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superinfections should be seriously considered, and TIG monotherapy should be 

avoided when the risk for pseudomonal infection is significant.

Owing to the low mean peak serum concentrations of TIG achievable at 

recommended doses, therapeutic failure of A. baumannii bacteraemia is plausible, 

even for strains with low MIC values [72,75]. Consequently, TIG treatment should 

generally be avoided in cases of bacteraemia due to A. baumannii, especially for 

strains with MICs ≥ 1 g/mL. In addition, clinicians should avoid the use of TIG for 

infections in poorly penetrated anatomical sites such as the urinary tract because 

therapeutic failure is feasible and because such treatments may promote the 

development of further resistance [72].

TIG has been investigated in combination with other antibacterials against A. 

baumannii isolates. Enhanced activity or bactericidal synergism occurred with TIG 

plus carbapenems, levofloxacin, amikacin and RIF in various in vitro studies [76–78]. 

Results of the combination of TIG with COL are controversial [79–81].

Apart from the in vitro studies, there are reports of single cases of MDR-AB infections 

successfully treated with combinations of TIG with other agents such as MEM, COL, 

piperacillin/tazobactam and trimethoprim/sulfamethoxazole [77,82,83]. In a 

retrospective case series, Schafer et al. [73] reported clinical cure in 9/9 patients 

(100%) treated with TIG + imipenem (IPM), in 4/7 patients (57%) treated with 

TIG+COL and in 3/4 patients (75%) treated with a combination of the three drugs.

However, the potential clinical role of TIG in combination with other agents against A. 

baumannii infections should be further investigated.
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4. Sulbactam

Sulbactam is an Ambler class A -lactamase inhibitor with a structure similar to -

lactams that carries intrinsic activity against A. baumannii by binding to its penicillin-

binding protein 2 [4]. A series of studies have reported encouraging results on the 

efficacy of sulbactam against A. baumannii infections and it is generally accepted 

that in the cases of sulbactam-susceptible A. baumannii infections, sulbactam should 

be considered as the preferred therapeutic solution [11,84–92]. Even in the case of 

carbapenem-resistant A. baumannii infections, sulbactam appears to be more 

efficacious than polymyxins [93]. Moreover, it has been shown that the 

pharmaceutical cost is significantly reduced when sulbactam is selected instead of 

other antibiotics such as IPM [86]. Although more data on optimal dosing and mode 

of administration are required, it has been proposed that 8 g of the sulbactam 

compound in divided doses, assuming normal renal function, should be administered 

per day [1,4,87,90].

A disadvantage is that in a number of countries sulbactam is commercially available 

only in combination with ampicillin at a fixed 2:1 ratio. Another difficulty involves the 

increasing number of sulbactam-resistant A. baumannii isolates. In a Spanish 

multicentre study, only 46.7% of A. baumannii isolates were susceptible to this agent

[94], whereas in a major recent study from Taiwan ca. 70% of the clinical isolates 

were resistant to ampicillin/sulbactam (SAM) [95].
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Enhanced effectiveness has been found when sulbactam is combined with a series 

of other molecules such as cefepime, IPM, MEM, amikacin and RIF [87,96–101]. 

However, these are in vitro studies or studies on animal models without clinical 

evaluation in humans. More data are therefore imperative to confirm this observation.

5. Rifampicin

RIF is generally considered as an antimicrobial best suited for Gram-positive 

bacteria. However, in vitro studies and experimental models of infection showed that 

RIF alone could demonstrate a bactericidal effect on MDR-AB [102–104]. In these 

experimental models, the MICs of RIF for the A. baumannii strains used ranged from 

4 mg/L to 8 mg/L, and RIF monotherapy proved to be as efficacious as that of IPM

and more efficacious than that of COL monotherapy with regard to bacterial 

clearance from the lungs [103,104]. However, it is well documented that when used 

alone RIF shows rapid development of resistance, thus its combination with other 

antimicrobials is necessary [105,106]. Although an additive effect or synergism have 

been observed for combinations of RIF with various agents such as carbapenems, 

TIG or SAM [81,105], the most promising combination is that of RIF with COL.

Early in vitro studies by Giamarellos-Bourboulis et al. [102] revealed the existence of 

synergy between RIF and COL against MDR-AB. Furthermore, Rodriguez et al. [107] 

demonstrated that the combination of RIF+COL inhibits resistant subpopulations in 

heteroresistant isolates irrespective of the RIF MIC values. Apart from the in vitro 

studies, synergy between COL and RIF has also been shown in experimental 

models. Using a thigh experimental model of infection by MDR-AB, Pantopoulou et 
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al. [108] demonstrated that the activity of COL was increased significantly by the 

presence of RIF and that the combination was effective in prolonging the survival of 

infected rats. Based on these results, Bassetti et al. [109] conducted a clinical trial 

including 29 critically ill patients with MDR-AB infections who were treated with a 

combination of i.v. COL and RIF. Clinical and microbiological favourable responses 

were observed in 22/29 cases (76%) and the overall infection-related mortality was 

21% (6/29 cases). No case developed resistance to either RIF or COL. Of the 29 

patients, 3 (10%) developed nephrotoxicity (all of them had previous renal failure), 

whereas no cases of renal failure were observed among patients with normal 

baseline renal function [109]. Similar results have been reported in other clinical 

trials, indicating that the combination of COL+RIF may be considered as a serious 

therapeutic option [110–112]. However, this conclusion should be confirmed by 

additional clinical trials with much larger numbers of patients. An issue that should 

also be clarified is the role of the initial MIC to RIF in the final outcome of combination 

therapy. This is a critical point, since there are data supporting the fact that in cases 

with an initial high level of resistance to RIF (MICs ≥ 64 mg/L) a poor microbiological 

eradication rate is to be expected [112].

6. Minocycline and fosfomycin

Minocycline is a tetracycline derivative introduced in the 1960s. However, its use was 

limited due to the introduction of more potent agents. Minocycline inhibits bacterial 

protein synthesis and acts both against Gram-positive and Gram-negative bacteria. 

Recently, owing to the shortage of therapeutic solutions, its use against minocycline-

susceptible MDR-AB isolates has gained new interest. The literature is promising 
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although limited [113]. In one study, 7/8 patients treated with oral minocycline for 

traumatic wound infections by MDR-AB yielded positive outcomes [114], whereas in 

another report i.v. treatment with minocycline was successful in 3/4 patients with 

MDR-AB VAP [115]. Since minocycline achieves ideal blood and tissue levels and 

has notable central nervous system penetration, it appears to play a significant role in 

confronting MDR-AB infections [113]. More in vitro and clinical data regarding 

minocycline are required to verify this role.

Fosfomycin is an old bactericidal molecule that inhibits synthesis of the bacterial cell 

wall peptidoglycan. It acts both against Gram-positive and Gram-negative bacteria 

and its toxicity is very low. Although it has been found to be a reliable solution for 

MDR Enterobacteriaceae [116], fosfomycin cannot be considered as an option for 

MDR-AB isolates since the majority of these isolates are not susceptible to this 

antimicrobial agent [117–120].

7. Continuous administration of intravenous antibiotics

To optimise the effect of available agents, alternative therapeutic approaches have 

been used. The most promising approach is extended or continuous administration of 

i.v. antibacterials. It appears that continuous i.v. infusion of antibacterials with time-

dependent bacterial killing is superior to normal intermittent i.v. administration [121].

Extended infusion of -lactams such as carbapenems or cefepime has the ability to 

achieve drug concentrations above the MIC for a greater time for less susceptible 

organisms, especially those with an MIC between 4 g/mL and 16 g/mL [122–124]. 

In a meta-analysis of 730 episodes of infection it was shown that when the total daily 
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antibiotic dose was the same, clinical failure was significantly lower in the continuous 

infusion group compared with the intermittent infusion group [125]. Furthermore, 

there are data suggesting that continuous antibiotic dosing offers more favourable 

activity against resistant pathogens and may actually reduce the incidence of 

antibiotic resistance [126]. However, more data regarding A. baumannii are 

necessary before firm conclusions can be drawn.

8. New agents: peptides

A series of new molecules, including natural products and newly synthesised 

chemical substances, are constantly being screened for their activity against A. 

baumannii, with varying results [127–132]. The most notable and promising group of 

new substances is that of the peptides reviewed below [133–136].

Peptides normally comprise between 10 and 48 amino acid residues with no 

conserved domains associated with biological activity [133]. With a few exceptions, 

peptides are cationic and contain 50% hydrophobic amino acids [133]. Peptides 

with antimicrobial activities have been isolated from a wide range of bacterial 

species, plants and animals [134]. They provide a host defence system to combat 

infections and play one of the most important roles against pathogenic 

microorganisms [134]. They bind the negatively charged parts of the bacterial 

membrane by electrostatic interactions and it is postulated that they exert their 

inhibitory effects by increasing bacterial membrane permeability, causing leakage of 

bacterial contents and consequently maximal entry of several other substrates [134].

However, a major obstacle to the development of peptide-based anti-infective drugs, 
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particularly if they are to be administered systemically, is their short half-lives in the 

circulation [137]. Efforts are constantly being made to overcome this problem, with 

varying results [138].

Peptides have presented activity against A. baumannii [136]. Here we present three 

peptides that have recently been reported to exert activity against MDR-AB.

8.1. Alyteserin-1c and its [E4K] analogue

Alyteserin-1c is a 23-amino acid peptide that was first isolated from noradrenaline-

stimulated skin secretions from the midwife toad Alytes obstetricians [133]. The 

haemolytic activity of the naturally occurring peptide was relatively low. Colnon et al. 

[138] reported that it presented bactericidal activity against MDR-AB in the MIC range

of 5–10 M. Following substitution of the Glu4 residue by l-Lys, the created analogue

[E4K] was found to have a four-fold increase in potency against all strains of MDR-

AB tested by the authors [138]. Moreover, the haemolytic activity of the [E4K]

analogue was appreciably lower than the naturally occurring peptide [lethal 

concentration for 50% of test population >400 M] and the analogue was extremely 

soluble in physiological buffers. In a time–kill assay, >99.9% of the bacteria were 

killed within 30 min by the [E4K] analogue at a concentration of 1 the minimum 

bactericidal concentration [138].
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8.2. Buforin II

Buforin II is a peptide isolated from the stomach of the Asian toad Bufo bufo 

gargarizans [139]. Cirioni et al. [134] investigated the in vitro interactions and the in 

vivo efficacy of buforin II and RIF in a rat model of A. baumannii sepsis using both an 

A. baumannii ATCC 19606 strain and a MDR-AB clinical isolate [134]. The two 

strains showed similar susceptibility to buforin II, with MICs of 8 mg/L, whereas 

synergy (fractional inhibitory concentration index of 0.312) was observed by testing 

buforin II combined with RIF. In the rat model of sepsis, following intraperitoneal

injection of MDR-AB, the lethality rate in the control group was found to be 100% 

within 48 h compared with 46.6% for the group treated with buforin II, whereas a rate 

of 20.0% was observed in the combined group. Buforin II was also significantly 

superior to the control at reducing blood, spleen, peritoneum, liver and mesenteric 

lymph node complex bacterial burdens (P < 0.05). Furthermore, buforin II alone or 

combined produced a reduction of 46%, 20% and 28% in tumour necrosis factor 

(TNF), interleukin-6 and endotoxin plasma levels, respectively (P < 0.05). Overall, the 

combination of buforin II+RIF exhibited the highest antimicrobial activities and the 

strongest reduction in plasma endotoxin and cytokine levels. Similar results were 

also obtained when the experiments were performed using A. baumannii ATCC 

19606 instead of the MDR-AB isolate. In conclusion, buforin II exerted strong 

antimicrobial activity, good survival rates and, finally, achieved a significant reduction 

in plasma endotoxin and cytokine concentrations. Moreover, synergism of the buforin

II+RIF combination was observed. It appears that buforin II increases the 

permeability of the membrane thereby facilitating penetration of the otherwise 

impermeable hydrophobic solutes such as RIF [134].
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8.3. Human -defensin 2 (hBD2)

The defensins are a group of -sheet-rich, cationic and amphipathic peptides that 

exert an antimicrobial effect, which appears to be achieved by creating pores or 

otherwise disrupting the cell membrane of target organisms, leading to the release of 

their cellular contents and ultimately destruction of the cells by osmolysis [140]. hBD2 

is primarily expressed in the epithelial lining of the human urinary and respiratory 

tracts [140]. Routsias et al. [141] examined the bactericidal activity of hBD2 against 

epidemiologically unrelated hospital pathogens, of which 21 were A. baumannii

isolates (14/21 isolates were MDR-AB). Preliminary data showed that incubation with 

10 g/mL hBD2 for 2 h killed the entire A. baumannii population [141]. Notably, the 

14 Acinetobacter isolates that exhibited a MDR phenotype were all (100%) sensitive 

to low concentrations of hBD2 with a virtually 99% lethal dose (vLD99) of <10 g/mL, 

whilst the 7 non-MDR Acinetobacter isolates demonstrated an average vLD99 of >10 

g/mL. Furthermore, the vLD90 ranged between 3.25 g/mL and 4.5 g/mL for all 

MDR strains, whilst the vLD90 was significantly higher (ranging from 3.90 g/mL to 

9.35 g/mL) for non-MDR strains (t = −3.74, P < 0.01) [141]. Other than mutations 

conferring resistance to certain antibiotics, it is possible that MDR strains also 

possess mutations that affect energy generation required for the maintenance of 

membrane integrity or affect the membrane structure itself, leading to 

supersusceptibility to the action of substances such as hBD2 [141].

Apart from its ability to fight MDR A. baumannii, hBD2 is an endogenous peptide of 

the innate immune system and may be less toxic than other molecules such as 

polymyxins. In addition to their direct antibacterial activity, defensins have the 
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potential to neutralise bacterial endotoxin by direct binding and inactivation of 

lipopolysaccharide, thereby preventing the ability of endotoxin to induce shock. 

Furthermore, owing to their ability to form channels in lipid membranes, defensins 

facilitate the penetration of hydrophilic drugs.

A significant disadvantage of hBD2 is that the salt concentration affects its 

bactericidal effect. It was demonstrated that even 150 mM of sodium chloride was 

sufficient to decrease the bactericidal effect of hBD2 at least 15-fold, indicating that 

the maximum activity of hBD2 can only be found in sites of the human body with low 

salt concentration, such as the airway surface fluid of normal lung [141].

9. Conclusions

Currently, COL constitutes a salvage solution against MDR-AB. It is not as 

nephrotoxic as initially believed and should be used in combination with other 

antimicrobials, preferably MEM or RIF. Use of TIG against A. baumannii is off-label

and its clinical efficacy remains a matter of controversy. Resistance to TIG during 

therapy may occur and TIG monotherapy should be avoided when the risk of

pseudomonal infection is serious. TIG treatment should also be avoided in cases of 

bacteraemia by isolates with MICs of ≥1 g/mL. In cases of sulbactam-susceptible A. 

baumannii infections, sulbactam should be considered as the preferred therapeutic 

solution. RIF appears to exert bactericidal activity against MDR-AB. Its combination 

with other antimicrobials is crucial and the most active combination is considered to 

be that with COL. Minocycline may play a serious role in confronting minocycline-

susceptible MDR-AB infections, however clinical studies on this issue are rare.
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Among the new agents, peptides appear to be the most promising. A series of 

recently reported peptides have shown strong bactericidal activity against MDR-AB. 

However, various obstacles should be overcome before they can be used clinically.
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