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FRANCIS FILBET AND CLÉMENT MOUHOT

Abstract. The development of accurate and fast algorithms for the Boltz-
mann collision integral and their analysis represent a challenging problem in
scientific computing and numerical analysis. Recently, several works were de-
voted to the derivation of spectrally accurate schemes for the Boltzmann equa-
tion, but very few of them were concerned with the stability analysis of the
method. In particular there was no result of stability except when the method
is modified in order to enforce the positivity preservation, which destroys the
spectral accuracy. In this paper we propose a new method to study the sta-
bility of homogeneous Boltzmann equations perturbed by smoothed balanced
operators which do not preserve positivity of the distribution. This method
takes advantage of the “spreading” property of the collision, together with
estimates on regularity and entropy production. As an application we prove
stability and convergence of spectral methods for the Boltzmann equation,
when the discretization parameter is large enough (with explicit bound).
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References 32

1. Introduction

This work is the sequel of several papers devoted to the approximation of the
Boltzmann equation using fast spectral methods [27, 11, 21, 14]. The present paper
is devoted to the stability and convergence analysis of general spectral algorithms.

In a microscopic description of rarefied gas, the particles move by a constant
velocity until they undergo binary collisions. In statistical physics, the properties
of the gas are described by a density function in phase space, f(t, x, v), called the
distribution function, which gives the fraction of particles per unit volume in phase
space at time t. The distribution function satisfies the Boltzmann equation, a non-
linear integro-differential equation, which describes the combined effect of the free
flow and binary collisions between the particles.

The main difficulty in the approximation of the Boltzmann equation is due to the
multidimensional structure of the collisional integral, since the integration runs on a
highly-dimensional unflat manifold. In addition the numerical integration requires
great care since the collision integral is at the basis of the macroscopic properties
of the equation. Further difficulties are represented by the presence of stiffness, like
the case of small mean free path or the case of large velocities [10].

For such reasons realistic numerical simulations are based on Monte-Carlo tech-
niques. The most famous examples are the Direct Simulation Monte-Carlo (DSMC)
methods by Bird [1] and by Nanbu [22]. These methods guarantee efficiency and
preservation of the main physical properties. However, avoiding statistical fluctua-
tions in the results becomes extremely expensive in presence of non-stationary flows
or close to continuum regimes.

Among deterministic approximations, Discrete Velocity Models (DVM) are based
on a Cartesian grid in velocity and on a discrete collision mechanism on the points
of the grid that preserves the main physical properties. Unfortunately DVM are not
competitive with Monte-Carlo methods in terms of computational cost and their
accuracy seems to be less than first order [23, 24, 25, 9].

Another class of numerical methods, based on the use of spectral techniques in
the velocity space, has been developed. The methods were first derived in [26],
inspired from spectral methods in fluid mechanics [6] and by previous works on
the use of Fourier transform techniques for the Boltzmann equation [2]. They are
based on approximating in the velocity space the distribution function by a periodic
function, and on its representation by Fourier series.

The spectral method has been further developed in [27, 29] where evolution
equations for the Fourier modes were explicitly derived and spectral accuracy of
the method was proven. Strictly speaking these methods are not conservative,
since they only preserve mass, whereas momentum and energy are approximated
with spectral accuracy. Moreover, the spectral method has been applied also to
non homogeneous situations [11], to the Landau equation [30, 10, 28], where fast
algorithms can be readily derived, and to the case of granular gases [13]. Indepen-
dently A. Bobylev & S. Rjasanow [3, 4] have also constructed fast algorithms based
on a Fourier transform approximation of the distribution function, but the method
is not spectrally accurate (only second order).
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In [21] a fast spectral method was proposed for a class of particle interactions
including pseudo-Maxwell molecules in dimension 2 and, most importantly, hard
spheres in dimension 3, on the basis of the previous spectral method together with a
suitable semi-discretization of the collision operator. This method permits to reduce
the computational cost from O(n2) to O(n log2 n) without loosing the spectral
accuracy, thus making the method competitive with Monte-Carlo.

However an important drawback of the spectral methods up to now had been
the lack of proof of stability. Indeed as compared to discrete velocity methods the
difficulties are somehow opposite: consistency results are easily obtained, whereas
the lack of positivity preservation of the scheme is a major issue when one studies
its stability properties. The only paper concerned with the issue of stability for
spectral methods applied to the Boltzmann collision operator is [29], but in the
latter the author introduce some “filters” on the Fourier modes in order to restore
the positivity-preservation of the scheme, which breaks the spectral accuracy.

In this paper we give the first stability result for the spectral methods applied
to the Boltzmann collision operator. Moreover we propose a method which is likely
to have other utilizations in collisional kinetic theory:

• we write the Galerkin approximation on the first N Fourier modes of the
evolution equation as a a smooth balanced perturbation of the original equa-
tion, in the sense of a perturbation by some small and mass-preservation
(although not positivity-preserving) error term;

• we prove existence and uniqueness of smooth solution for small times, con-
ditionally to a bound on the L1 norm;

• we use the mixing structure [31, 19] of the collision process to show appear-
ance of positivity after a small time (depending on the size of the box of
truncation and the approximation parameter N);

• we use the mass conservation to deduce uniform bounds on the L1 norm,
and therefore regularity bounds growing at most exponentially in time;

• we perform a detailed analysis of the unperturbed truncated problem, show-
ing uniform in time regularity and asymptotic convergence to equilibrium;

• finally we use that the equilibrium is unchanged by the smooth balanced
perturbation, and that it is non-linearly stable for the perturbed periodized
Boltzmann equation, in order to prove global in time stability and conver-
gence to equilibrium for the perturbed Boltzmann equation (we connect the
previous point for initial times together with the stability of equilibrium for
asymptotic times).

Hence our paper introduces a general method on how to exploit fine mixing
properties of the collision process in the study of stability of a particular class of
perturbed Boltzmann equation, with the application in mind to the stability of
spectral methods.

The outline of this paper is as follows. The Boltzmann equation and its basic
features are presented in Section 2. In Section 3 we explain the truncation and
periodization associated with spectral methods and fast spectral methods and we
formulate the problem of stability of these methods in the general framework of the
stability properties of the Boltzmann equation with respect to a smooth balanced
perturbation. Section 4 is devoted to the proof of the main stability result in the
general framework. Section 5 is devoted to the study of the asymptotic behavior
of the truncated problem on the basis of the entropy production theory. Finally
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in Section 6 we apply the latter result to the spectral method and establish some
stability and convergence results of the numerical solution.

2. The Boltzmann equation

The Boltzmann equation describes the behavior of a dilute gas of particles when
the only interactions taken into account are binary elastic collisions. It reads for
x ∈ Ω, v ∈ R

d where Ω ∈ R
d is the spatial domain (d ≥ 2):

∂f

∂t
+ v · ∇xf = Q(f, f)

where f := f(t, x, v) is the time-dependent particles distribution function in the
phase space. The Boltzmann collision operator Q is a quadratic operator local in
(t, x). The time t and position x act only as parameters in Q and therefore will be
omitted in its description

(2.1) Q(f, f)(v) =

∫

v⋆∈Rd

∫

σ∈Sd−1

B(|v − v⋆|, cos θ) (f ′⋆f
′ − f⋆f) dσ dv⋆.

We used the shorthand f = f(v), f⋆ = f(v⋆), f
′ = f(v′), f ′⋆ = f(v′⋆). The velocities

of the colliding pairs (v, v⋆) and (v′, v′⋆) are related by










v′ = v − 1

2

(

(v − v⋆) − |v − v⋆|σ
)

,

v′⋆ = v − 1

2

(

(v − v⋆) + |v − v⋆|σ
)

,

with σ ∈ S
d−1. The collision kernel B is a non-negative function which by physical

arguments of invariance only depends on |v − v⋆| and cos θ = u · σ, where u =
(v − v⋆)/|v − v⋆| is the normalized relative velocity.

In this work we are concerned with short-range interaction models. More pre-
cisely we assume that B is locally integrable. Here are the hypothesis on the
collision kernel:

(2.2) B(|u|, cos θ) = Φ(|u|) b(cos θ),

with

(2.3) Φ(z) = zγ , z ∈ R+, for some γ ∈ (0,+∞)

and b smooth such that

(2.4)

∫ π

0

b(cos θ) sind−2 θ dθ < +∞.

These assumptions are satisfied for the so-called hard spheres model B(u) = |u|, and
it is known as Grad’s angular cutoff assumption when it is (artificially) extended
to interactions deriving from a power-law potentials. As an important benchmark
model for the numerical simulation we therefore introduce the so-called variable
hard spheres model (VHS), which writes

B(|u|, cos θ) = Cγ |u|γ ,
for some γ ∈ (0, 1] and a constant Cγ > 0.

For this class of models, one can split the collision operator as

Q(f, f) = Q+(f, f) − L(f) f,
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with

Q+(f, f) =

∫

Rd

∫

Sd−1

B(|v − v⋆|, cos θ)f ′f ′⋆ dσ dv⋆,

and

L(f) =

∫

Rd

∫

Sd−1

B(|v − v⋆|, cos θ)f⋆ dσ dv⋆.

Boltzmann’s collision operator has the fundamental properties of conserving
mass, momentum and energy: at the formal level

∫

Rd

Q(f, f)φ(v) dv = 0, φ(v) = 1, v, |v|2,

and it satisfies well-known Boltzmann’s H theorem

− d

dt

∫

Rd

f log f dv = −
∫

Rd

Q(f, f) log(f) dv ≥ 0.

The functional −
∫

f log f is the entropy of the solution. Boltzmann’s H theorem
implies that any equilibrium distribution function, i.e., any function which is a
maximum of the entropy, has the form of a locally Maxwellian distribution

M(ρ, u, T )(v) =
ρ

(2πT )d/2
exp

(

−|u− v|2
2T

)

,

where ρ, u, T are the density, macroscopic velocity and temperature of the gas,
defined by

ρ =

∫

v∈Rd

f(v) dv, u =
1

ρ

∫

v∈Rd

v f(v) dv, T =
1

dρ

∫

v∈Rd

|u− v|2 f(v) dv.

For further details on the physical background and derivation of the Boltzmann
equation we refer to Cercignani, Illner, Pulvirenti [8] and Villani [33].

3. Formulation of a general stability result

In this section we remind the basic principles leading to the periodized trunca-
tions of the Boltzmann collision operator arising in spectral methods. Then, we
present the main result of this paper: the stability of the spatially homogeneous
Boltzmann equation with respect to a smooth balanced perturbation, preserving
mass and smoothness but not non-negativity of the solution. This stability means
that we are able to construct global solutions and estimate the error between per-
turbed and unperturbed solutions.

Any deterministic numerical method requires to work on a bounded velocity
space. This therefore supposes a non physical truncation (associated with limit
conditions) of this velocity space, which we shall discuss below.

3.1. General framework. We consider the spatially homogeneous Boltzmann
equation written in the following general form

(3.1)
∂f

∂t
= Q(f, f),

where Q(f, f) is given by

(3.2) Q(f, f) =

∫

C
B(y, z)

[

f ′f ′⋆ − f⋆f
]

dy dz, v ∈ R
d

with
v′ = v + Θ′(y, z), v′⋆ = v + Θ′

⋆(y, z), v⋆ = v + Θ⋆(y, z).
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In the equations above, C is some given (unbounded) domain for y, z, and Θ, Θ′,
Θ′

⋆ are suitable functions, to be defined later. This general framework emphasizes
the translation invariance property of the collision operator, which is crucial for the
spectral methods. We will be more precise in the next paragraphs for some changes
of variables allowing to reduce the classical operator (2.1) to the form (3.2).

A problem associated with deterministic methods which use a fixed discretization
in the velocity domain is that the velocity space is approximated by a finite region.
Physically the domain for the velocity is R

d, and the property of having compact
support is not preserved by the collision operator. In general the collision process
indeed spreads the support by a factor

√
2 in the elastic case (see [31, 19] and

also [18] for similar properties in the inelastic case). As a consequence, for the
continuous equation in time, the function f is immediately positive in the whole
domain R

d. Thus, at the numerical level, some non physical condition has to be
imposed to keep the support uniformly bounded. In order to do this there are two
main strategies:

• One can remove the physical binary collisions that will lead outside the
bounded velocity domains. This means a possible increase of the number
of local invariants, i.e., the functions ϕ such that

(ϕ′
⋆ + ϕ′ − ϕ⋆ − ϕ)

is zero everywhere on the domain. If this is done properly (i.e., without re-
moving too many collisions), the scheme remains conservative and without
spurious invariants. However, this truncation breaks down the convolution-
like structure of the collision operator, which requires the translation invari-
ance in velocity. Indeed the modified collision kernel depends on v through
the boundary conditions. This truncation is the starting point of most
schemes based on Discrete Velocity Models.

• One can add some non physical binary collisions by periodizing the function
and the collision operator. This implies the loss of some local invariants
(some non physical collisions are added). Thus the scheme is not conser-
vative anymore, although it still preserves the mass if the periodization is
done carefully. However in this way the structural properties of the colli-
sion operator are maintained and thus they can be exploited to derive fast
algorithms. This periodization is the basis of spectral methods.

Therefore, we consider the space homogeneous Boltzmann equation in a bounded
domain in velocity DL = [−L,L]d with 0 < L <∞. We truncate the integration in
y and z in (3.2) since periodization would yield infinite result if not: we set y and z
to belong to some truncated domain CR ⊂ C (the parameter R refers to its size and
will be defined later). For a compactly supported function with support included in
BS , the ball centered at 0 with radius S > 0, one has to prescribe suitable relations
(depending on the precise change of variable and truncation chosen) between S,
R and L in order to retain all possible collisions and at the same time prevent
intersections of the regions where f is different from zero (this is the so-called
dealiasing condition). Then the truncated collision operator reads

(3.3) QR(f, f) =

∫

CR

B(y, z)
(

f ′⋆ f
′ − f⋆ f

)

dy dz

for v ∈ DL (the expression for v ∈ R
d is deduced by periodization). By making

some changes of variable on v, one can easily prove for the two choices of variables
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y, z of the next subsections, that for any function ϕ periodic on DL the following
weak form is satisfied:

(3.4)

∫

DL

QR(f, f)ϕ(v) dv =
1

4

∫

DL

∫

CR

B(y, z) f⋆ f (ϕ′
⋆ + ϕ′ − ϕ⋆ − ϕ) dy dz dv.

Now, we use the representation QR to derive spectral methods. Hereafter, we
use just one index to denote the d-dimensional sums with respect to the vector
k = (k1, .., kd) ∈ Z

d, hence we set

N
∑

k=−N

:=

N
∑

k1,...,kd=−N

.

The approximate function fN is represented as the truncated Fourier series

(3.5) fN (v) =

N
∑

k=−N

f̂k e
i π

L
k·v,

with

f̂k =
1

(2L)d

∫

DL

f(v) e−i π
L

k·v dv.

In a Fourier-Galerkin method the fundamental unknowns are the coefficients f̂k(t),

k = −N, . . . , N . We obtain a set of ODEs for the coefficients f̂k by requiring that
the residual of (3.3) be orthogonal to all trigonometric polynomials of degree less
than N . Hence for k = −N, . . . , N

(3.6)

∫

DL

(

∂fN

∂t
−QR(fN , fN )

)

e−i π
L

k·v dv = 0.

By substituting expression (3.5) in (3.4) we get

QR(fN , fN ) = QR,+(fN , fN ) − LR(fN ) fN

with

LR(fN ) fN =

N
∑

l=−N

N
∑

m=−N

β(m,m) f̂l f̂m ei π
L

(l+m)·v,(3.7)

QR,+(fN , fN ) =

N
∑

l=−N

N
∑

m=−N

β(l,m) f̂l f̂m ei π
L

(l+m)·v,(3.8)

where

(3.9) β(l,m) =

∫

CR

B(y, z) ei π
L

(

l·Θ′(y,z)+m·Θ′
⋆(y,z)

)

dy dz.

The spectral equation is the projection of the collision equation in PN , the (2N +
1)d-dimensional vector space of trigonometric polynomials of degree at most N in
each direction, i.e.,

∂fN

∂t
= PN QR(fN , fN ),

where PN denotes the orthogonal projection on PN in L2(DL).
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3.2. The truncation associated with classical spectral methods. In the clas-
sical spectral method [27], a simple change of variables in (2.1) permits to write

(3.10) Q(f, f) =

∫

Rd

∫

Sd−1

Bclass(g, ω)
(

f(v′)f(v′⋆) − f(v)f(v⋆)
)

dω dg,

with g = v − v⋆ ∈ R
d, ω ∈ S

d−1, and

(3.11)



















v′ = v − 1
2 (g − |g|ω),

v′⋆ = v − 1
2 (g + |g|ω),

v⋆ = v + g.

Then, we set C := R
d × S

d−1 and

Θ′(g, ω) := −1

2
(g − |g|ω), Θ′

⋆(g, ω) := −1

2
(g + |g|ω), Θ⋆(g, ω) := g.

Finally the collision kernel Bclass is defined by

(3.12) Bclass(g, ω) = 2d−1
(

1 − (ĝ · ω)
)d/2−1

B
(

|g|, 2(ĝ · ω)2 − 1
)

.

Thus, the Boltzmann operator (3.10) is now written in the form (3.2). We con-
sider the bounded domain DL = [−L,L]d, for the distribution f , and the bounded
domain CR = BR ×S

d−1 for some R > 0. The truncated operator reads in this case

(3.13) QR(f, f)(v) =

∫

BR×Sd−1

Bclass(g, ω)
(

f(v′∗)f(v′) − f(v∗)f(v)
)

dω dg.

3.3. The truncation associated with fast spectral methods. Here we shall
approximate the collision operator starting from a representation which conserves
more symmetries of the collision operator when one truncates it in a bounded
domain. This representation was used in [3, 15] to derive finite differences schemes
and it is close to the classical Carleman representation (cf. [7]). The basic identity
we shall need is (for u ∈ R

d)

(3.14)
1

2

∫

Sd−1

F (|u|σ − u) dσ =
1

|u|d−2

∫

Rd

δ(2 y · u+ |y|2)F (y) dy.

Using (3.14) the collision operator (2.1) can be written as

(3.15) Q(f, f)(v) = 2d−1

∫

x∈Rd

∫

y∈Rd

Bfast(y, z) δ(y · z)
(

f(v + z)f(v + y) − f(v + y + z)f(v)
)

dy dz,

with

Bfast(y, z) = 2d−1B

(

|y + z|,−y · (y + z)

|y| |y + z|

)

|y + z|−(d−2).

Thus, the collision operator is now written in the form (3.2) with C := R
d × R

d,

B(y, z) = Bfast(y, z) δ(y · z),
and

v′⋆ = v + Θ′
⋆(y, z), v′ = v + Θ′(y, z), v⋆ = v + Θ⋆(y, z).

with

Θ′
⋆(y, z) := z, Θ′(y, z) := y, Θ⋆(y, z) := y + z.
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Now we consider the bounded domain DL = [−L,L]d, (0 < L < ∞) for the
distribution f , and the bounded domain CR = BR × BR for some R > 0. The
(truncated) operator now reads
(3.16)

QR(f, f)(v) =

∫

CR

Bfast(y, z) δ(y · z)
(

f(v + z)f(v + y) − f(v + y + z)f(v)
)

dy dz,

for v ∈ DL. This representation of the collision kernel yields better decoupling
properties between the arguments of the operator and allows to lower significantly
the computation cost of the method by using the fast Fourier transform (see [21,
14]).

Let us make a crucial remark about the choice of R. When f has support
included in BS , S > 0, it is usual (see [27, 21]) to search for the minimal period L
(in order to minimize the computational cost) which prevents interactions between
different periods of f during one collision process. From now on, we shall always
assume that we can take L and R large enough such that, when needed, R ≥

√
2L.

Hence all the torus is covered (at least once) in the integration of the variables
(g, ω) or (y, z).

3.4. A common abstract formulation for the stability of spectral methods.

From now on, QR shall denote a periodized truncated collision operator as in (3.13)
or (3.16). As we shall see, using this formulations, both classical and fast spectral
methods fall into the following framework:

(3.17)











∂f

∂t
= QR(f, f) + Pε(f), v ∈ DL,

f(0, v) = f0,ε(v), v ∈ DL,

where Pε is a “smooth balanced perturbation”, which means that it satisfies the
following (balanced law)

(3.18)

∫

DL

Pε(f) dv = 0

and preserves the smoothness of the distribution function, i.e., there exist constants
C0, Ck > 0 such that

(3.19)







‖Pε(f)‖L1 ≤ C0 ‖f‖L1 ‖f‖L1

‖Pε(f)‖Hk
per

≤ Ck ‖f‖L1 ‖f‖Hk
per
, k ≥ 0,

where ‖·‖Hk
per

is the usual norm of the Sobolev space of periodic functionsHk
per(DL).

Moreover the perturbation is supposed to be small in the following sense: there
exists a function ϕ(ε) such that for any p ≥ 0,

(3.20) ‖Pε(f)‖Hp
per

≤ ϕ(ε),

where ϕ(ε) depends on ‖f‖Hp+k
per

for some k > 0, and goes to zero as ε goes to zero.

Finally in order to prove global existence with uniform regularity bounds, we
shall require additional assumptions on the relation between the equilibrium distri-
butions of the perturbed and unperturbed (periodized) Boltzmann equations, and
about the stability of the unperturbed equation (see the following statement).
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Let us therefore write the unperturbed equation for reference:

(3.21)







∂f

∂t
= QR(f, f), v ∈ DL, t > 0

f(0, v) = f0(v), v ∈ DL.

Let us state the general stability theorem:

Theorem 3.1. Let us consider a perturbed Boltzmann equation (3.17) in the torus
DL, where QR is defined by (3.13) or (3.16), and for a sequence of smooth balanced
perturbations

(

Pε = Pε(f)
)

ε>0
which satisfy (3.18)-(3.19)-(3.20).

Assume that the constant functions are equilibria of the perturbed equation (3.17)
(as for equation (3.21)) and that they are nonlinearly locally stable in any Hk

per(DL)
for equation (3.21).

We assume that f0 is a non-negative function, non zero everywhere, belonging to
Hk

per(DL) with k ∈ N and k > d/2. We consider a sequence of smooth balanced per-
turbations f0,ε of the initial datum for the perturbed problem (3.17) (non necessarily
positive) such that

∫

DL

f0,ε =

∫

DL

f0 and ‖f0 − f0,ε‖Hk
per

≤ ψ(ε),

with ψ(ε) goes to zero when ε goes to zero.
Then, there exists ε0 > 0 depending only on the collision kernel B, the truncation

R, the constants in (3.19)-(3.20) for the perturbation, and the L1(DL) and Hk
per(DL)

norms on f0, such that for any ε ∈ (0, ε0),

(i) there exists a unique global smooth solution fε to (3.17);
(ii) for any p < k, this solution belongs to Hp

per(DL) for all times with uniform
bounds as time goes to infinity;

(iii) this solution remains “essentially non-negative” uniformly in time, in the
sense that there is η(ε) > 0 (with η(ε) → 0 as ε goes to 0) such that the
non-positive part is η(ε)-small:

∀ t ≥ 0, ‖f−ε (t, ·)‖L∞ ≤ η(ε)

where f−ε denotes |fε|1{fε≤0};
(iv) this solution fε converges in Hp

per(DL) for any p < k, uniformly on any
[0, T ], T > 0, to the solution f of the unperturbed equation (3.21) when the
parameter ε goes to zero;

(v) the solution fε to (3.17) converges in Hk
per(DL) as time goes to infinity to

the constant equilibrium distribution in the torus prescribed by its mass,
and it is “asymptotically uniformly positive”, that is for t larger than some
fixed explicit time.

We split the proof into two main steps: first in Section 4 we prove existence,
uniqueness and smoothness of a solution on an arbitrary bounded time interval
(as the size of perturbation goes to 0). The main difficulty is to prove that non-
negativity of the distribution function is recovered in a certain sense. Then, in Sec-
tion 5 we study the asymptotic behavior and establish global stability in time. The
main issue is there to prove regularizing properties of the gain operator QR,+(f, f)
and entropy production estimates on QR. Finally in Section 6 we apply the previous
general results to spectral methods, and prove their stability and convergence.
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4. Proof of stability on an arbitrary bounded time interval

In this section we first give some technical lemmas and next establish a result
showing existence and uniqueness of a smooth solution on an arbitrary time interval
to the perturbed equation (3.17), depending on an assumption of smallness on the
size of the perturbation. Then, in Lemma 4.5 we prove the control of negative
values of f(t).

4.1. Preliminary results. We start this section by a classical result of Lp esti-
mates on the Boltzmann operator QR(g, h) given by

QR(g, h) :=

∫

CR

B(y, z)
(

g′⋆ h
′ − g⋆ h

)

dy dz.

Lemma 4.1. Let the collision kernel B satisfy the assumption (2.2)-(2.3)-(2.4).
Then, the periodized Boltzmann operator QR (defined by (3.13) or (3.16)) satisfies:
for all p ∈ [0,∞] there exists a constant Cp(R,B) > 0 such that

(4.1) ‖QR(g, h)‖Lp , ‖QR(h, g)‖Lp ≤ Cp(R,B) ‖g‖L1 ‖h‖Lp .

Proof. The proof is exactly similar to the case of the usual Boltzmann collision
operator for a collision kernel bounded with compact support, see for instance [20]
for a recent proof. �

Now, we prove smoothness of the solution to the perturbed problem (3.17) on a
fixed time interval under the assumption of an a priori bound on the L1 norm of
the solution.

Lemma 4.2. Let us consider a collision kernel B which satisfies the assumptions
(2.2)-(2.3)-(2.4) and a sequence of smooth balanced perturbations

(

Pε = Pε(f
ε)
)

ε>0

which satisfy (3.18)-(3.19)-(3.20), and let T > 0 be the length of the time interval.
Assume that f0 ∈ Hk(DL) for k ∈ N and that f(t) is a (non necessarily positive)
solution to (3.17) with initial datum f0, which satisfies the L1-estimate

(4.2) ∀ t ∈ [0, T ], ‖f(t)‖L1 ≤M.

Then, there exists a constant Ck(M) > 0, only depending on M , R, T and ‖f0‖Hk
per

such that

(4.3) ∀ t ∈ [0, T ], ‖f(t)‖Hk
per

≤ Ck(M).

Proof of Lemma 4.2. We proceed by induction on k ≥ 0. For the first stage k = 0,
we apply Lemma 4.1 with p = 2 and g = h = f and we use assumption (3.19) on
the perturbation:

1

2

d

dt
‖f(t)‖2

L2 ≤ ‖QR(f, f) + Pε(f)‖L2 ‖f(t)‖L2

≤ (C2(R,B) + C0) ‖f(t)‖L1 ‖f(t)‖2
L2 .

Hypothesis (4.2) provides a control on ‖f(t)‖L1 and we can apply Gronwall’s lemma
to get the result (4.3) at stage k = 0.

Let us now assume that (4.3) holds at stage k ≥ 0 and let us prove that it also
holds at stage (k + 1).
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Let us first recall a formula on the derivatives of QR: from the bilinearity of
QR and the translation invariance property of the periodized Boltzmann collision
operator, one has

∇vQ
R(f, f) = QR(∇vf, f) +QR(f,∇vf),

which yields a Leibniz formula at any order s ∈ N:
∥

∥QR(f, f)
∥

∥

2

Hs
per

=
∑

|ν|≤s

∥

∥∂νQR(f, f)
∥

∥

2

L2

≤ C
∑

|ν|≤s

∑

|µ|≤|ν|

(

ν
µ

)

∥

∥QR(∂µf, ∂ν−µf)
∥

∥

2

L2 .(4.4)

Now, using (4.4) with s = k + 1 we have
(4.5)
∥

∥QR(f, f)‖2
Hk+1

per
≤ C

∥

∥QR(f, f)
∥

∥

2

Hk
per

+C
∑

|ν|=k+1

∑

|µ|≤k+1

(

ν
µ

)

∥

∥QR(∂µf, ∂ν−µf)
∥

∥

2

L2 .

From Lemma 4.1 with p = 2 and g = ∂µf , h = ∂ν−µf together with the hypothe-
sis (4.3), we get

(4.6)
∥

∥QR(f, f)
∥

∥

Hk
per

≤ C(k,R) ‖f‖Hk
per

‖f‖Hk
per

≤ C2(k,R,B)Ck(M)2.

Then we split the last term of (4.5) in two parts for µ 6= 0 and µ = 0. For µ 6= 0,
we again apply Lemma 4.1 with p = 2 and g = ∂µf , h = ∂ν−µf and use the fact

that both derivatives |µ| =
∑d

i=1 |µi| ≤ k and |ν − µ| ≤ k:

(4.7)
∑

|ν|=k+1

∑

|µ|≤k+1

µ6=0

(

ν
µ

)

‖QR(∂µf, ∂ν−µf)‖2
L2 ≤ C3(k,R,B)Ck(M)2.

Finally, for µ = 0 we apply Lemma 4.1 with p = 2 and g = f , h = ∂νf :

(4.8)
∑

|ν|=k+1

‖QR(f, ∂νf)‖2
L2 ≤ C4(k,R,B) ‖f‖L1 ‖f‖Hk+1

per
.

Then, gathering inequalities from (4.6) to (4.8) and using the assumption (3.19) on
the smooth balanced perturbation Pε, we have

1

2

d

dt
‖f‖2

Hk+1
per

≤ ‖QR(f, f) + Pε(f)‖Hk+1
per

‖f‖Hk+1
per

≤ C (C2 + C3) Ck(M)2 ‖f‖Hk+1
per

+ C (C4 + C) ‖f‖L1 ‖f‖2
Hk+1

per
.

Finally using the control (4.2) on ‖f(t)‖L1 we apply Gronwall’s lemma to get (4.3)
at stage k + 1 : there exists a constant Ck+1(M), only depending on M , R, T and
‖f0‖Hk+1

per
such that

∀ t ∈ [0, T ], ‖f(t)‖Hk+1
per

≤ Ck+1(M).

�

Then, we establish existence and uniqueness of a smooth solution for the per-
turbed problem (3.17) on a small time interval [0, τ̄ ], τ̄ > 0.
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Proposition 4.3. Let us consider a collision kernel B which satisfies the as-
sumptions (2.2)-(2.3)-(2.4) and a sequence of smooth balanced perturbations

(

Pε =

Pε(f)
)

ε>0
which satisfy (3.18)-(3.19)-(3.20). We assume that f0 ∈ Hk

per(DL), for
k ∈ N and set

(4.9) M = 2 ‖f0‖L1 .

Then, there exists τ̄ = τ̄(M) > 0 such that for all ε > 0 the perturbed Boltzmann
equation (3.17) admits a unique solution (non necessarily positive) on the time
interval [0, τ̄ ], where the solution f satisfies

(4.10) ∀ t ∈ [0, τ̄ ], ‖f(t)‖L1 ≤ M.

Moreover, there exists a constant Ck(M) > 0, only depending on M , R, and
‖f0‖Hk

per
such that

(4.11) ∀ t ∈ [0, τ̄ ], ‖f(t)‖Hk
per

≤ Ck(M).

Proof of Proposition 4.3. First, we apply Lemma 4.1 with p = 1 and g = h = f
∥

∥QR(f, f)
∥

∥

L1 ≤ C1(R,B) ‖f‖L1 ‖f‖L1 .

Moreover, using assumption (3.19) on the perturbation, there exists C > 0 such
that for all ε > 0

‖Pε(f)‖L1 ≤ C ‖f‖2
L1 .

Therefore, we obtain a constant C > 0, only depending on R and the collision
kernel B such that

d

dt
‖f(t)‖L1 ≤ C ‖f‖2

L1 .

This implies that

‖f(t)‖L1 ≤ ‖f0‖L1

1 − C ‖f0‖L1 t
.

Now, setting M = 2 ‖f0‖L1 and from the latter inequality, we show that there exists
τ̄ < 1/(2C ‖f0‖L1) such that

∀ t ∈ [0, τ̄ ], ‖f(t)‖L1 ≤M,

which gives (4.10).
From the estimate in L1(DL) on the function f(t) on the time interval [0, τ̄ ],

we prove existence and uniqueness of a solution by Cauchy-Lipschitz theorem in
L1(DL) (because of the truncation on DL the collision kernel is a bounded bilinear
function from L1(DL)×L1(DL) to L1(DL)). Finally, from the bound (4.10) and the
smoothness assumption f0 ∈ Hk

per(DL) on the initial datum, we are able to apply
Lemma 4.2, which proves that there exists a constant Ck(M) > 0, only depending
on M , R, T and ‖f0‖Hk

per
such that

‖f(t)‖Hk
per

≤ Ck(M).

This concludes the proof. �

By iterating Proposition 4.3 and Lemma 4.2, we observe that uniform control on
the L1(DL) norm on an arbitrarily large time interval [0, T ] together with smooth-
ness on the initial datum will ensure existence and uniqueness of a smooth solution
on this time interval [0, T ]. Furthermore we observe that the control on the L1(DL)
norm is obvious for the classical Boltzmann equation thanks to the positivity and
mass preservations. Therefore, we shall now focus on the control of positivity of the
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solution, showing that the solution remains “almost positive” for arbitrarily large
time interval, hence allowing to produce uniform control on the L1(DL) norm for
arbitrarily large time interval.

We first state a technical lemma which takes advantage of the mixing property
of QR,+ in order to show spreading of the support of a characteristic function of a
ball.

Lemma 4.4. Let us consider a collision kernel B which satisfies the assumptions
(2.2)-(2.3)-(2.4) and a truncated operator QR defined by (3.13) or (3.16). Then for

all 0 < r <
√

2L, we have

QR,+(1B(v,r),1B(v,r)) ≥ C0 1B(v,µ r)

for some explicit µ = µ(R,L) > 1 and C0 > 0.

Remark: Note that for r ≥
√

2L, one has 1B(v,r) = 1 on the torus [−L,L]d and
there is nothing to prove.

Proof of Lemma 4.4. The invariance by translation allows to reduce the proof to
the case v = 0. The invariance by rotations implies that Ir := QR,+(1B(0,r),1B(0,r))
is radially symmetric. More precisely, taking a C∞ radially symmetric function φ
such that φ > 0 on B = B(0, r) and φ ≤ 1B on R

d, we have

• the function v −→ QR,+(φ, φ)(v) is continuous,
• for all v ∈ R

d, Ir(v) ≥ Q+(φ, φ)(v),
• for all v ∈ B, QR,+(φ, φ)(v) > 0.

As a consequence, for any ball B′ = B(0, r′) strictly included in B, there exists
κr′ > 0 such that Ir ≥ κr′ 1B′ .

In order to conclude, we just need to estimate the support of Ir close to the ball
B.

Let us fix r′ ∈ (0, r) and choose v′, v′⋆ ∈ B′ such that |v′| = |v′⋆| = r′ and

|v′ − v′⋆| = min{R;
√

2r′}. Then taking σ in B′ such that v, v⋆, v
′, v′⋆ is a square, we

find |v| =
√

2 r′ if
√

2 r′ ≤ R and

|v| =

[

(r′)2 − R2

4

]1/2

+
R

2

else. We define

µ0 = min
R/

√
2≤r′≤

√
2 L

[

1 − R2

4(r′)2

]1/2

+
R

2r′
= min

R/(2
√

2L)≤y≤1/
√

2

(

√

1 − y2 + y
)

∈ (1,
√

2).

This concludes the proof: we deduce that for any v such that |v| ∈ (r′, µ0 r
′), we

have
Ir(v) ≥ Q+(φ, φ)(v) > 0

since φ is strictly positive in the neighborhood of the v′, v′⋆ associated to v con-
structed above. Hence we deduce by taking r′ < r close to r that for any 0 < µ < µ0,
we have

Ir ≥ C(µ, r)1B(0,µ r)

for some constant C(µ, r) > 0 depending continuously on r. We can choose µ =
(1 + µ0)/2 for instance, and, for this choice of µ, we take

C0 = min
0≤r≤

√
2
C(µ, r) > 0.
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�

Finally we establish the following positivity result on the solution to the per-
turbed problem (3.17):

Lemma 4.5. Let us consider a collision kernel B which satisfies the assumptions
(2.2)-(2.3)-(2.4), a truncated operator QR defined by (3.13) or (3.16), and a se-
quence of smooth balanced perturbations

(

Pε = Pε(f)
)

ε>0
which satisfy (3.18)-

(3.19)-(3.20).
We assume that f0 is a non-negative function such that f0 ∈ Hk

per(DL) with
k ∈ N and k > d/2. Moreover, we define M = 2 ‖f0‖L1 and f0,ε a smooth balanced
perturbation of f0, which is non necessarily positive and such that

∫

DL

f0,ε =

∫

DL

f0 and ‖f0 − f0,ε‖Hk
per

≤ ψ(ε)

where ψ(ε) goes to zero when ε goes to zero. We also set τ̄ , Ck(M) > 0 the constant
defined in Lemma 4.2 such that from Proposition 4.3 we have

∀ t ∈ [0, τ̄ ], ‖f(t)‖Hk
per

≤ Ck(M).

Then, there exists τ̂ ∈ (0, τ̄) which only depends on M , R and the collision kernel
B, and there exists ε̂ > 0 which only depends on τ̂ , Ck(M), such that for all ε such
that 0 < ε < ε̂ and for any smooth solution Hk

per(DL) to the perturbed Boltzmann
equation (3.17) with perturbed initial datum f0,ε, we have

∀ v ∈ DL, fε(τ̂ , v) > 0.

Moreover there exists η(ε), which goes to 0 as ε goes to zero, such that the non-
positive part of f satisfies

(4.12) ‖f−(t)‖L∞ ≤ η(ε), t ∈ [0, τ̂ ],

Proof of Lemma 4.5. Let τ̄ > 0 be the length of the time interval for which there
exists a smooth solution to the perturbed Boltzmann equation (3.17) with perturbed
initial datum f0,ε such that (in the following we omit the subscript ε for the solution)

‖f(t)‖Hk
per

≤ Ck(M), t ∈ [0, τ̄ ].

We split the proof into three steps: first, we give a classical estimate on the loss
term LR(f), second we establish an estimate of f− with respect to the amplitude
of the perturbation Pε(f), and third we use the spreading properties of QR,+(f, f)
to prove that there exists τ̂ ∈ (0, τ̄) such that

f(τ̂ , v) > 0, v ∈ DL.

Step 1. Applying Proposition 4.3 for the control of ‖f(t)‖L1 on the time interval
[0, τ̄ ], we get

(4.13) ‖LR(f)‖L∞ ≤ C(R,B) ‖f‖L1 ≤ C(R,B)M,

which gives for all t ∈ [0, τ0], with τ0 = min {τ̄ , ln 2/(M C(R,B))}

(4.14) 2 ≥ eM C(R,B) t ≥ e−
R

t

0
LR(f(s)) ds ≥ e−M C(R,B) t ≥ 1

2
.
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Step 2. Let us split f as f = f+ − f−, with f± = max{0,±f} and use the
monotonicity of QR,+ for nonnegative distribution functions; it follows that

QR,+ (f, f) = QR,+
(

f+ − f−, f+ − f−
)

≥ −
[

QR,+
(

f+, f−
)

+QR,+
(

f−, f+
)]

.(4.15)

On the time interval [0, τ0], we apply Proposition 4.3 to estimate ‖f(t)‖L1 and since
‖f+(t)‖L1 ≤ ‖f(t)‖L1 ; we get from Lemma 4.1

(4.16) ‖QR,+
(

f+, f−
)

‖L∞ , ‖QR,+
(

f−, f+
)

‖L∞ ≤ C∞(R,B)M ‖f−(t)‖L∞ ,

which yields using (4.15)

(4.17) QR,+ (f, f) ≥ −2C∞(R,B)M ‖f−(t)‖L∞ .

Thus from the Duhamel representation of the solution f , we have for v ∈ DL,

f(t, v) = f0,ε(v) e
−

R

t

0
LR(f(s))(v) ds

+

∫ t

0

[

QR,+(f(s), f(s)) + Pε(f(s))
]

(v) e−
R

t

s
LR(f(u))(v) du ds,

≥ −2ψ(ε) −
∫ t

0

[

QR,+(f(s), f(s)) + Pε(f(s))
]

(v) e−
R

t

s
LR(f(u))(v) du ds.

Hence, we get from the lower estimate (4.17) of QR,+(f, f) and the smallness as-
sumption (3.20) of the perturbation Pε(f), for all v ∈ DL

f−(t, v) = max{0,−f(t, v)} ≤ 2ψ(ε)+2

∫ t

0

(

2C∞(R,B)M ‖f−(s)‖L∞ + ϕ(ε)
)

ds.

Finally, we take the supremum in v ∈ DL and apply Gronwall’s lemma to get for
any 0 ≤ τ ≤ τ0

‖f−(t)‖L∞ ≤
(

2ψ(ε) + 2 τ0 ϕ(ε)
)

e4 C∞(R,B) M t := η(ε), t ∈ [0, τ0],

which proves (4.12) on the time interval [0, τ0].

Step 3. Let us prove that there exists τ̂ ∈ (0, τ0) such that

f(τ̂ , v) > 0, v ∈ DL.

We start again with the Duhamel representation of the solution

f(t, v) = f0,ε(v) e
−

R

t

0
LR(f(s))(v) ds

+

∫ t

0

[

QR,+(f(s), f(s)) + Pε(f(s))
]

(v) e−
R

t

s
LR(f(u))(v) du ds,

but we now take into account the fact that the first term is essentially positive and
we use the spreading property of the operator QR,+ (Lemma 4.4).

On the one hand since the initial datum is smooth enough (k > d/2 is large
enough such that f0,ε is Hölder), there exists an explicit δ > 0 depending on Ck(M)
such that for ε small enough, there exists v0 ∈ DL such that

f0,ε(v) ≥ η

2
1B(v0,δ)(v) − ψ(ε), with η =

‖f0‖L1

(2L)d
.

On the other hand, using the lower bound on the gain operator (4.17) and the
estimate (4.12) of f−(t), it gives

QR,+ (f, f) ≥ −2C∞(R,B)M η(ε)
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Finally, using (4.14) and the smallness assumption on Pε(f), it first yields for any
0 < τ < τ0

f(t, v) ≥ A0 1B(v0,δ)(v) − ϕ1(ε),

with

(4.18) A0 :=
η

4
, ϕ0(ε) := 2 τ0

(

2C∞(R,B)M η(ε) + ϕ(ε)
)

+ ψ(ε).

Now we choose ε1 > 0 small enough such that

0 <
A0

2
≤ A0 − ϕ0(ε1) ⇐⇒ ϕ0(ε1) ≤ A0

2
.

Thus, we get on any time interval [0, τ ] ⊂ [0, τ0]

f+(t, v) ≥ A0

2
1B(v0,δ)(v).

Hence, using the spreading properties of the operator QR,+(f, f) of Lemma 4.4 and
the monotonicity of QR,+ for nonnegative distribution functions, it follows that

QR,+(f+, f+) ≥ A2
0

4
QR,+

(

1B(v0,δ),1B(v0,δ)

)

≥ A2
0

4
C0 1B(v0,µ δ).

Next, we again use the uniform bounds previously established in (4.16) onQR,+(f+, f−)
and QR,+(f−, f+):

QR,+(f, f) ≥ QR,+(f+, f+) −QR,+(f−, f+) −QR,+(f+, f−)

≥ A2
0

4
C0 1B(v0,µ δ) − 2C∞(R,B)M

(

η(ε) + ϕ0(ε)
)

.

Finally, from the smallness assumption (3.20) of the perturbation Pε(f), it yields
for t ∈ [τ/2, τ ] and with (4.14)

f(t, v) ≥ −ψ(ε) +

∫ t

0

[

QR,+(f(s), f(s)) + Pε(f(s))
]

(v) e−
R

t

s
LR(f(u))(v) du ds,

≥ τ

2

A2
0

4
C0 1B(v0,µ δ) − 2 τ

[

2C∞(R,B)M
(

η(ε) + ϕ0(ε)
)

+ ϕ(ε)
]

− ψ(ε)

= A1 1B(v0,µ δ) − ϕ1(ε)

with

A1 =
τ

8
A2

0 C0, ϕ1(ε) := 2 τ0
[

2C∞(R,B)M
(

η(ε) + ϕ0(ε)
)

+ ϕ(ε)
]

− ψ(ε).

Now, we proceed by induction: assume that there exists (Aj , εj , ϕj) such that
on the time interval [τ − τ/2j , τ ] ⊂ [0, τ0] and for ε ∈ (0, εj), we have

f(t, v) ≥ Aj 1B(v0,µj δ)(v) − ϕj(ε),

where

Aj :=
(τ

8

)2j−1

A2j

0 C2j−1−1
0

and ϕj(ε) → 0 as ε→ 0.
Using the same method as before, we first set εj+1 such that

f+(t, v) ≥ Aj

2
1B(v0,µj δ)
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and prove that for t ∈ [τ − τ
2j+1 , τ ]

QR,+(f, f) ≥
(

Aj

2

)2

C0 1B(v0,µj+1 δ) − 2C∞(R,B)M
(

η(ε) + ϕj(ε)
)

.

Then, from the Duhamel formula and the smallness assumption of Pε(f), we finally
get the following lower bound

f(t, v) ≥ Aj+1 1B(v0,µj+1 δ) − ϕj+1(ε),

with

Aj+1 =
τ

8
A2

j C0, ϕj+1(ε) := 2 τ0
[

2C∞(R,B)M
(

η(ε) + ϕj(ε)
)

+ ϕ(ε)
]

−ψ(ε).

Since µ > 1, the ball B(v0, µ
j δ) eventually recovers the periodic box [−L,L]d

i.e., for some J large enough: [−L,L]d ⊂ B(v0, µ
J δ), and for all t ∈ [τ − τ

2J , τ ], by
applying J ’s times the previous induction we get for ε ∈ (0, εJ):

f(t, v) ≥ AJ 1B(v0,µJ δ)(v) − ϕJ(ε).

Finally, up to reducing ε further, we have proved that there exists (τ̂ , ε̂) which
only depend on the collision kernel B, the initial datum f0, L and the perturbation
function ϕ = ϕ(ε) such that for all 0 < ε < ε̂,

∀ v ∈ DL, f(τ̂ , v) > 0.

�

4.2. Existence and regularity on a bounded time interval.

Proposition 4.6. Let us consider a fixed time T > 0, a collision kernel B which
satisfies the assumptions (2.2)-(2.3)-(2.4), a truncation QR defined by (3.13) or
(3.16), and a sequence of smooth balanced perturbations

(

Pε = Pε(f)
)

ε>0
which

satisfy (3.18)-(3.19)-(3.20).
We assume that f0 is a non-negative function, not zero everywhere, and such

that f0 ∈ Hk
per(DL) with k ∈ N and k > d/2. We define M = 2 ‖f0‖L1 and (f0,ε)ε>0

a sequence of smooth perturbations of f0 (which is non necessarily positive) such
that

∫

DL

f0,ε =

∫

DL

f0 and ‖f0 − f0,ε‖Hk
per

≤ ψ(ε)

where ψ(ε) goes to zero when ε goes to zero.
Then, there exists ε̂ > 0, which only depends on the Hk

per(DL) and L1(DL) norms
of f0, such that for all ε ∈ (0, ε̂),

(i) there is a unique smooth solution fε = fε(t, ·) on [0, T ] to the perturbed
equation (3.17) with initial datum f0,ε;

(ii) this belongs to Hk
per(DL) (with bound growing at most exponentially);

(iii) there is some explicit η(ε) > 0 (with η(ε) → 0 as ε goes to 0) such that the
non-positive part is η(ε)-small:

∀ t ∈ [0, T ], ‖f−ε (t, ·)‖L∞ ≤ η(ε)

where f−ε denotes max{0,−fε};
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(iv) this solution satisfies for any p < k

∀ t ∈ [0, T ], ‖f(t, ·) − fε(t, ·)‖Hp
per

≤ ϕ̄(ε)

where f(t, ·) is the solution of unperturbed periodized Boltzmann equation
(3.21), and ϕ̄(ε) is another explicit function which goes to zero as ε goes to
zero. Hence up to reducing ε, the perturbed solution remains close to the un-
perturbed solution on the finite time interval on which we have constructed
it.

Proof. We set

(4.19) Mk(T ) := ‖f0‖Hk
per
eC M T .

First, applying Proposition 4.3 we have proven that there exists a small τ̄ > 0 such
that the perturbed Boltzmann equation (3.17) admits an unique smooth solution
on the time interval [0, τ̄ ] with

‖fε(t)‖L1 ≤ M

and

‖fε(t)‖Hk
per

≤ Mk(τ̄) ≤Mk(T ).

Moreover from Lemma 4.5, there exist τ̂ ≤ τ̄ and ε̂ > 0, only depending on M ,
Mk(τ̄) < Mk(T ), R and the collision kernel B such that for all 0 < ε < ε̂,

∀ v ∈ DL, fε(τ̂ , v) > 0,

‖f−(t)‖L∞ ≤ η(ε), t ∈ [0, τ̂ ].

and

∀ t ∈ [0, τ̂ ], ‖f(t)‖Hk
per

≤ ‖f0‖Hk
per
eC M 2 τ̂ .

Then, from the preservation of mass under the action of QR and Pε:
∫

DL

QR(fε, fε)(v) dv =

∫

DL

Pε(fε)(v) dv = 0,

we have that
∫

DL

fε(τ̂ , v) dv =

∫

DL

f0(v) dv.

Since f0 is a nonnegative function, it gives that at time τ̂

‖fε(τ̂)‖L1 = ‖f0‖L1 ,

and on the time interval t ∈ [0, τ̂ ] we have

‖fε(t)‖L1 ≤ M and ‖fε(t)‖Hk
per

≤ Mk(T ).

Therefore, we consider the perturbed Boltzmann equation (3.17) starting from fε(τ̂)
as initial data. On the time interval [τ̂ , 2 τ̂ ], we apply Proposition 4.3 and get that

‖fε(t)‖L1 ≤ 2 ‖fε(τ̂)‖L1 = 2 ‖f0‖L1 = M, ∀ t ∈ [τ̂ , 2 τ̂ ]

and

‖fε(t)‖Hk
per

≤ ‖fε(τ̂)‖Hk
per
eC M (2 τ̂ − τ̂)

≤ ‖f0‖Hk
per
eC M 2 τ̂

≤ ‖f0‖Hk
per
eC M T = Mk(T ), ∀ t ∈ [τ̂ , 2 τ̂ ].



20 FRANCIS FILBET AND CLÉMENT MOUHOT

Moreover, since τ̂ only depends on M , Mk(T ), B and R, we can again apply
Lemma 4.5 on the time interval [τ̂ , 2 τ̂ ], which yields that

fε(2 τ̂) > 0.

We finally proceed by induction to prove existence and uniqueness of a smooth
solution fε of the perturbed Boltzmann equation (3.17) on the time interval [0, T ],
which proves assertions (i), (ii) and (iii).

To prove (iv), we compute the difference between the solution f(t) to the unper-
turbed problem (3.21) and the solution fε(t) to (3.17):

∂(f − fε)

∂t
=

1

2

(

QR(f − fε, f + fε) +QR(f + fε, f − fε)
)

+ Pε(fε).

Then, using the smoothness of f and fε, we have from Lemma 4.2 for any p < k

‖QR(f−fε, f+fε)‖Hp
per
, ‖QR(f+fε, f−fε)‖Hp

per
≤ Cp(M) ‖f+fε‖Hp

per
‖f−fε‖Hp

per

and since the perturbation is small (assumption (3.20))

‖Pε(f)‖Hp
per

≤ ϕ(ε),

it yields that for all t ∈ [0, T ]

‖f(t) − fε(t)‖Hp
per

≤ ϕ̄(ε),

for some function ϕ̄(ε) going to zero as ε goes to zero. �

5. Asymptotic behavior and global in time stability

In this section we shall study the asymptotic behavior of the (unperturbed)
periodized Boltzmann equation (3.21) based on a regularity study (in the spirit of
[20]) and the entropy – entropy production theory (mainly relying on the method
developed in [34]). Finally on the basis of these results we shall prove a global in
times stability result for the perturbed equation (3.17).

5.1. Regularity study of the periodized Boltzmann equation. Let us prove
the following result

Proposition 5.1. Let us consider 0 ≤ f0 ∈ L1(DL) such that f0 ∈ Hk
per(DL) for

some k ≥ 0. Then there is a constant C > 0 depending on the L1 and Hk
per(DL)

norms of f0 such that the unique global non-negative solution (f(t))t≥0 to the peri-
odized equation (3.21) satisfies

∀ t ≥ 0, ‖f(t)‖Hk
per

≤ C.

We proceed as in [20]. In particular we shall extend Lions regularity result on
Q+ to the truncated case QR,+ [16, 17]. Hence we shall first prove the regularity
property on the gain operator when the collision kernel is smooth and compactly
supported, avoiding cancellations at zero relative velocities. Then, we shall include
the non-smooth part of the kernel using the loss operator.

We shall split the collision kernel into a smooth and a non-smooth part. As a
convention, we shall use subscripts “s” for smooth and “ns” for the non-smooth
parts. In terms of the classical truncation (3.13) we set

{

BR
s (|g|, cos θ) = B(|g|, cos θ) χR

η (|g|) ζη(|g|) Θη (cos θ) ,

BR
ns(|g|, cos θ) = BR(|g|, cos θ) − BR

s (|g|, cos θ),
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where χR
η (g) is the mollified C∞ version of 1|g|≤R, ζη(g) is the mollified C∞ version

of 1|g|≥η, and Θη is a C∞ function on [−1, 1] which is 1 on −1 + 2η ≤ u ≤ 1 − 2η,
and 0 in [−1,−1+η) and (1−η, 1] (the parameter η is the mollification parameter).

In terms of the “fast” truncation (3.16) we set










BR
s (|y|, |z|) = B(|y|, |z|) χR

η (|z|) χR
η (|y|) ζη(|z + y|) Θη

(

|y|√
|y|2+|z|2

)

,

BR
ns(|y|, |z|) = BR(|y|, |z|) − BR

s (|y|, |z|),
with the same notations.

We deduce the following decomposition of the collision operator:

QR,+ = QR,+
s +QR,+

ns ,

where for instance, with the variables from the “fast” truncation

(5.1) QR,+
s (f, f) =

∫

y∈Rd

∫

z∈Rd

BR
s (|y|, |z|) δ(y · z) f(v + z) f(v + y) dy dz.

Under the assumption that both Φ and b defined in (2.2) are smooth, the regularized
truncature introduced above ensures that there exist two functions ΦR

η and bRη such
that

(5.2)

{

BR
η (|z|, cos θ) = ΦR

η (|z|) bRη (cos θ)

ΦR
η ∈ C∞

0 (Rd\{0},R), bRη ∈ C∞
0 ([−1, 1],R).

In the following lemma we shall prove the regularity property of QR,+
s .

Lemma 5.2. Let BR
η (|v − v⋆|, cos θ) satisfy the assumption (2.2)-(2.4) and (5.2).

Then, for all r ∈ R
+

∥

∥QR,+
s (f, f)

∥

∥

H
r+

d−1
2

per

≤ Creg(r,BR
s ) ‖f‖L1 ‖f‖Hr

per
,

where the constant Creg(r,BR
s ) only depends on r and on the collision kernel.

Proof. We closely follow the proof given by Lions [16, 17] and simplified and then
reformulated in [35, 20]. Again the preservation of the translation invariance by the
truncation is fundamental. Starting from the collision operator in the form (5.1)
and performing a change of variable we get for v ∈ DL

QR,+
s (f, f) =

∫

Rd×Rd

B̃R
s (|v′⋆ − v′|, |v′ − v|) δ ((v′⋆ − v) · (v′ − v)) f(v′⋆) f(v′) dv′⋆ dv

′,

where B̃R
s only depends on BR

s . Then we set [36]

Tg(y) =

∫

y+y⊥

B̃R
s (|z|, |y|) g(z) dz, τzg(·) = g(· − z),

where

y⊥ =
{

z ∈ R
d, zt · y = 0

}

and easily get for v ∈ DL

QR,+
s (f, f) =

∫

Rd

f(v′) (τv′ ◦ T ◦ τ−v′) f(v) dv′.

Now, we want to estimate Sobolev norms of QR,+
s as a function defined in the torus

DL. Applying the Fubini theorem with the discrete and Lebesgue measures and the
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Cauchy-Schwarz inequality, it leads to estimate the Sobolev norms of the Radon
transform T on the torus DL

(5.3)
∥

∥QR,+
s (f, f)

∥

∥

2

H
r+

d−1
2

per

≤ ‖f‖L1

∫

Rd

|f(v′)| ‖ τv′ ◦ T ◦ τ−v′ f ‖2

H
r+

d−1
2

per

dv′.

On the one hand, since the kernel B̃R
s is compactly supported in y and z, the

operator T maps periodic functions g to a compactly supported function Tg with
supp (Tg) ⊂ BR ⊂ DL. Then, we can consider Tg as a function in the whole space
R

d .
On the other hand, using the regularized truncations χR

η and Θη and the smooth-

ness of Φ and b in (2.2), it yields that BR
η = ΦR

η (|v − v⋆|) bRη (cos θ) with

ΦR
η ∈ C

∞
o (R,R), bRη ∈ C

∞
o ([−1, 1],R).

Then, we can directly apply the result in [20], where the authors proved the follow-
ing regularity estimates on the Radon transform T for smooth kernels

‖Tg‖
Hr+

d−1
2

≤ Creg(r,BR
s ) ‖g‖Hr

for a function g defined in R
d. However in the proof of the latter inequality, we

can replace g by the smooth and compactly supported function g χR
η for which

supp
(

χR
η g
)

⊂ BR ⊂ DL. Thus, for all g defined in the torus DL, we get

(5.4) ‖Tg‖
H

r+
d−1
2

per

= ‖Tg‖
Hr+

d−1
2

≤ Creg(r,BR
s ) ‖g‖Hr

per
.

Finally gathering (5.3) and (5.4), we obtain the result
∥

∥QR,+
s (f, f)

∥

∥

H
r+

d−1
2

per

≤ Creg(r,BR
s )‖f‖L1 ‖f‖Hr

per
.

�

Corollary 5.3. Let BR
η (|v−v⋆|, cos θ) satisfy the assumption (2.2)-(2.4) and (5.2).

Then, for all p ∈ (1,∞)

‖QR,+
s (f, f)‖Lq ≤ Creg(r,BR

s ) ‖f‖L1 ‖f‖Lp ,

with

q =







p

2 − 1
d + p

(

1
d − 1

) if p ∈ (1, 2]

p d if p ∈ [2,∞).

Proof. It is a direct consequence of Sobolev embedding and interpolation between
Lp spaces. �

Now we extend the regularity of QR,+ to general non-smooth kernels.

Lemma 5.4. Let B be a collision kernel satisfying (2.2)-(2.4). Then, for all p > 1,
there exist constants C, κ and q < p (q only depending on p and d), such that for
all δ > 0, and for all measurable function f

∥

∥QR,+(f, f)
∥

∥

Lp ≤ C δ−κ ‖f‖L1 ‖f‖Lq + δ ‖f‖L1 ‖f‖Lp .

Proof. We use a decomposition approach and split the operator QR,+ as the sum
of a smooth part and a non-smooth part

QR,+ = QR,+
s +QR,+

ns ,
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where QR,+
s is given by (5.1). Then, applying Corollary 5.3 we have for all p ∈

(1,∞), there exist q < p, namely (the role of q and p are exchanged here with
respect to Corollary 5.3)

q =



















(2d− 1)p

d+ (d− 1)p
if p ∈ (1, 2d]

p

d
if p ∈ [2d,∞).

and Creg(η,BR
s ), depending on the the regularization parameter η and blowing-up

polynomially when η → 0 such that

(5.5)
∥

∥QR,+
s (f, f)

∥

∥

Lp ≤ Creg(η,BR
s ) ‖f‖L1 ‖f‖Lq .

Now, we need to estimate the remainder QR,+
ns = QR,+ − QR,+

s . To this aim, we
split it as

QR,+
ns (f, f) = QR,+

1 (f, f) +QR,+
2 (f, f) +QR,+

3 (f, f) +QR,+
4 (f, f),

with

QR,+
1 (f, f) =

∫

Rd×Rd

B(|y|, |z|) δ(y · z)χR(|z|)
[

χR(|y|) − χR
η (|y|)

]

ζη Θη f
′ f ′⋆ dy dz,

QR,+
2 (f, f) =

∫

Rd×Rd

B(|y|, |z|) δ(y · z)χR
η (|y|)

[

χR(|z|) − χR
η (|z|)

]

ζη Θη f
′ f ′⋆ dy dz,

QR,+
3 (f, f) =

∫

Rd×Rd

B(|y|, |z|) δ(y · z)χR
η (|z|)χR

η (|y|) ζη
[

1 − Θη

(

|y|
√

|y|2 + |z|2

)]

f ′ f ′⋆ dy dz

QR,+
4 (f, f) =

∫

Rd×Rd

B(|y|, |z|) δ(y · z)χR
η (|z|)χR

η (|y|) Θη (1 − ζη) f ′ f ′⋆ dy dz.

On the one hand, we give a first estimate in L1(DL) applying directly the estimate
in Lemma 4.1:

(5.6) ‖QR,+
α ‖L1 ≤ C1(R,B) ‖f‖L1‖f‖L1 , α ∈ {1, 2, 3, 4}.

On the other hand, we treat for instance the operator QR,+
1 (f, f) and have for a

fixed v ∈ DL
∣

∣

∣
QR,+

1 (f, f)(v)
∣

∣

∣

≤
∫

Rd×Rd

B(|y|, |z|) δ(y · z)χR(|z|)
∣

∣χR(|y|) − χR
η (|y|)

∣

∣ |f ′| |f ′⋆| dy dz

≤
∫

DL

f ′
(
∫

Rd

B(|v − v′⋆|, |v − v′|) δ((v − v′⋆) · (v − v′))

×
∣

∣χR(|v − v′⋆|) − χR
η (|v − v′⋆|)

∣

∣ |f ′⋆| dv′⋆
)

dv′

≤ ‖f‖L1 ‖f‖L∞ sup
y∈Rd

(
∫

z∈ y⊥

BR(|z|, |y|)
∣

∣χR(|z|) − χR
η (|z|)

∣

∣ dz

)

≤ C∞(R,B) η ‖f‖L1 ‖f‖L∞ .

Using similar techniques, we prove that for α ∈ {1, 2, 3}
(5.7) ‖QR,+

α ‖L∞ ≤ C∞(R,B) η ‖f‖L1‖f‖L∞ .
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For the fourth term, we have using the cancellation of the collision kernel B at
small relative velocities as |v − v∗|γ :

(5.8) ‖QR,+
4 ‖L∞ ≤ C∞(R,B) ηγ ‖f‖L1‖f‖L∞ .

Finally, by the Riesz-Thorin interpolation Theorem, from (5.7-5.8) and (5.6), we
deduce that for p ∈ [1,+∞] there exist Cp(R,B) > 0 and β ∈ (0, 1] such that

(5.9) ‖QR,+
α (f, f)‖Lp ≤ Cp(R,B) ηβ‖f‖L1 ‖f‖Lp .

To sum up we have obtained for all p > 1 and η > 0, there exist C > 0, q < p,
κ0 > 0 and β ∈ (0, 1) such that

‖QR,+(f, f)‖Lp ≤ C η−κ0 ‖f‖L1 ‖f‖Lq + ηβ ‖f‖L1 ‖f‖Lp .

The conclusion follows by choosing η small enough. �

Proof of Proposition 5.1. Now the proof of the propagation of regularity bounds
is done exactly as in [20, Section 4 and Subsections 5.1 & 5.2] (except for the
simplification that there is no moments estimates to take care of). �

5.2. Entropy – entropy production inequalities. The periodized equation
(3.21) preserves non-negativity, and for a non-negative distribution f one can for-
mally compute an H theorem (see [14]):

d

dt
H(f(t)) = −D(f(t)) ≤ 0

with

H(f) =

∫

DL

f log f dv

and

D(f) = −
∫

DL

QR(f, f) log f dv =
1

4

∫

DL×CR

(f ′f ′⋆−ff⋆) log

(

f ′f ′⋆
ff⋆

)

B(y, z) dv dy dz.

Then we can state the result which relates the entropy functional H and the
entropy production functional D:

Proposition 5.5. We consider the periodized Boltzmann collision operator for
some truncation parameter R >

√
2L, and we assume that the collision kernel

satisfies B ≥ b0 |v − v⋆|γ , γ > 0, for |v − v⋆| ≤ R. Then for any η, α > 0 there is
k ∈ N and M,K > 0 (depending only on η, α, b0, γ, R) such that

D(f) ≥ KH(f |m∞)1+η, m∞ =
ρ

|DL|
, ρ =

∫

DL

f dv,

for any α ≤ f ∈ L1(DL) with Hk
per(DL) norm bounded by M .

Remarks:

1. Note that this is a functional inequality independent of the flow of the Boltz-
mann equation itself.

2. In the case of the classical Boltzmann equation with v ∈ R
d the entropy

production functional controls the relative entropy according to the Maxwellian
equilibrium. Here the equilibrium is a constant, defined by the mass of f divided
by the total volume of the torus.
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We shall adapt the method developed in [32] or later in [34, Proof of Theo-
rem 2.1]. In the first step, we treat the case of a collision kernel B which is uni-
formly bounded from below. In this case we prove the equivalent of the so-called
Cercignani conjecture in the context of the Boltzmann operator periodized in the
velocity space.

Remark: Note that the assumption R ≥
√

2L allows to replace in the bound from
below, when needed, the truncation by the integration over the whole torus.

Lemma 5.6. Let us consider a collision kernel B which satisfies B ≥ b0 > 0, a
truncation QR defined by (3.13) or (3.16), together with R ≥

√
2L. Then there is

an explicit constant K such that for any 0 ≤ f ∈ L1(DL) we have

D(f) ≥ KH(f |m∞).

Proof. We proceed in several steps.

Step 1. Since the entropy production functional is monotonous in terms of the
collision kernel B, it is no restriction to replace B by 1 in the sequel for the estimate
from below. Moreover it is always possible to bound from below the truncation
|v − v′| ≤ R and |v − v′⋆| ≤ R (in case we performed the truncation for the fast
spectral method) by the classical truncation |v − v⋆| ≤ R.

Step 2. Using Jensen’s inequality on the sphere integration (coming back to the
classical truncation by the previous remark) and the joint convexity of the function
(X,Y ) 7→ (X − Y ) (logX − log Y ) on R+ × R+ we compute

D(f) ≥ C

∫

DL

∫

B(v,R)

(F −G) log
F

G
dv⋆ dv =: D̄(f)

where F = f f⋆ and

G =
1

|Sd−1|

∫

Sd−1

f ′ f ′⋆ dσ.

Let us study more precisely the function G. As it was already observed by Boltz-
mann himself, the function G only depends on v+v⋆ and (|v|2+ |v⋆|2)/2. Moreover,
here it is also periodic on the torus DL since f is periodic. It implies (when f is
smooth, but we can always use mollifications to relax this assumption here) that it
in fact only depends on v + v⋆.

Step 3. Let us denote by St the semi-group of the heat equation on L1(DL) (and
for brevity we keep the same notation for its semi-group in L1(D2

L)). Then the
semi-group is compatible with the symmetries in the sense that:

St(f f⋆) = St(f) St(f⋆)

and StG only depends on v + v⋆ (this follows from a straightforward computation
using the explicit formula for the Green kernel of St).

Step 4. Then we have the following computation as in [34]:

d

dt

∣

∣

∣

∣

∣

t=0

[

St

(

(F −G) log
F

G

)

− (StF − StG) log
StF

StG

]

=

∣

∣

∣

∣

∇F
F

− ∇G
G

∣

∣

∣

∣

2

(F +G),

where ∇ denotes the gradient with respect to (v, v⋆) ∈ R
2d.
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Then we bound from below the truncation 1B(v,R)(v⋆) by the integration over
the whole torus for v⋆ (since R is large enough), and we compute

− d

dt

∣

∣

∣

∣

∣

t=0

D̄(Stf) =

∫

DL×DL

∣

∣

∣

∣

∇F
F

− ∇G
G

∣

∣

∣

∣

2

(F +G) dv dv⋆

−
∫

DL×DL

∆

(

(F −G) log
F

G

)

dv dv⋆

=

∫

DL×DL

∣

∣

∣

∣

∇F
F

− ∇G
G

∣

∣

∣

∣

2

(F +G) dv dv⋆.

We deduce by the semi-group property that for all t > 0

− d

dt
D̄(Stf) ≥

∫

DL×DL

∣

∣

∣

∣

∇StF

StF
− ∇StG

StG

∣

∣

∣

∣

2

(StF + StG) dv dv⋆

and therefore

D̄(f) ≥
∫ +∞

0

(

∫

DL×DL

∣

∣

∣

∣

∇StF

StF
− ∇StG

StG

∣

∣

∣

∣

2

(StF + StG) dv dv⋆

)

dt.

Step 5. We now use the fact that the operator

P :

{

R
d × R

d 7→ R
d

(A,B) 7→ (A−B)

is bounded from DL ×DL to DL. Hence
∣

∣

∣

∣

∇StF

StF
− ∇StG

StG

∣

∣

∣

∣

2

≥ C1

∣

∣

∣

∣

P∇StF

StF

∣

∣

∣

∣

2

since P∇StG = ∇vG−∇v⋆
G = 0 from the fact that G only depends on v+v⋆. We

deduce

D̄(f) ≥ C

∫ +∞

0

(

∫

DL×DL

∣

∣

∣

∣

∇vStf

Stf
−
(∇v⋆

Stf

Stf

)

⋆

∣

∣

∣

∣

2

(Stf Stf⋆ + StG) dv dv⋆

)

dt

and thus (dropping the term StG)

D̄(f) ≥ C

∫ +∞

0

(

∫

DL×DL

∣

∣

∣

∣

∇vStf

Stf
−
(∇v⋆

Stf

Stf

)

⋆

∣

∣

∣

∣

2

Stf Stf⋆ dv dv⋆

)

dt.

Step 6. From now on the proof departs slightly more from [34]: it is simpler
since we are in the torus and we have more symmetries. Let us show the following
functional inequality: for any smooth non-negative function h,

∫

DL×DL

∣

∣

∣

∣

∇vh

h
−
(∇v⋆

h

h

)

⋆

∣

∣

∣

∣

2

hh⋆ dv dv⋆ ≥ C2 I(h|m∞)

where

I(h|g) =

∫

DL

h

∣

∣

∣

∣

∇v log
h

g

∣

∣

∣

∣

2

dv.
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The proof only amounts to Jensen’s inequality on the variable v⋆: since
∫

DL
h dv =

ρ,
∫

DL×DL

∣

∣

∣

∣

∇vh

h
−
(∇v⋆

h

h

)

⋆

∣

∣

∣

∣

2

hh⋆ dv dv⋆ ≥ C

ρ

∫

DL

∣

∣

∣

∣

∫

∈DL

(∇vh

h
−
(∇v⋆

h

h

)

⋆

)

h⋆ dv⋆

∣

∣

∣

∣

2

h dv.

Then as
∫

DL

∇h⋆ dv⋆ = 0

we deduce
∫

DL×DL

∣

∣

∣

∣

∇vh

h
−
(∇v⋆

h

h

)

⋆

∣

∣

∣

∣

2

hh⋆ ≥ C

∫

DL

∣

∣

∣

∣

∇vh

h

∣

∣

∣

∣

2

h dv = C I(h|m∞).

Step 7. So far we have proved

D(f) ≥ D̄(f) ≥ C3

∫ +∞

0

I(Stf |m∞) dt.

Then a trivial computation shows that

d

dt
H(Stf |m∞) = −I(Stf |m∞).

Moreover from the explicit formula for St we have

H(Stf |m∞)
t→+∞−−−−→ 0

and thus we finally obtain

D(f) ≥ D̄(f) ≥ C3 (H(S0f |m∞) − 0) ≥ C3H(f |m∞).

�

Now we are ready to prove Proposition 5.5. Since we deal with a bounded
velocity domain we do not care about possible decay of the collision kernel at large
relative velocity (as for soft potentials) and the only cancellation we have to treat
is for zero relative velocities.

Proof of Proposition 5.5. We only mention the difference as compared to the pre-
vious proof.

The reduction to a collision kernel uniformly bounded from below studied in
Lemma 5.6 is done as in [34][Theorem 4.1]: one write for some small δ > 0

B(|v − v⋆|) ≥ δγ
(

B0 − 1B(0,δ)(|v − v⋆|)
)

where B0 ≥ b0 > 0 and we deduce

D(f) ≥ δγ
(

D0(f) − D̃δ(f)
)

where D0 is the entropy production functional corresponding to B0, and

D̃δ =
1

4

∫

DL×DL

∫

Sd−1

(f ′f ′⋆ − ff⋆) log
f ′f ′⋆
ff⋆

1B(0,δ)(|v − v⋆|) dσ dv dv⋆.

Then we have the following Lemma, which is proved exactly similarly as [34, The-
orem 4.2]. It is even simpler since Maxwellians are replaced by constant functions
and the study of the tail is not needed (we omit the proof for brevity).
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Lemma 5.7. For any ε ∈ (0, 1) and α > 0, there are constants of smoothness k,M
and some corresponding constant Cdiag > 0 such that

D̃δ ≤ CdiagH(f |m∞)1−ε δd/4

for any α ≤ f ∈ L1(DL) with Hk
per(DL) norm bounded by M .

But since we have

D0(f) ≥ C H(f |m∞)

from Lemma 5.6, it is straightforward to get the result by choosing correctly the
parameter δ.

�

Now we can proceed to the proof of Theorem 3.1.

5.3. Proof of the global in time stability. In this subsection we shall turn to
the question of obtaining uniform bounds as well as global existence, in order to
conclude the proof of Theorem 3.1. Indeed in Section 4 the smallness assumption
on the truncation parameter ε a priori depends on T and could go to 0 as T goes
to infinity, since it depends on regularity bounds growing exponentially in times.

In order to overcome this difficulty, we shall combine the following arguments:

• for the unperturbed problem (3.21) we have a Liapunov structure and the
solution converges to a unique prescribed equilibrium from the regularity
and entropy production studies;

• the equilibrium distribution of the unperturbed problem (3.21) (that is the
constant functions on the torus) are also equilibrium distribution of the
perturbed problem (3.17);

• by taking the size of the perturbation small enough (measured in terms
of ε) it is possible to construct a solution to the perturbed problem on
an arbitrarily large time interval [0, T ], on which moreover the perturbed
solution remains close to the unperturbed solution (3.21), say in Sobolev
norms;

• finally the constant equilibrium functions are non-linearly stable for the
perturbed problem, with a stability domain independent on the size of the
perturbation.

Hence we shall deduce that as soon as the time for which the perturbed solution
departs from the unperturbed solution is larger that the time-scale of relaxation
to equilibrium for the unperturbed problem (3.21), the perturbed solution shall be
trapped by the stability domain of the equilibrium before instability due to the
perturbation can develop. Let us formalize these arguments in a proof:

Proof of the global stability and asymptotic behavior in Theorem 3.1. Let us consider
some initial datum 0 ≤ f0 ∈ L1 which belongs to Hk

per(DL), and some smooth
balanced perturbations f0,ε of it. These perturbations have the same mass, and
therefore are corresponding to the same equilibrium (this is the reason for this
assumption).

Since the smooth balanced perturbation preserves the constant equilibrium of
(3.21) and is nonlinearly locally stable in any Hk

per(DL), we fix a η > 0 such that
the constant distribution m∞ = ρ/|DL| associated to the mass ρ of f0 on the torus
has attraction domain with size η in Hk

per(DL) for the perturbed problem (3.17).
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On the one hand, we show that there exists a unique solution f(t) to (3.21) and
from Proposition 5.1 we obtain uniform regularity bounds for all t ≥ 0

‖f(t)‖Hk
per

≤ C.

Moreover, from Proposition 5.5 there exists a time T0 such that the solution f(t)
is η/2-close to the equilibrium in Hp

per(DL) (p < k) for t ≥ T0 (using the Csiszár-
Kullback inequality in the torus, see [5, Theorem 1] for instance):

‖f(t) −m∞‖Hp
per

≤ η/2.

On the other hand, applying Proposition 4.6 with T = T0, we prove that there
exists ε̂, which only depends on the Hk

per(DL) and L1(DL) norms of f0 such that for

all ε such that 0 < ε < ε̂, there exists a unique smooth solution fε(t) ∈ Hk
per(DL)

to (3.17) on [0, T0] such that

∀ t ∈ [0, T0], ‖fε(t)‖Hk
per

≤ C(T0),

and (for any p < k)

‖f(t) − fε(t)‖Hp
per

≤ ϕ̄T0
(ε),

where f(t) is solution to (3.21) and ϕ̄T0
(ε) goes to zero when ε goes to zero.

Then, we fix a perturbation parameter ε̂ small enough such that for ε ∈ (0, ε̂)
the perturbed solution fε satisfies

‖f(t) − fε(t)‖Hp
per

≤ η/2.

Finally, at time T0 the perturbed solution fε belongs to the stability domain of the
constant distribution for the perturbed problem and it is trapped.

Therefore there exists a unique global smooth solution fε, which is uniformly
bounded for all t ≥ 0 and such that for any p < k

‖fε(t)‖Hp
per

≤ max (C(T0), C + η) .

This achieves the proof of (i), (ii), (iii) and (iv).
�

6. Application: stability and convergence of spectral methods

In this section we consider the following spectral approximation of (3.21)

∂fN

∂t
= PN QR(fN , fN ),

where PN denotes the orthogonal projection on PN in L2(DL) (the space of trigono-
metric polynomials with degree less at most N in each direction).

The goal of this section is to prove the following theorem:

Theorem 6.1. Consider any nonnegative initial datum f0 ∈ Hk
per(DL), with k >

d/2, which is not zero everywhere. Then there exists N0 ∈ N (depending on the
mass and Hk

per(DL) norm of f) such that for all N ≥ N0:

(i) there is a unique global solution fN = fN (t, ·) to the following problem

(6.1)











∂fN

∂t
= PN QR(fN , fN ),

fN (t = 0) = PNf0;
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(ii) for any p < k, there exists C > 0 such that

∀ t ≥ 0, ‖fN (t, ·)‖Hk
per

≤ C;

(iii) this solution is everywhere positive for time large enough, and the mass of
its negative values can be made uniformly (in times) L∞ small as N → ∞;

(iv) this solution fN converges to f(t) the solution to (3.21) with the spectral
accuracy, uniformly in time;

(v) this solution converges exponentially fast to a constant solution on the torus
prescribed by the mass conservation law.

To prove Theorem 6.1, we want to apply Theorem 3.1 with the perturbation

PR
N (fN ) := PN QR(fN , fN ) − QR(fN , fN ),

which preserves the mass:
∫

DL

PR
N (fN ) dv =

∫

DL

(

PN QR(fN , fN ) − QR(fN , fN )
)

dv = 0,

In the next Lemma, we prove a consistency and smoothness result for this ap-
proximation.

Lemma 6.2. Consider a nonnegative function f ∈ Hk
per(DL), with k > d/2, which

is not zero everywhere. Then, there exists C > 0 depending only on the collision
kernel B and the truncation such that for all p ∈ [0, k] we have

(6.2) ‖PR
N (f)‖Hp

per
≤ C ‖f‖L1 ‖f‖Hp

per
.

Moreover, for all p ∈ [0, k]

(6.3) ‖PR
N (f)‖Hp

per
≤ C ‖f‖L1

‖f‖Hk
per

Nk−p
.

Proof. First, we split the operator PN as

‖PR
N (f)‖Hp

per
≤ ‖QR(f, f)‖Hp

per
+ ‖PN QR(f, f)‖Hp

per
.

As in the proof of Lemma 4.2 we get that for all p ∈ [0, k]

(6.4) ‖QR(f, f)‖2
Hp

per
≤ Cp(R,B) ‖f‖2

L1 ‖f‖2
Hp

per
.

Concerning the interpolation error estimate, the following result holds. If u ∈
Hp

per(DL) for some p ≥ 1, then

(6.5) ‖u− PNu‖Hp
per

≤ C

Nk−p
‖u‖Hk

per
.

Then, taking p = k in the latter inequality and from (6.4) we obtain

(6.6) ‖PNQ
R(f, f)‖2

Hp
per

≤ ‖QR(f, f)‖2
Hp

per
≤ Cp(R,B) ‖f‖2

L1 ‖f‖2
Hp

per
.

Gathering (6.4) and (6.6), we finally get

‖PR
N (f)‖Hp

per
≤ Cp(R,B) ‖f‖L1 ‖f‖Hp

per
.

Moreover, using again the error estimate (6.5), it yields

‖PR
N (f)‖Hp

per
≤ C

‖QR(f, f)‖Hk
per

Nk−p

≤ C(R,B) ‖f‖L1

‖f‖Hk
per

Nk−p
.
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�

Let us now perform a linearized study of the perturbed equation (6.1) by classical
Fourier-basis decomposition. The only equilibrium distributions of the equation
(3.21) are the constant, prescribed by the mass conservation. Let us consider the
linearized version of the perturbed equation (6.1) around such a constant m∞:

∂f

∂t
= m∞ LN,R(f)

where

LN,R(f) = PN

[

QR(f, 1) +QR(1, f)
]

.

Let us prove the following lemma:

Lemma 6.3. The operator LN,R is bounded and self-adjoint in L2(DL). Moreover
it is non-negative, its null space is given by the constant functions, and it has a
spectral gap λ > 0. As a consequence, the constant are nonlinearly locally stable in
any Hk

per(DL) for the equation (6.1), with a stability domain independent on N .

Proof. The boundedness is trivial. Then, the periodized operator QR is translation
invariant, which implies that the Fourier modes

ek(v) =
exp

[

i π
L (k · v)

]

|DL|
for k ∈ Z

d are trivially eigenfunctions of LN,R. This provides a complete orthonor-
mal eigenbasis in L2(DL). A trivial computation yields

LN,R(ek) = ak ek 1|k|≤N with ak := −
∫

CR

[

1+ek(y+z)−ek(y)−ek(z)
]

B(y, z) dy dz.

In particular we deduce that LN,R = LN,R PN , and the self-adjointness comes from
the following identity obtained by the usual changes of variables:
∫

DL

LN,R(f) g dv = −1

4

∫

DL×CR

[PNf
′ + PNf

′
⋆ − PNf − PNf⋆]

× [PNg
′ + PNg

′
⋆ − PNg − PNg⋆] B(y, z) dy dz dv.

Another formula for ak is readily deduced from the previous representation:

ak = −1

4

∫

DL×CR

∣

∣(ek)′ + (ek)′⋆ − (ek) − (ek)⋆

∣

∣

2 B(y, z) dy dz dv.

One sees from the second representation that ak = a−k ≤ 0 for any k ∈ Z
d,

and from the first representation and Lebesgue theorem it is easily seen that for
|k| → ∞ the coefficients ak converge as

ak −−−−→
|k|→∞

a∞ = −
∫

CR

B(y, z) dy dz ∈ (−∞, 0).

Hence we deduce that ak ∈ [a∞, 0] for any k ∈ Z
d, with asymptotic convergence

towards a∞ for large k. Moreover the null space can be computed: for some smooth
periodic function φ, the equation

φ′ + φ′⋆ − φ− φ⋆ = 0
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implies that the third-order derivative of φ is zero, and the periodicity then imposes
that it is a constant. Thus the null space is spanned by e0. It concludes the proof
of the existence of a spectral gap

λN := min
{

|ak|, k ∈ [| −N,N |]d, k 6= 0
}

> 0

which is uniformly bounded from below as N → +∞, since

λN → λ∞ := min
{

|ak|, k ∈ Z
d, k 6= 0

}

> 0.

The non-linear stability in L2 comes from the fact that for the perturbation
h = f −m∞, we have the following control on the bilinear part:

‖PNQ
R(h, h)‖Hk

per
≤ CB,R ‖h‖2

L2

for some given constant CB,R > 0 independent on N .
Finally using the eigenbasis of the Fourier modes, a similar study can be per-

formed in any Sobolev space Hk
per(DL). �

Remark: Exact computations could be made for particular physical collision
kernels B (in a similar way as the computation of the kernel modes β(l,m) in
[11, 12, 21, 14]).

6.1. Proof of Theorem 6.1. Consider the numerical solution fN given by solving
(6.1). We can formulate the problem as a perturbation of the truncated Boltzmann
equation. Indeed setting

PN (fN ) = −(Id− PN )QR(fN , fN ),

the problem (6.1) can be written as

∂fN

∂t
= QR(fN , fN ) + PN (fN ).

Then, applying Lemma 6.2, the perturbation PN satisfies the assumptions of The-
orem 3.1. Moreover since f0 ∈ Hk

per(DL), we have straightforwardly

‖fN (0)‖Hp
per

≤ ‖f0‖Hp
per
, ‖fN (0) − f0‖Hp

per
→ 0.

Hence, we can directly apply Theorem 3.1 to the perturbation PN , which proves
that there exists N0 large enough and only depending on f0, the kernel B and
the truncation, such that for all N ≥ N0, the perturbed system admits a unique
uniformly smooth solution, which converges to a constant, and satisfies all the
points in Theorem 3.1.
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