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Abstract

Nowadays human machine interfaces are evaluated using different methodolo-
gies. These methodologies rarely consider the human movements involved in
the interaction, and if so, the movements are considered in a simplistic man-
ner. Another often neglected aspect is the relationship between the learning
process and the use of the interface. Traditional approaches of cognitive
modelling consider learning as just one continuous process. However there is
some current evidence of concurrent processes on different time scales. This
paper aims to answer, with experimental measurements, if learning actually
implies a set of concurrent processess, if those processes are related to the co-
ordinative aspects of hand movement, and how this can vary between young
adult and elderly users. Two different interfaces, a washing machine and a
domotic system, were analysed with 23 and 20 people, respectively, classified
as men or women and elderly (over 55) or adult (between 40 and 50). The
results of the study provide support for the existence of different concurrent
processes in learning, previously demonstrated for motor tasks. Moreover,
the learning process is actually associated with changes in movement pat-
terns. Finally, the results show that the progression of the learning process
depends on age, although elderly people are equally capable of learning to
use technological systems as young adults.
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1. Introduction

The purpose of this work is to show how human movement analysis can
contribute to an understanding of the interaction between technological de-
vices and users. Research into Human Machine Interaction (HMI), began
when machines started to become increasingly complex. The appearance of
computers, with their flexibility of use and their associated complexity, was
such an important milestone that by the mid 1980s computers became the
paradigm of machine complexity.

One of the first approaches to HMI came from the application of Cognitive
Science findings to interface design (Card et al., 1983). Since that time, many
different methodologies and models have been proposed for the analysis of
HMI.

Methodologies based on the cognitive approach rely on theories of the
human mind that allow the analyst to make assumptions about how the user
would interact with the system. The aim here is to obtain a response which
coincides with the behaviour of real users. There is a wide range of cognitive
models, from the simpler ones such as GOMS (Goals Operators Methods and
Selection Rules) or the Model of Human Processor (Card et al., 1983), to the
more complex cognitive architectures such as ACT–R (Anderson, 1983).

Usability is another approach to HMI. It was defined in the early 1990s,
and it is based on collecting data from users actively participating in the
interface assessment procedures Nielsen and Mack (1994).

Usability has many definitions, depending on the context in which it is
applied. For instance, ISO 9241-11:1997 defines usability mainly in relation to
the efficiency, performance and satisfaction of the user, because it is oriented
towards usability in the workplace. Other definitions of usability, such as
that proposed by Brink et al. (2002), put more emphasis on the ease of use,
the ease of learning and the pleasure derived from use.

However, although users are given theoretical importance in assessment,
usability issues are often addressed by expert design recommendations, the
best known of which are Nielsen (1994) web design guidelines. Such guide-
lines sometimes rely exclusively on the experience and criteria of designers
and experts, and it is not always clear how they have been validated (Health
and Human Services Dept. (U.S.), 2007).

Other approaches are based on heuristic models (Lo and Helander, 2004)
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founded on assumptions concerning ease of use, such as simpler products

would be easier to use, and subsequent metrics to measure that assumption.
Thimbleby (2004) suggests the use of matrix algebra and Markov models for
usability analysis (Thimbleby et al., 2001).

Every approach has its pros and cons, but practitioners of each one usually
belong to different, often diverging fields.

Both the cognitive and usability approaches consider the time required to
finish a task as one of the key parameters for the assessment of the efficiency
of the interface. In fact, some methodologies (such as GOMS or the Keystroke
Level Model) are basically focused on the estimation of the time required by
the user to perform a task. In usability analysis with users, time is always a
measurement, but there are other metrics considered too, such as the number
of steps required, or the perception of ease of use from the user’s point of
view.

Learning is also an important aspect, although it is often neglected in
usability studies. Thimbleby et al. (2001) compare the behaviour of an un-
trained user with a purely random system (in which any part has the same
probability of being activated), and the behaviour of an expert with a finite
automata. Any stage of the learning process should therefore fall between
the two extremes. Using this rationale, the authors obtain a theoretical curve
that should be related to the ease–of–use of the system. Although most us-
ability practitioners include ease–of–learning in their definitions, they rarely
face the problem of learning directly. It is more frequent to segment users
by their skill level (Faulkner and Wick, 2005), considering in this way the
aspect of ease–of–use for the whole range of learning.

Learning is at the core of many cognitive models. Under the cognitive
approach it is often assumed that learning follows the Power Law of Practice
(Rosenbloom and Newell, 1988), which establishes that the time required to
perform a task decreases with the number times the action has been repeated.
Many cognitive models (such as GOMS or the Key Stroke Level Mode) ex-
plicitly assume that the learning process of an HMI follows this law of prac-
tice. However, the Power Law of Practice has recently been questioned by
researchers from the field of motor development (Newell et al., 2006). These
authors argue that learning is not an activity of continuous improvement,
but involves different processes at different time scales, similar to the chang-
ing paradigm of motor development in children (Thelen and Smith, 1994).
Newell et al. (2006) assume at least two concurrent processes: adaptation,
associated with the gain in practice during one session, and learning, the
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gain that remains between sessions. These authors found that the decrease
in gain between sessions (the first repetition of a new session is often worse
than the last repetition of the previous session) is not due to a mechanism of
forgetfulness, but that the two gain rates are due to different mechanisms.

Cognitive modelling assumes that input (information coming in through
the sensory systems), output (the action produced by the musculo–skeletal
system) and cognition (the information processing in the brain) are separate
modules. Therefore, cognitive models more or less assume that the brain
establishes the next target from the information gathered by the sensory sys-
tem (i.e. the eyes) and then it causes the body to move towards that target
(i.e. see the Model of Human Processor in Card et al. 1983). It assumes
that this movement will approximately follow Fitts’ Law and that learning is
produced at “brain level” and does not affect movements. However, many au-
thors now agree that brain and body are intrinsically interconnected in such a
way that cognitive processes cannot be separated from the body. Therefore,
a relationship could be expected between the coordination components of
movements and the learning stage, even for activities that require low motor
skills, such as a simple interface use.

When dealing with HMI and elderly people, approaches differ widely.
Cognitive modelling is seldom used in this case. One of the few attempts
that has been made, involved a modification of the Keystroke Level Model
(Charnes and Bosman, 1990). The kind of guidelines followed by usability
practitioners are usually of the type: “Keep the design as simple as possible
so that even elderly people can use it” (e.g. Dickinson et al. 2005). Many
of these approaches reduce the possibilities of the applications for the sake
of ease of use, and also limit the expertise that the user can reach. In other
cases, it is assumed that elderly people refuse the use of technology. However,
it is thought that this effect will tend to disappear in the future as technology
becomes diffused into daily living activities (Ahn, 2004).

This paper consists of an HMI usability study of everyday products, in
which the learning process of elderly people is specifically considered. The
study aims to answer the following questions:

• Does learning imply a single process or do concurrent processes exist?

• Are coordinative aspects of movement related to learning how to use
an interface?

• Can elderly people learn to operate complex technological interfaces or

4



ACCEPTED MANUSCRIPT 

Adult Elder Total
Men 4 7 11
Women 4 8 12
Total 8 15 23

(a) Washing machine

Adult Elder Total
Men 3 7 10
Women 3 7 10
Total 6 14 20

(b) Domotic interface

Table 1: Participants in the studies

they require simple ones?

2. Material and methods

Two different interfaces were analysed: a low–tech interface (washing ma-
chine) and a high–tech one (the tactile screen of a domotic system). Each
interface was analysed in a different experimental context. Different instru-
mentation techniques were used to assess their adequacy.

Elderly and adult users took part in both experiments. The elderly group
comprised active people over 55 years of age; the adult group was formed by
people between the ages of 40 and 50.

For the washing machine experiment 23 users took part in the study
(Table 1a). Each user had to perform a task (AppendixA) three times on
four different days, with the days scheduled as consecutive as possible (with
a difference of 1 to 5 days). 2D photogrammetry was used to analyse the
movements involved in approach and withdrawal, to and from the program
wheel selector. The users were instrumented with a reflective maker on the
dorsal part of the hand (figure 1a). The variable of analysis was the distance
from the hand to the program wheel control, within a range of 300 pixels in
the image, corresponding to an approximate movement of 20 cm.

For the analysis of the domotic interface, 20 users took part in the study
(Table 1b). Each user had to perform three different tasks (AppendixB)
with the system in three consecutive repetitions and on four different days.
As was the case, in washing machine experiment, the days were scheduled
as closely as possible minimum span 1 day, maximum 5 days). The users
were instrumented with an inertial sensor (I–Sens from TechNAid) (Figure
1b). Three dimensional angular velocities were recorded, but the variable
analysed was the magnitude of angular velocity around the instants in which
the users pushed any button on the touch screen.
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(a) Washing machine (b) Domotic Interface

Figure 1: Instrumentation employed in the experiments

In both experiments the variables analysed were: overall time required to
achieve the task and the variables related to the coordination of the move-
ment (distance and speed for the washing machine and angular speed and
its derivative for the domotic system).

Overall time was measured from the moment in which the experimenter
said “go” to the moment in which the user said “finish” or “retired”. The vari-
ables were subsequently analysed to determine whether the T ime variable dif-
fered depending on the individual characteristics of the subjects (Gender, dis-
tinguishing between men and women, or Age, distinguishing between adults
and the elderly), and if it changed in the course of the learning process, during
the different sessions (coded in the variable Day) or the different repetitions
within a session (Rep). This was done through an ANOVA with the model
(1).

T ime ∼ Day + Rep + Gender + Age + Age ∗ Day + Age ∗ Rep (1)

The movement analysis consisted of four steps: (1) smoothing and dif-
ferentiation of the signals; (2) parameterisation of movements through prin-
cipal component analysis (PCA); (3) statistical analysis of the coefficients
resulting from PCA; and (4) reconstructing curves that show the influence
of significant effects on the movements.

In the first step, the recorded signals were smoothed and differentiated
using a local polynomial smoothing technique (lvaro Page et al., 2006). The
original variable and its derivative were then normalised to a number of
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samples (253 for the washing machine and 217 for the domotic interface),
thus obtaining a parametric curve, expressing the measured variable and its
derivative as a function of the samples (2). This parametric curve is, in fact,
a phase portrait of the movement (i.e. see Figure 3).

{

x(s) = f1(s)

y(s) = f2(s)
(2)

In the second step, principal component analyses (PCA) were made for all
the curves, considering the value of the variables in each sample as a different
variable and considering the different curves as different observations. The
principal components explaining more than 5% of variance were retained. It
was thus possible to refer every curve to a reduced number of parameters
(3): the scores of the adjustment to the PCA that we will call adjusted
coefficients (AC, ci in the equation), and the number of curves common to
all the cases: the average curve (µ), and the set of curves, that we will call
principal component curves (PCC, ξi(x, y) in the equation), which are similar
to the functional principal components described by Ramsay and Silverman
(1997). Every PCC is orthonormal and the mean of the AC for each PCC is
zero.

f(x, y) = µ(x, y) +
∑

ci · ξi(x, y) (3)

In the third step, the resulting ACs were analysed through univariate
ANOVA with the model (4), where T ime is the time required to perform a
task, then introduced as a covariate in order to separate its effect from other
factors. The other factors coincide with those used in (1).

ci ∼ Day + Rep + Gender + Age + Age ∗ Day + Age ∗ Rep + T ime (4)

Finally, to understand the influence of each factor on the movement
curves, we obtained the marginal means of the ACs which showed significant
differences due to the factor under consideration. The corresponding PCC
were reconstructed with those values, and new curves were reconstructed
summing those PCC with the average curves. These reconstructed curves
are referred as “marginal mean curves”.
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Washing machine Domotic System
Day <0.001 bf<0.001
Rep bf<0.001 bf<0.001

Gender 0.658 bf<0.001
Age bf<0.001 bf<0.001

Age*Day 0.937 bf<0.001
Age*Rep 0.101 bf<0.001

Table 2: p–Values for T ime in the analysis of both systems. The conditions
where significant differences were found are in bold face

3. Results

3.1. Time analysis

In the washing machine experiment, T ime differed depending on Day

and Rep (Table 2), which indicates that users achieved some improvement.
The time required to perform a task decreased per Day and Rep (figure 2a);
since, T ime has an asymptotic behaviour, the time required to perform a
task on the fourth day was close to a (local) minimum. There were also
differences depending on Age: elderly people required more time than adult
people (the marginal mean for elderly people is t = 20.3s, and for adult it is
t = 12.3s). No differences were found per Gender (between men and women).
No differences were either found for the interaction between Age ∗ Day or
Age ∗ Rep.

In the experiments with the Domotic System, all factors and interactions
between factors affected T ime (Table 2). The effects of Day and Rep were
similar to those of the washing machine experiment. But in this case dif-
ferences were also found for Gender (women required less time than men to
perform the task), and for the interactions. The time required by an elderly
person to perform the task still decreased after the fourth session, while an
adult could reach the minimum time as early as the second session (Figure
2b).

3.2. Movement analysis

Figure 3 shows the phase portrait curves of both experiments, averaged for
all subjects. The phase portraits define the dynamic change of the movement
variables measured in the experiments, representing their value against the
value of their time derivative.
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Day

4321

35,00

30,00

25,00

20,00

15,00

10,00

5,00

3

2

1

Repetition

(a) Time required to perform the washing
machine task per repetition and per day
(in seconds)

Day

4321

70

60

50

40

30

20

Adult

Elder

Age

(b) Time required to perform the domotic interface
task per age group and day (in seconds)

Figure 2: Analysis of variable time

In the washing machine (figure 3a) three different phases can be found:

1. The approach phase: as the hand approached the button, the distance
decreased. Therefore, it is represented by the section of the curve with
negative speed values. As this phase progressed, the absolute value of
speed decreased smoothly. That indicates a straight movement towards
the target.

2. The manipulation phase: this phase is characterized by low distance
and speed values.

3. The withdrawal phase: its pattern generally mirrored the approach
phase, with increasing positive values of speed as distance increased.
However, the absolute value of speed was lower than during the ap-
proach, and the speed did not increase homogeneously. This may in-
dicate a hesitating movement, that was not observed in the approach
phase.

The phase portrait of the domotic system (figure 3b) is different, because
in that experiment the variable recorded was not the hand position, but its
angular velocity. The hand was initially addressed towards the screen in a
straight direction, and it was rotated as the target point of the screen was
approached. Therefore, as the movement progressed, the variable measured
in this experiment (angular velocity) did not decrease, but actually increased.
Two movement phases were found in this case:
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(a) Distance of the hand to the button vs.
hand speed in the washing machine exper-
iment.

(b) Absolute value of hand angular veloc-
ity vs. angular acceleration in the domotic
system experiment

Figure 3: Average phase portrait of the movements

1. Movement start: as the angular velocity increased during this phase,
it is represented by the section of the curve with positive angular ac-
celeration, with an initially high value that decreased as this phase
progressed..

2. Movement end: it is the section of the curve that mirrors the previous
phase.

In this case, the hesitation (uneven ratio of angular acceleration change) was
found in the second phase.

In the washing machine experiment, there were seven PCCs that ex-
plained more that 5% of variance (figure 4a), altogether accounting for 68%
of the variance explained by the model. In the case of the domotic system,
there were four PCC that explained more than 5% of variance, altogether
accounting for 82% of variance explained by the model.

The results of the statistical analysis for the washing machine experiment
(Table 3), show that AC1 explains the aspects related to the learning process,
that is, the differences in the movement per day and repetition; AC2 explains
the differences between user groups (elderly vs. adults and men vs. women);
and there are further ACs that explain age-related and gender-related differ-
ences (AC4 and AC7, respectively).

AC1 and AC2, which were significantly influenced by T ime, had a positive
correlation with that variable. This means that those components of the
movement were related to the slowness of the user doing the task. A post-
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(a) Washing machine (b) Domotic system

Figure 4: Variance explained by each PCC

AC1 AC2 AC3 AC4 AC5 AC6 AC7
Day bf0.036 0.343 0.809 0.396 0.106 0.642 0.484
Rep bf0.003 0.549 0.455 0.933 0.360 0.121 0.079
Gender 0.293 bf<0.001 0.779 0.610 0.276 0.214 bf0.014
Age 0.107 bf0.021 0.158 bf0.014 0.935 0.425 0.553
Time bf0.001 bf<0.001 0.686 0.318 0.688 0.512 0.239
Age*Day bf0.031 0.275 0.954 0.213 0.504 0.549 0.595
Age*Rep 0.127 0.150 0.615 0.382 0.065 0.711 0.701

Table 3: p–Values of the univariate ANOVA per AC in the washing machine
experiment. Significative differences in bold face

hoc analysis revealed that AC1 was greater on the first day and the first
repetition of each day, than on the two last days and the two last repetitions
of each day. The effect of the interaction between Age and Day on AC1 was
that on the third day, this component of the movement was greater for elderly
people, although this difference vanished on the fourth day. According to this
post-hoc analysis, AC2 was generally greater for elderly and for male users,
whereas AC4 was greater for elderly, and AC7 for male.

For the Domotic system, AC1 was related to most of the analysed param-
eters, while AC2 was related to group parameters: Age and Gender. AC3
and AC4 explained some other details of these two parameters (table 4).

As in the case of the washing machine, the components of movement
that were influenced by T ime (all but AC3), were positively correlated to
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AC1 AC2 AC3 AC4
Day bf<0.001 0.119 0.087 0.168
Rep bf<0.001 0.690 0.860 0.399

Gender bf0.006 bf0.017 0.554 0.188
Age bf<0.001 bf<0.001 bf<0.001 0.159
Time bf<0.001 bf0.006 0.583 bf0.005

Age*Day bf<0.001 0.447 0.481 0.728
Age*Rep 0.992 0.957 0.518 0.670

Table 4: p–Values of the univariate ANOVA per AC in the domotic system
experiment. Significative differences in bold face

that variable, and the post-hoc analysis revealed similar effects of the factors
over all components: those that showed differences depending on Age or
Gender had greater averages for elderly and male. AC1, which also received
a significant effect of Day and Repetition, was greater in the first day than in
the three following days, and decreased on significantly with every repetition.
The interaction between Age and Day, however, had a different effect in
this case: the distance in AC1 between the adults and elderly, which was
the average difference on the first day, decreased significantly on the second
day, but the average ratio was restored on the third day, and the difference
increased on the fourth day.

As has been established in section 2, the marginal mean curves for each
factor (figures from 5 to 8) were obtained from the marginal means of the
ACs which were significantly affected by the factor. For instance, to show
differences in the movements of men and women in the washing machine
experiment (figure 6b), the marginal means of AC2 and AC7 were obtained
for both groups, and the curves were then reconstructed using (3).

Regarding the washing machine learning process (figure 5), it can be
seen that the approaching speed increased gradually during the three first
days, but the approach movement on the fourth day was indistinguishable
from the third. The evolution of the withdrawal movement is less clear;
the curve reflects an increase in the dynamic component of the movement
(variations in speed were greater). Regarding the adaptation process (related
to repetitions), an evolution from the first to the second repetition was found,
but the second and third repetitions were almost equal. These results are
similar to those obtained in the time analysis; in other words, the reduction
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(a) Influence of day (marginal mean) (b) Influence of repetition (marginal
mean)

Figure 5: Average phase portraits of the movement in the washing machine
experiment for the different days and repetitions, according to the ANOVA
linear model. Compare with the overall average phase portrait in 3a.

in the time required to perform the task is consistent with the increase of
speed. Notice that, however, the increase of speed observed during different
repetitions and days was not due to the lower task completion times, since
the effect of T ime had been separated by introducing it as a covariate in (4).

Regarding Age, the approach movements of the elderly were slower than
those of the adult, while withdrawal speeds were very similar (figure 6a). This
result is again consistent with the time analysis: elderly required more time to
perform a task and their movements were slower. The results of Gender are
more surprising: women moved faster than men in both movement phases;
however there were no differences in T ime. This could imply a different
movement strategy between women and men to execute the tasks: women
would have employed more time “thinking” about the next action, and then
performed the movement faster, while men employed less time in thinking
and performed slower movements, resulting in similar times to accomplish
the task for both groups: different strategies yielded the same result.

For the Domotic system, AC1 was the only parameter related to the
learning process (table 4). The marginal mean curves per day and repeti-
tion (figure 7) explain how the movements changed. On the first day the
movements were considerably slower than on the other three days, which
show more similar curves (figure 7a). The gain in repetition is higher, and
almost linear from one repetition to another. In order to analyse possible

13



ACCEPTED MANUSCRIPT 

(a) Age (marginal mean) (b) Gender (marginal mean)

Figure 6: Average phase portraits of the movement in the washing machine
experiment for the different user groups, according to the ANOVA linear
model. Compare with the overall average phase portrait in 3a.

relationships between day and repetition, another univariate ANOVA was
made according to model (5), but no significant differences were found for
the interaction between Day and Rep (p–Value = 0.322).

AC1 ∼ Day + Rep + Gender + T ime + Day ∗ Rep (5)

Regarding Age, adult users moved faster than elderly users, and this
result is consistent with the results obtained in the analysis of time, and also
with the results obtained for the washing machine test (figure 8a). Women
moved faster than men, which is consistent with the shorter times required
to perform the tasks, as well as with the results obtained in the washing
machine test.

4. Discussion

First of all, it seems clear that, when using an interface, the coordina-
tion aspects of movement depend on the skills acquire while actually using
it. Both for washing machines and domotic systems, movements are depen-
dent on the number of days of user experience, and of the number of task
repetitions (tables 3 and 4). Moreover, the movement pattern is related to
the time that is required to accomplish a task so that faster movements are
related to shorter completion times. This result, despite its obviousness, is
contrast with the assumptions of some cognitive models such as the GOMS
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(a) Influence of day (marginal means) (b) Influence of repetitions (marginal
means)

Figure 7: Average phase portraits of the movement in the domotic system
experiment for different days and repetitions, according to the ANOVA linear
model. Compare with the overall average phase portrait in 3b.

(a) Age (marginal means) (b) Gender (marginal means)

Figure 8: IAverage phase portraits of the movement in the domotic system
experiment for different user groups, according to the ANOVA linear model.
Compare with the overall average phase portrait in 3b.
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and the Keystroke Level Model (Card et al., 1983), as well as the ACT-R
(Anderson, 1983) architecture which considers movement to be driven by the
Fitts’ law and, subsequently independent of the state of learning. From the
results shown it seems clear that movements and cognitive processes are not
independent. This could explain why some authors have found it difficult to
adapt cognitive modelling to people with physical disabilities (Keates et al.,
2002). Also, Fitts’ Law (Fitts and Radford, 1964) does not seem to be di-
rectly applicable when a learning process is underway: the movements made
towards the goal depend on the learning state of the user.

Movement analysis provides more insight into usability studies: In the
case of the washing machine users, we discovered different strategies between
the men and women participating in the study: although no differences were
found in the time needed to accomplish the task (table 2), we did find dif-
ferences in the aspects related to movements (table 3). This could imply a
gender differences in the way men and women perceived the information and
the way the acted to achieve the goal. This isn’t considered in other research
based on these aspects to the knowledge of the authors.

The results obtained support the idea of concurrent processes in acquiring
skills (adaptation and learning) which goes against the idea of a a unique
process (learning), giving support of the theory of Newell et al. (2006). The
results provide some evidence: changes in movements between repetitions
within a session are different from those between sessions (figure 5). Also
there were no interactions between variables when an explicit model was
tested, meaning that the changes between repetitions were independent from
the changes which occur between days. It can therefore be assumed that
different processes are involved.

The results are also in contradiction with some generally held opinions
(Dickinson et al., 2005). On the one hand, although elderly users moved
slower than adults in both experiments, they were able to learn to use both
systems effectively, including the domotic system (figure 2b). These results
question certain approaches in the design of information and communications
technologies for the elderly, that call for oversimplification of the systems.

In relation to gender issues, men were seen to be as effective as women
in using the washing machine, and women were even better than men (2) in
using the domotic system. No gender barriers are therefore apparent for the
use of any of the products tested. However, women executed the movements
faster than men in both cases, which may imply that each gender uses a
different strategy.
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5. Conclusions

Regarding the three questions posed in the Introduction, the conclusions
reached are the following:

• Learning implies different concurrent mechanisms on different time
scales, as suggested by Newell et al. (2006).

• The coordination aspects of movement depend on the learning state of
the user as well as the state of the concurrent mechanisms related to
learning.

• Elderly people are perfectly capable of learning to use technological
devices, such as a general purpose domotic interface, although they
require more time than adults for the process.

Some other results were obtained:

• Movement analysis can provide useful information related to the use of
interfaces, such as the different strategies used by men and women to
perform a task. Movement measures are time functions that comprise
far more data than simple parameters as time consumption, or number
of errors; therefore, it is possible to find subtler differences in them de-
pending on the user characteristics, or the learning process. Moreover,
the dynamic characteristics of the variables can reveal the points where
users hesitate. That information may help designers to detect the weak
points of a system.

• Elderly people performed slower hand movements than adults, and
women moved faster than men, when interacting with the interfaces
under study.

• The usual cognitive modelling strategies would have failed to model
user movements during the learning phase.

AppendixA. Tasks for the tests with the user machine

Task 1

Set the program to 30º, the spin-dry at minimum speed and include the
extra rinse cycle.
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Task 2

Set the program to the hottest temperature for washing, the spin–dry
at maximum speed, and include the extra rinse cycle and the easy ironing
mode.

Task 3

Set the system for washing in cold water and the timer to start in 2 hours.

Task 4

Set the pre–wash and the soak cycle.

AppendixB. Tasks for the tests with the domotic system

Task 1

Start with everything turned off. The user should switch on the movement
sensor for the alarm system and the external light.

Task 2

Start with the external light turned up to 100%. The user should regulate
the power of the external light down to 0% and switch on the movement
sensor.

Task 3

Start with the external light turned up to 100%. The user should open
the blinds and turn on the internal light.
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