
HAL Id: hal-00659483
https://hal.science/hal-00659483v1

Preprint submitted on 12 Jan 2012 (v1), last revised 10 Oct 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Absence of solitons with sufficient algebraic localization
for the Novikov-Veselov equation at nonzero energy

Anna Kazeykina

To cite this version:
Anna Kazeykina. Absence of solitons with sufficient algebraic localization for the Novikov-Veselov
equation at nonzero energy. 2012. �hal-00659483v1�

https://hal.science/hal-00659483v1
https://hal.archives-ouvertes.fr


Absence of solitons with sufficient algebraic localization for the

Novikov-Veselov equation at nonzero energy

A.V. Kazeykina 1

Abstract. We show that the Novikov–Veselov equation (an analog of KdV in dimension
2+1) at positive and negative energies does not have solitons with the space localization stronger
than O(|x|−3) as |x| → ∞.

1 Introduction

In this paper we are concerned with the Novikov-Veselov equation

∂tv = 4Re(4∂3zv + ∂z(vw) − E∂zw), (1.1a)

∂z̄w = −3∂zv, v = v̄, E ∈ R, (1.1b)

v = v(x, t), w = w(x, t), x = (x1, x2) ∈ R
2, t ∈ R, (1.1c)

where the following notations are used

∂t =
∂

∂t
, ∂z =

1

2

(

∂

∂x1
− i

∂

∂x2

)

, ∂z̄ =
1

2

(

∂

∂x1
+ i

∂

∂x2

)

. (1.2)

Equation (1.1) is mathematically the most natural (2 + 1)-dimensional analog of the clas-
sic Korteweg-de Vries equation. When v = v(x1, t), w = w(x1, t), equation (1.1) reduces to
KdV. Besides, equation (1.1) is integrable via the scattering transform for the 2–dimensional
Schrödinger equation

Lψ = Eψ, E = Efixed,

L = −∆ + v(x, t), ∆ = 4∂z∂z̄, x ∈ R
2.

(1.3)

Note also that tending E → ±∞ in (1.1) yields another renowned (2 + 1)-dimensional analog of
KdV, Kadomtsev-Petviashvili equation (KP-I and KP-II, respectively).

Equation (1.1) is contained implicitly in [M] as an equation possessing the following repre-
sentation

∂(L− E)

∂t
= [L− E,A] +B(L− E), (1.4)

where L is the operator of the corresponding scattering problem, A, B are some appropriate dif-
ferential operators and [·, ·] denotes the commutator. For the particular case of the 2-dimensional
Schrödinger operator as in (1.3) the following explicit form of A and B

A = −8∂3z − 2w∂z − 8∂3z̄ − 2w̄∂z̄,
B = 2∂z̄w + 2∂z̄w̄,

where w is defined via (1.1b) , (1.5)

and the corresponding evolution equation (1.1) were given in [NV1], [NV2], where equation (1.1)
was also studied in the periodic setting.

Solitons and the large time asymptotic behavior of sufficiently localized in space solutions
for the Novikov-Veselov equation were studied in the series of works [GN1, G1, Nov2, K1, KN1,
KN2, KN3]. In [KN1, K1] it was shown that in the regular case, i.e. when the scattering data
are nonsingular at fixed nonzero energy (and for the reflectionless case at positive energy), then
these solutions do not contain isolated solitons in the large time asymptotics. In the general
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case it was shown in [Nov2], [KN3] that the Novikov-Veselov equation at nonzero energy does
not admit exponentially localized solitons. A family of algebraically localized solitons for the
Novikov-Veselov equation at positive energy was constructed in [G1] (see also discussion in
[KN2]). These solitons are rational functions decaying as O

(

|x|−2
)

when |x| → ∞.
Note that KP-I equation possesses soliton solutions and these solutions decay as O

(

|x|−2
)

when |x| → ∞. By contrast, KP-II does not possess localized soliton solutions. For the results
on existence and nonexistence of localized soliton solutions of KP-I, KP-II and their generalized
versions see [BS1]; the symmetry properties and the decay rates of these solutions were derived
in [BS2]. For more results on integrable (2 + 1)-dimensional systems admitting localized soliton
solutions, see [AC], [BLMP2], [FA], [FS] and references therein.

In this paper we are concerned with regular, sufficiently localized solutions of (1.1) satisfying
the following conditions

• v,w ∈ C(R2 × R), v(·, t) ∈ C3(R2) ∀t ∈ R; (1.6)

• |∂jxv(x, t)| 6 q(t)

(1 + |x|)3+ε
, j = (j1, j2) ∈ (N ∪ 0)2, j1 + j2 6 3, for some q(t) > 0, ε > 0;

(1.7)

• |w(x, t)| → 0, when |x| → ∞, t ∈ R. (1.8)

We say that a solution of (1.1) is a soliton if v(x, t) = V (x− ct) for some c = (c1, c2) ∈ R
2. The

main result of this paper consists in the following theorem.

Theorem 1.1. Let (v,w) be a soliton solution of (1.1) with E 6= 0 satisfying properties (1.6)-
(1.8). Then v ≡ 0, w ≡ 0.

To prove this result we consider, in particular, special eigenfunctions of the 2-dimensional
Schrödinger operator going back to [F1], [BLMP1] and we base our reasoning on the ideas
proposed in [Nov2].

Note that Theorem 1.1 for the case of zero energy was proved in [K2] for the potentials of
conductivity type.

In Section 2 we recall, in particular, some known notions and results from the direct and
inverse scattering theory for the two-dimensional Schrödinger equation at nonzero energy (see
[Nov1], [G2] and references therein). In addition, we introduce nonzero energy analogs of some
“scattering data” going back to [BLMP1]. The main result (namely, Theorem 1.1) is proved in
Section 3. Section 4 contains the proofs of some preliminary lemmas.

This work was fulfilled in the framework of research carried out under the supervision of
R.G. Novikov.

2 Scattering data and inverse scattering equations

Consider the Schrödinger equation on the plane

Lψ = Eψ, E = Efixed ∈ R\0,

L = −∆ + v, ∆ = 4∂z∂z̄, v = v(x), x ∈ R
2

(2.1)

with a potential v satisfying the following conditions

v(x) = v(x), v(x) ∈ L∞(R2),

|∂j1x1
∂j2x2

v(x)| < q(1 + |x|)−3−ε for some q > 0, ε > 0, where j1, j2 ∈ N ∪ 0, j1 + j2 6 3.
(2.2)

2



For equation (2.1) with E > 0 we consider its classical scattering eigenfunctions ψ+(x, k),
defined for k ∈ R

2, k2 = E and specified by

ψ+(x, k) = eikx − iπ
√

2πe−
iπ
4 f

(

k, |k| x|x|

)

ei|k||x|
√

|k||x|
+ o

(

1
√

|x|

)

, |x| → ∞, (2.3)

with some a priori unknown function f . The function f is called the scattering amplitude of the
potential v. If f(k, l) ≡ 0 for k, l ∈ R

2, k2 = l2 = E, then the corresponding potential is called
transparent (or reflectionless) at fixed energy E > 0. In this paper we will only be concerned
with transparent potentials since it was shown in [Nov2] that the solitons of the Novikov-Veselov
equation at positive energy are transparent potentials (see also Lemma 3.3).

In addition, for equation (2.1) with E ∈ R\0 we consider its Faddeev eigenfunctions ψ(x, k),
defined for k ∈ ΣE, where

ΣE = {k ∈ C
2 : k2 = E, Imk 6= 0}, if E > 0,

ΣE = {k ∈ C
2 : k2 = E}, if E < 0,

and specified by
ψ(x, k) = eikx(1 + o(1)), |x| → ∞ (2.4)

(see[F1], [Nov1], [G2]).
Finally, for equation (2.1) with E ∈ R\0 we will also consider its eigenfunctions ϕ(x, k),

defined for k ∈ ΣE and specified by

ϕ(x, k) = eikx(k1x2 − k2x1 + o(1)), |x| → ∞. (2.5)

These functions are the analogs of solutions introduced in [BLMP1] for the case of zero energy.
Further it will be convenient to assume without loss of generality that E = ±1 (the general

case is reduced to this one by a scaling transform) and to introduce the following new variables:

z = x1 + ix2, λ =
k1 + ik2√

E
.

Note that k1 =
√
E
2

(

λ+ 1
λ

)

, k2 = i
√
E
2

(

1
λ − λ

)

.
In the new variables z ∈ C, λ ∈ C\0 functions ψ and ϕ are solutions of (2.1) with the

following asymptotic behavior

ψ(z, λ) = e
i
√

E
2

(λz̄+z/λ)µ(z, λ), µ(z, λ) = 1 + o(1), as |z| → ∞, (2.6)

ϕ(z, λ) = e
i
√

E
2

(λz̄+z/λ)ν(z, λ), ν(z, λ) =
i
√
E

2

(

λz̄ − 1

λ
z

)

+ o(1), as |z| → ∞. (2.7)

Functions µ(z, λ) and ν(z, λ) arising in the above formulas can also be defined as solutions of
the following integral equations

µ(z, λ) = 1 +

∫∫

C

g(z − ζ, λ)v(ζ)µ(ζ, λ)dReζdImζ, (2.8)

ν(z, λ) =
i
√
E

2

(

λz̄ − 1

λ
z

)

+

∫∫

C

g(z − ζ, λ)v(ζ)ν(ζ, λ)dReζdImζ, where (2.9)

g(z, λ) = −
(

1

2π

)2 ∫∫

C

e
i
2
(pz̄+p̄z)

pp̄+
√
E(λp̄+ p/λ)

dRepdImp, (2.10)
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where z ∈ C, λ ∈ C\0 and, if E > 0, then |λ| 6= 1.
In terms of m(z, λ) = (1 + |z|)−(2+ε/2)µ(z, λ) and n(z, λ) = (1 + |z|)−(2+ε/2)ν(z, k) equations

(2.8) and (2.9), respectively, take the forms

m(z, λ) = (1 + |z|)−(2+ε/2)+

+

∫∫

C

(1 + |z|)−(2+ε/2)g(z − ζ, λ)
v(ζ)

(1 + |ζ|)−(2+ε/2)
m(ζ, λ)dReζdImζ, (2.11)

n(z, λ) =
i
√
E

2

(

λz̄ − 1

λ
z

)

(1 + |z|)−(2+ε/2)+

+

∫∫

C

(1 + |z|)−(2+ε/2)g(z − ζ, λ)
v(ζ)

(1 + |ζ|)−(2+ε/2)
n(ζ, λ)dReζdImζ. (2.12)

The integral operator A(λ) of the integral equations (2.11), (2.12) is a Hilbert-Schmidt operator:
more precisely, A(·, ·, λ) ∈ L2(C × C), where A(z, ζ, λ) is the Schwartz kernel of the integral
operator A(λ), and |TrA2(λ)| < ∞. Thus, the modified Fredholm determinant ∆(λ) for (2.11)
and (2.12) can be defined by means of the formula:

ln ∆(λ) = Tr(ln(I −A(λ)) +A(λ)). (2.13)

For the precise sense of this definition see [GK]. Considerations of ∆ go back to [F2].
We will also define

E = {λ ∈ Σ: ∆(λ) = 0},
where

Σ = C\(0 ∪ T ) if E > 0 and Σ = C\0 if E < 0, T = {λ ∈ C : |λ| = 1}.

In this notation E represents the set of λ for which either the existence or the uniqueness of
the solution of (2.1) with asymptotics (2.6) (or, similarly, of the solution of (2.1) with asymptotics
(2.7)) fails.

For λ ∈ C\(E ∪ 0) we define the following “scattering data” for the potential v:

a(λ) =

∫∫

C

v(ζ)µ(ζ, λ)dReζdImζ, (2.14)

b(λ) =

∫∫

C

exp

(

i
√
E

2

(

1 + (sgnE)
1

λλ̄

)

((sgnE)ζλ̄+ λζ̄)

)

v(ζ)µ(ζ, λ)dReζdImζ, (2.15)

α(λ) =

∫∫

C

v(ζ)ν(ζ, λ)dReζdImζ, (2.16)

β(λ) =

∫∫

C

exp

(

i
√
E

2

(

1 + (sgnE)
1

λλ̄

)

((sgnE)ζλ̄+ λζ̄)

)

v(ζ)ν(ζ, λ)dReζdImζ. (2.17)

Functions a, b are the Faddeev generalized scattering data for the 2-dimensional Schrödinger
equation. They also arise in a more precise version of expansion (2.4). The “scattering data”
α, β for the case of the Schrödinger equation at zero energy were introduced in [BLMP1].

Now we formulate some properties of the introduced functions that will play a substantial
role in the proof of the main result.
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Statement 2.1 (see [HN, Nov1, KN3]). Let v satisfy conditions (2.2). Then function ∆(λ)
satisfies the following properties:

1. ∆ ∈ C(D̄+), ∆ ∈ C(D̄−), where D̄+ = D+ ∪ ∂D+, D+ = {λ ∈ C : |λ| < 1}, D̄− =
D− ∪ ∂D−, D− = {λ ∈ C : |λ| > 1};

2. ∆(λ) → 1 as |λ| → ∞, |λ| → 0;

3. ∆ is real-valued;

4. ∆(λ) satisfies the following ∂̄-equation

∂∆

∂λ̄
= −sgn(λλ̄− 1)

4πλ̄

(

a

(

−(sgnE)
1

λ̄

)

− v̂(0)

)

∆, (2.18)

where v̂(0) =
∫∫

C

v(ζ)dReζdImζ, λ ∈ C\(T ∪ E ∪ 0), T = {λ ∈ C : |λ| = 1};

5. ∆(λ) = ∆
(

−(sgnE) 1
λ̄

)

, λ ∈ C\0.

Note that ∆ 6∈ C(C) for E > 0, in general. In this case ∆ on D̄± is considered as an extension
from D±.

If v satisfies assumptions (2.2), then functions a(λ), b(λ), α(λ), β(λ) are continuous on
C\(E ∪ 0). Note also (see [HN]) that

a(λ) → v̂(0) as λ→ 0, λ→ ∞. (2.19)

If v satisfies assumptions (2.2) and, in the case of positive energy, v is transparent, i.e. f ≡ 0
at fixed energy, then the function µ(z, λ), defined by (2.8), satisfies the following properties (see
[GN2], [Nov2], [G2] and references therein):

µ(z, λ) is a continuous function of λ on C\(0 ∪ E); (2.20)

∂µ(z, λ)

∂λ̄
= r(z, λ)µ(z, λ), (2.21a)

r(z, λ) = r(λ) exp

(

− i
√
E

2

(

1 + (sgnE)
1

λλ̄

)

(

(sgnE)λ̄z + λz̄
)

)

, (2.21b)

r(λ) =
sgn(λλ̄− 1)

4πλ̄
b(λ) (2.21c)

for λ ∈ C\(0 ∪ E ∪ T ), where T = {λ ∈ C : |λ| = 1};

µ→ 1, as λ→ ∞, λ→ 0. (2.22)

Inverse scattering equations (2.21) together with conditions (2.20) and (2.22) determine
uniquely function µ from nonsingular scattering data b, i.e. when E = ∅. Potential v (transpar-
ent for the case of positive energy) can then be found from the following formula

v(z) = 2i
√
E
∂µ−1(z)

∂z
, (2.23)

where µ−1(z) is defined via the following expansion

µ(z, λ) = 1 +
µ−1(z)

λ
+ o

(

1

|λ|

)

, as λ→ ∞. (2.24)
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3 Proof of Theorem 1.1

We will start this section by formulating some preliminary lemmas. The proofs of these lemmas
are given in Section 4.
Let us denote by

S(λ) = {a(λ), b(λ), α(λ), β(λ)}, λ ∈ C\(E ∪ 0), (3.1)

the scattering data for a potential v, defined by (2.14)-(2.17) in the framework of equation (2.1).

Lemma 3.1. Let v(z) be a potential satisfying (2.2) with the scattering data S(λ), λ ∈ C\(E∪0).
Then the scattering data Sη(λ) for the potential vη(z) = v(z − η) are defined for λ ∈ C\(E ∪ 0)
and are related to S(λ) by the following formulas

aη(λ) = a(λ), (3.2)

bη(λ) = exp

{

i
√
E

2

(

1 + (sgnE)
1

λλ̄

)

(

(sgnE)λ̄η + λη̄
)

}

b(λ), (3.3)

αη(λ) = α(λ) +
i
√
E

2

(

λη̄ − 1

λ
η

)

a(λ), (3.4)

βη(λ) = exp

{

i
√
E

2

(

1 + (sgnE)
1

λλ̄

)

(

(sgnE)λ̄η + λη̄
)

}(

β(λ) +
i
√
E

2

(

λη̄ − 1

λ
η

)

b(λ)

)

.

(3.5)

Lemma 3.2. Let (v,w) satisfy equation (1.1) and conditions (1.6)-(1.8). Let S(λ, t) be the
scattering data for v defined by (3.1) for a certain λ ∈ C\(E ∪ 0) and all t ∈ R. Then the
evolution of these scattering data is described as follows:

a(λ, t) = a(λ, 0), (3.6)

b(λ, t) = exp

{

i(
√
E)3

(

λ3 +
1

λ3
+ (sgnE)

(

λ̄3 +
1

λ̄3

))

t

}

b(λ, 0), (3.7)

α(λ, t) = α(λ, 0) + 3i(
√
E)3

(

λ3 − 1

λ3

)

a(λ, 0)t, (3.8)

β(λ, t) = exp

{

i(
√
E)3

(

λ3 +
1

λ3
+ (sgnE)

(

λ̄3 +
1

λ̄3

))

t

}(

β(λ, 0) + 3i(
√
E)3

(

λ3 − 1

λ3

)

b(λ, 0)t

)

.

(3.9)

Lemma 3.3 (see [Nov2]). Let (v,w) satisfy equation (1.1) for some E > 0 and conditions (1.6)-
(1.8). In addition, let v be a soliton, i.e. v(x, t) = V (x − ct) for some c = (c1, c2) ∈ R

2. Then
f(k, l) ≡ 0, k, l ∈ R

2, k2 = l2 = E > 0, where f is the scattering amplitude for the potential v
in the framework of the Schrödinger equation (1.3).

The concluding part of the proof of Theorem 1.1 consists in the following. First of all, if
(v,w) is a soliton solution of equation (1.1) for some E > 0, then v is transparent due to Lemma
3.3.

Further, since (v,w) is a soliton, from Lemma 3.1 it follows that the set E of values of λ ∈ C

for which the scattering data a(λ), b(λ), α(λ), β(λ) are not well-defined does not depend on t.
Since (v,w) is a soliton, the time dynamics of its scattering data b is described by the formula

b(λ, t) = exp

{

i
√
E

2

((

λ+ (sgnE)
1

λ̄

)

c̄t+

(

(sgnE)λ̄+
1

λ

)

ct

)

}

b(λ, 0),

6



where notation c = c1 + ic2 is used (see formula (3.3) of Lemma 3.1). Combining this with (3.7)
from Lemma 3.2 gives

exp

{

i(
√
E)3

(

λ3 +
1

λ3
+ (sgnE)

(

λ̄3 +
1

λ̄3

))

t

}

b(λ, 0) =

= exp

{

i
√
E

2

((

λ+ (sgnE)
1

λ̄

)

c̄t+

(

(sgnE)λ̄+
1

λ

)

ct

)

}

b(λ, 0).

Since functions λ, λ̄, λ3, λ̄3, 1
λ , 1

λ̄
, 1

λ3 , 1
λ̄3

, 1 are linearly independent in any open nonempty
neighborhood of any point in C and b(λ, 0) is continuous on C\(E ∪0), we obtain that b(λ, 0) ≡ 0
on C\(E ∪ 0).

Similarly, from (3.4), (3.8) we get that

α(λ, 0) +
i
√
E

2

(

λc̄− 1

λ
c

)

ta(λ, 0) = α(λ, 0) + 3i(
√
E)3

(

λ3 − 1

λ3

)

ta(λ, 0).

The linear independence of λ, λ3, 1
λ , 1

λ3 , in any open nonempty neighborhood of any point in
C then implies that a ≡ 0 for λ ∈ C\(E ∪ 0). From formula (2.19) and item 2 of Statement 2.1
it follows that v̂(0) = 0. Then equation (2.18) implies that ∆ is holomorphic on C\(E ∪ T ∪ 0),
where T = {λ ∈ C : |λ| = 1}. From properties 1, 2 of Statement 2.1 it follows that ∆ is
holomorphic on C\(E ∪ T ).

Suppose now that E 6= ∅. Since E is a closed set, then there exists λ∗ ∈ E such that
|λ∗| = min

λ∈E
|λ|. Note that property 2 of Statement 2.1 implies that |λ∗| > 0.

If |λ∗| > 1, then ∆(λ) is holomorphic on D+ = {λ ∈ C : |λ| < 1} and properties 2, 3
of Statement 2.1 imply that ∆ ≡ 1 on D+. If |λ∗| < 1, then ∆(λ) is holomorphic on the
set Dh

+ = {λ ∈ C : |λ| < λ∗} and properties 2, 3 imply that ∆ ≡ 1 on Dh
+. On the other

hand, ∆(λ∗) = 0, which contradicts property 1 from Statement 2.1. Thus we have proved that
∆(λ) ≡ 1 on D+. Property 5 of Statement 2.1 implies that ∆(λ) ≡ 1 on D− = {λ ∈ C : |λ| > 1}.
Finally, from 1 of Statement 2.1 it follows that ∆ ≡ 1 on C.

The function µ is holomorphic on C as follows from (2.21), (2.22) and the established facts
that E = ∅, b ≡ 0. The function µ is also bounded due to the property (2.22). From Liouville’s
theorem it follows that µ ≡ 1. Then, finally, from (2.23), (2.24) we obtain that v ≡ 0.

4 Proofs of Lemmas 3.1, 3.2

Proof of Lemma 3.1. Formulas (3.2), (3.3) were derived in [KN2] for the case of negative energy.
Here we present their full derivation for both cases of positive and negative energies.

We note that ψ(z − η, λ) satisfies (2.1) with vη(z) and has the asymptotics

ψ(z − η, λ) = e
i
√

E
2

(λ(z̄−η̄)+(z−η)/λ)(1 + o(1)),

as |z| → ∞. Thus for Faddeev eigenfunction ψη(z, λ) corresponding to potential vη(z) we obtain

the following representation: ψη(z, λ) = e
i
√

E
2

(λη̄+η/λ)ψ(z − η, λ). Consequently, for function
µη(z, λ) corresponding to function ψη(z, λ) and defined via (2.6) we have µη(z, λ) = µ(z− η, λ).

For the scattering data we have

aη(λ) =

∫∫

C

vη(ζ)µη(ζ, λ)dReζdImζ =

∫∫

C

v(ζ − η)µ(ζ − η, λ)dReζdImζ = a(λ)

7



and

bη(λ) =

∫∫

C

exp

{

i
√
E

2

(

1 + (sgnE)
1

λλ̄

)

(

(sgnE)λ̄ζ + λζ̄
)

}

vη(ζ)µη(ζ, λ)dReζdImζ =

=

∫∫

C

exp

{

i
√
E

2

(

1 + (sgnE)
1

λλ̄

)

(

(sgnE)λ̄ζ + λζ̄
)

}

v(ζ − η)µ(ζ − η, λ)dReζdImζ =

= exp

{

i
√
E

2

(

1 + (sgnE)
1

λλ̄

)

(

(sgnE)λ̄η + λη̄
)

}

b(λ). (4.1)

Similarly, to derive formulas (3.4), (3.5), we note that ϕ(z − η, λ) satisfies (2.1) with vη(z)
and has the asymptotics

ϕ(z − η, λ) = e
i
√

E
2

(λ(z̄−η̄)+(z−η)/λ)

(

i
√
E

2

(

λ(z̄ − η̄) − 1

λ
(z − η)

)

+ o(1)

)

,

as |z| → ∞. Thus for eigenfunction ϕη(z, λ) of equation (2.1) with potential vη(z) satisfy-

ing asymptotics (2.7) we obtain the following representation: ϕη(z, λ) = e
i
√

E
2

(λη̄+η/λ)(ϕ(z −
η, λ)+ i

√
E
2

(

λη̄ − 1
λη
)

ψ(z−η, λ)). Consequently, for function νη(z, λ) corresponding to function

ϕη(z, λ) and defined via (2.7) we have νη(z, λ) = ν(z − η, λ) + i
√
E
2

(

λη̄ − 1
λη
)

µ(z − η, λ).
For the scattering data we have

αη(λ) =

∫∫

C

vη(ζ)νη(ζ, λ)dReζdImζ =

=

∫∫

C

v(ζ − η)ν(ζ − η, λ)dReζdImζ +
i
√
E

2

(

λη̄ − 1

λ
η

)
∫∫

C

v(ζ − η)µ(ζ − η, λ)dReζdImζ =

= α(λ) +
i
√
E

2

(

λη̄ − 1

λ
η

)

a(λ)

and

βη(λ) =

∫∫

C

exp

{

i
√
E

2

(

1 + (sgnE)
1

λλ̄

)

(

(sgnE)λ̄ζ + λζ̄
)

}

vη(ζ)νη(ζ, λ)dReζdImζ =

=

∫∫

C

exp

{

i
√
E

2

(

1 + (sgnE)
1

λλ̄

)

(

(sgnE)λ̄ζ + λζ̄
)

}

v(ζ − η)ν(ζ − η, λ)dReζdImζ+

+
i
√
E

2

(

λη̄ − 1

λ
η

)
∫∫

C

exp

{

i
√
E

2

(

1 + (sgnE)
1

λλ̄

)

(

(sgnE)λ̄ζ + λζ̄
)

}

v(ζ−η)µ(ζ−η, λ)dReζdImζ =

= exp

{

i
√
E

2

(

1 + (sgnE)
1

λλ̄

)

(

(sgnE)λ̄η + λη̄
)

}(

β(λ) +
i
√
E

2

(

λη̄ − 1

λ
η

)

b(λ)

)

. (4.2)

In order to prove Lemma 3.2 we introduce the following operator

T = ∂t − 8∂3z − 2w∂z − 8∂3z̄ − 2w̄∂z̄, (4.3)
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where w is defined via (1.1b), (1.8) for some potential v. Note that T = ∂t +A, where A is the
operator of (1.5).

We will need the following auxiliary lemma describing how T acts on the spectral solutions
of the two-dimensional Schrödinger equation.

Lemma 4.1. Let (v,w) satisfy conditions (1.6)-(1.8) and

|∂tv(x, t)| 6 q̃(t)

(1 + |x|)3+ε
, for some q̃(t) > 0.

Suppose that for a certain λ ∈ C, |λ| 6= 1, and t belonging to a certain interval t ∈ (t1, t2)
the solution ψ(z, λ, t) of (1.3) with asymptotics (2.6) exists and is unique. Similarly, suppose
that the solution ϕ(z, λ, t) of (1.3) with asymptotics (2.7) exists and is unique. Then

Tψ = i(
√
E)3e

i
√

E
2

(λz̄+z/λ)

((

λ3 +
1

λ3

)

+ o(1)

)

, as |z| → ∞, (4.4)

Tϕ = i(
√
E)3e

i
√

E
2

(λz̄+z/λ)

(

i
√
E

2

(

λ3 +
1

λ3

)(

λz̄ − 1

λ
z

)

+ 3

(

λ3 − 1

λ3

)

+ o(1)

)

, as |z| → ∞.

(4.5)

Proof. First of all, due to assumptions (1.8) we have that w → 0 as |z| → ∞. So in order to
demonstrate (4.4), (4.5) it is sufficient to show that

∂tµ→ 0, ∂jzµ→ 0, ∂jz̄µ→ 0, j = 1, 2, 3, as |z| → ∞, (4.6)

∂tν → 0, ∂zν → − i
√
E

2λ
, ∂z̄ν → i

√
E

2
λ, ∂kz ν → 0, ∂kz̄ ν → 0, k = 2, 3, as |z| → ∞,

(4.7)

where µ(z, λ, t) = e−
i
√

E
2

(λz̄+z/λ)ψ(z, λ, t), ν(z, λ, t) = e−
i
√

E
2

(λz̄+z/λ)ϕ(z, λ, t). We will only prove
properties (4.6). Properties (4.7) are proved similarly.

Function µ is defined as the solution of the integral equation (2.8), where the notation (2.10)
is used. Differentiating (2.8) with respect to t yields the following integral equation for ∂tµ:

∂tµ(z, λ, t) =

∫∫

C

g(z−ζ, λ)∂tv(ζ, t)µ(ζ, λ, t)dReζdImζ+

∫∫

C

g(z−ζ, λ)v(ζ, t)∂tµ(ζ, λ, t)dReζdImζ.

(4.8)
Differentiating (2.8) j times with respect to z yields the following integral equation for ∂jzµ:

∂jzµ(z, λ, t) =

∫∫

C

∂jzg(z − ζ, λ)v(ζ, t)µ(ζ, λ, t)dReζdImζ, j = 1, 2, 3.

We integrate this equation by parts, taking into account property (1.7) of function v and the
fact that ∂jzg(z − ζ, λ) = (−1)j∂jζg(z − ζ, λ). Thus we obtain

∂jzµ(z, λ, t) =

∫∫

C

g(z − ζ, λ)∂jζ (v(ζ, t)µ(ζ, λ, t))dReζdImζ, j = 1, 2, 3. (4.9)

Similarly, ∂jz̄µ satisfies the following integral equation

∂jz̄µ(z, λ, t) =

∫∫

C

g(z − ζ, λ)∂j
ζ̄
(v(ζ, t)µ(ζ, λ, t))dReζdImζ, j = 1, 2, 3. (4.10)
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Equation (4.9) is an equation on the unknown function ∂jzµ, where it is assumed that func-
tions ∂kzµ, k < j, are already defined. Similarly equation (4.10) is an equation on the unknown
function ∂jz̄µ, where it is assumed that functions ∂kz̄µ, k < j, are already defined. The assump-
tions of lemma imply that for each of the equations (4.8), (4.9), (4.10) its solution exists, is unique
and can be represented as (1 + |z|)2+ε/2u(z, λ, t) with some corresponding u(·, λ, t) ∈ L2(C).

It was shown in [Nov1] that the function g defined by (2.10) possesses the following property:
|g(z, λ)| 6 const

|z| for ∀λ ∈ C, |λ| 6= 1 and sufficiently large z, and |g(z, λ)| 6 const ln |z| for ∀λ ∈ C

and sufficiently small z. This property implies that

∣

∣

∣

∣

∣

∣

∫∫

C

g(z − ζ, λ)U(ζ)dReζdImζ

∣

∣

∣

∣

∣

∣

→ 0 as |z| → ∞

for any U ∈ L1(C) ∩ L2(C).

(4.11)

Let us denote by ξ(z, λ, t) the solution of any of the equations (2.8), (4.8)-(4.10). As noted
before, ξ(z, λ, t) can be represented in the form ξ(z, λ, t) = (1 + |z|)2+ε/2u(z, λ, t) for some
u(·, λ, t) ∈ L2(C). Then from assumptions on v it follows that ∂jzv(·, t)ξ(·, λ, t) ∈ L1(C)∩  L2(C),
∂jz̄v(·, t)ξ(·, λ, t) ∈ L1(C) ∩ L2(C) for j = 0, . . . , 3 and ∂tv(·, t)ξ(·, λ, t) ∈ L1(C) ∩ L2(C). Thus,
from (4.11) with U(·) = ∂tv(·, t)µ(·, λ, t) and U(·) = v(·, t)∂tµ(·, λ, t) it follows that the right part
of (4.8) tends to zero as |z| → ∞. Similarly, considering equations (4.9), (4.10) consecutively we
obtain that the right part of each of these equations tends to zero as |z| → ∞. Consequently,
∂tµ→ 0, ∂jzµ → 0, ∂jz̄µ→ 0, j = 1, 2, 3, as |z| → ∞.

Proof of Lemma 3.2. Formulas (3.6), (3.7) have already been known in literature (see for exam-
ple [G2]). Since their derivation is similar to the derivation of formulas (3.8), (3.9), we confine
ourselves to the derivation of the latter. The derivation of analogs of formulas (3.6)-(3.9) for the
case of zero energy can be found in [BLMP1].

Equation (1.1) represents a condition under which the following is true

[T,L]η = ETη, ∀η : Lη = Eη, (4.12)

where L is defined in (2.1) and T is defined in (4.3) (see [M], [BLMP1]).
Let us take η = ϕ, where ϕ is the solution of Lϕ = Eϕ with the asymptotics (2.7). Then

(4.12) implies
LTϕ = Eϕ.

From Lemma 4.1 we have that

Tϕ = i(
√
E)3e

i
√

E
2

(λz̄+z/λ)

(

i
√
E

2

(

λ3 +
1

λ3

)(

λz̄ − 1

λ
z

)

+ 3

(

λ3 − 1

λ3

)

+ o(1)

)

, |z| → ∞.

The uniqueness of the solution of (2.1) with the asymptotics (2.6) at the considered value of λ
implies that

Tϕ = i(
√
E)3

(

λ3 +
1

λ3

)

ϕ+ 3i(
√
E)3

(

λ3 − 1

λ3

)

ψ.

In other words,

∂tϕ = 8∂3zϕ+ 2w∂zϕ+ 8∂3z̄ϕ+ 2w̄∂z̄ϕ+ i(
√
E)3

(

λ3 +
1

λ3

)

ϕ+ 3i(
√
E)3

(

λ3 − 1

λ3

)

ψ. (4.13)
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Now we write α(λ, t) in the form

α(λ, t) =

∫∫

C

e−
i
√

E
2

(λζ̄+ζ/λ)v(ζ, t)ϕ(ζ, λ, t)dReζdImζ

and compute its derivative with respect to time:

∂tα(λ, t) =

∫∫

C

e−
i
√

E
2

(λζ̄+ζ/λ)∂tv(ζ, t)ϕ(ζ, λ, t)dReζdImζ+

∫∫

C

e−
i
√

E
2

(λζ̄+ζ/λ)v(ζ, t)∂tϕ(ζ, λ, t)dReζdImζ.

(4.14)
Substituting (1.1) and (4.13) into (4.14), integrating the resulting expression by parts and taking
into account that −4∂ζ∂ζ̄ϕ+ vϕ = Eϕ, we obtain

∂tα(λ, t) = 3i(
√
E)3

(

λ3 − 1

λ3

)

a(λ, t) (4.15)

(see Appendix for the detailed derivation of this formula). Formulas (3.6), (4.15) yield (3.8).
Similarly, we write β(λ, t) in the form

β(λ, t) =

∫∫

C

e
√

−E
2

(λ̄ζ+ζ̄/λ̄)v(ζ, t)ϕ(ζ, λ, t)dReζdImζ

and compute its derivative with respect to time:

∂tβ(λ, t) =

∫∫

C

e
√

−E
2

(λ̄ζ+ζ̄/λ̄)∂tv(ζ, t)ϕ(ζ, λ, t)dReζdImζ+

∫∫

C

e
√

−E
2

(λ̄ζ+ζ̄/λ̄)v(ζ, t)∂tϕ(ζ, λ, t)dReζdImζ.

(4.16)
Substituting (1.1) and (4.13) into (4.16), integrating the resulting expression by parts and taking
into account that −4∂ζ∂ζ̄ϕ+ vϕ = Eϕ, we obtain

∂tβ(λ, t) = i(
√
E)3

(

λ3 +
1

λ3
+ (sgnE)

(

λ̄3 +
1

λ̄3

))

β(λ, t)+3i(
√
E)3

(

λ3 − 1

λ3

)

b(λ, t) (4.17)

(see Appendix for the detailed derivation of this formula). Using formula (3.7), we obtain
(3.9).
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A Appendix

Here we present the detailed derivation of formulas (4.15), (4.17) proceeding from representations
(4.14), (4.16), respectively.

Derivation of (4.15). Substituting (1.1) and (4.13) into (4.14) yields

∂tα(λ, t) = 8

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ
λ
) ∂3ζ v ϕdReζ dImζ + 8

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ
λ
) ∂3ζ̄ v ϕdReζ dImζ+

+ 2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂ζv w ϕdReζ dImζ + 2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) v ∂ζwϕdReζ dImζ+

+ 2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂ζ̄v w̄ ϕ dReζ dImζ + 2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) v ∂ζ̄w̄ ϕ dReζ dImζ−

− 2E

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂ζwϕdReζ dImζ − 2E

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂ζ̄w̄ ϕ dReζ dImζ+

+ 8

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) v ∂3ζϕdReζ dImζ + 8

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) v ∂3ζ̄ϕdReζ dImζ+

+ 2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) v w ∂ζϕdReζ dImζ + 2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) v w̄ ∂ζ̄ϕdReζ dImζ+

+ i(
√
E)3

(

λ3 +
1

λ3

)
∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) v ϕdReζ dImζ+

+ 3i(
√
E)3

(

λ3 − 1

λ3

)
∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) v ψ dReζ dImζ =

14
∑

i=1

Ii. (A.1)
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Integrating I9 by parts yields

I9 = − i(
√
E)3

λ3

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ
λ
) v ϕdReζ dImζ +

6E

λ2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ
λ
) ∂ζv ϕdReζ dImζ+

+
12i

√
E

λ

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂2ζ v ϕdReζ dImζ − 8

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂3ζ v ϕdReζ dImζ.

In this way it can be obtained that

I1 + I2 + I9 + I10 + I13 =

=
6E

λ2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂ζv ϕdReζ dImζ +

12i
√
E

λ

∫∫

C

e
−i

√

E
2

(λζ̄+ ζ

λ
) ∂2ζ v ϕdReζ dImζ+

+ 6Eλ2
∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂ζ̄v ϕdReζ dImζ + 12i

√
Eλ

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂2ζ̄v ϕdReζ dImζ. (A.2)

Integrating I11 by parts and taking into account that −4∂ζ∂ζ̄ϕ+ vϕ = Eϕ we obtain

I11 = −2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ
λ
) ∂ζv w ϕdReζ dImζ +

i
√
E

λ

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ
λ
) v wϕdReζ dImζ−

− 2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) v ∂ζwϕdReζ dImζ =

= −2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂ζv wϕdReζ dImζ +

i(
√
E)3

λ

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) wϕdReζ dImζ+

+
4i
√
E

λ

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) w ∂ζ∂ζ̄ϕdReζ dImζ − 2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) v ∂ζwϕdReζ dImζ =

= −2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ
λ
) ∂ζv wϕdReζ dImζ +

i(
√
E)3

λ

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ
λ
) wϕdReζ dImζ−

− i(
√
E)3

λ

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) wϕdReζ dImζ − 6E

λ2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂ζv ϕdReζ dImζ+

+ 2E

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂ζwϕdReζ dImζ − 12i

√
E

λ

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂2ζ v ϕdReζ dImζ−

− 2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) v ∂ζwϕdReζ dImζ.

Thus it can be obtained that

I3 + I4 + I5 + I6 + I7 + I8 + I11 + I12 =

= −6E

λ2

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂ζv ϕdReζ dImζ − 12i

√
E

λ

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂2ζ v ϕdReζ dImζ−

− 6Eλ2
∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂ζ̄v ϕdReζ dImζ − 12i

√
Eλ

∫∫

C

e−
i
√

E
2

(λζ̄+ ζ

λ
) ∂2ζ̄v ϕdReζ dImζ. (A.3)
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Finally,

I14 = 3i(
√
E)3

(

λ3 − 1

λ3

)

a(λ, t) (A.4)

and thus from (A.1)-(A.4) we obtain formula (4.15).

Derivation of (4.17). Similarly, the formula (4.17) can be derived. Substituting (1.1) and (4.13)
into (4.16) yields

∂tβ(λ, t) = 8

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂3ζ v ϕdReζ dImζ + 8

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂3ζ̄ v ϕdReζ dImζ+

+ 2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂ζv w ϕdReζ dImζ + 2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) v ∂ζwϕdReζ dImζ+

+ 2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂ζ̄v w̄ ϕ dReζ dImζ + 2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) v ∂ζ̄w̄ ϕ dReζ dImζ−

− 2E

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂ζwϕdReζ dImζ − 2E

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂ζ̄w̄ ϕ dReζ dImζ+

+ 8

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) v ∂3ζϕdReζ dImζ + 8

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) v ∂3ζ̄ϕdReζ dImζ+

+ 2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) v w ∂ζϕdReζ dImζ + 2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) v w̄ ∂ζ̄ϕdReζ dImζ+

+ i(
√
E)3

(

λ3 +
1

λ3

)
∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) v ϕdReζ dImζ+

+ 3i(
√
E)3

(

λ3 − 1

λ3

)
∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) v ψ dReζ dImζ =

14
∑

i=1

Ji. (A.5)

Integrating J9 by parts yields

J9 = −λ̄3(
√
−E)3

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) v ϕdReζ dImζ + 6λ̄2E

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂ζv ϕdReζ dImζ−

− 12λ̄
√
−E

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂2ζ v ϕdReζ dImζ − 8

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂3ζ v ϕdReζ dImζ.

In this way it can be obtained that

J1 + J2 + J9 + J10 + J13 = i(
√
E)3

(

λ3 +
1

λ3
+ (sgnE)

(

λ̄3 +
1

λ̄3

))

β(λ, t)+

+ 6Eλ̄2
∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂ζv ϕdReζ dImζ − 12

√
−Eλ̄

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂2ζ v ϕdReζ dImζ+

+
6E

λ̄2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂ζ̄v ϕdReζ dImζ − 12

√
−E
λ̄

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂2ζ̄v ϕdReζ dImζ. (A.6)
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Integrating J11 by parts and taking into account that −4∂ζ∂ζ̄ϕ+ vϕ = Eϕ we obtain

J11 = −2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂ζv w ϕdReζ dImζ −

√
−Eλ̄

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) v w ϕdReζ dImζ−

− 2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) v ∂ζwϕdReζ dImζ =

= −2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂ζv w ϕdReζ dImζ + (

√
−E)3λ̄

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) wϕdReζ dImζ−

− 4
√
−Eλ̄

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) w ∂ζ∂ζ̄ϕdReζ dImζ − 2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) v ∂ζwϕdReζ dImζ =

= −2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂ζv w ϕdReζ dImζ + (

√
−E)3λ̄

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) wϕdReζ dImζ−

− (
√
−E)3λ̄

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) wϕdReζ dImζ − 6Eλ̄2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂ζv ϕdReζ dImζ+

+ 2E

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂ζwϕdReζ dImζ + 12

√
−Eλ̄

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂2ζ v ϕdReζ dImζ−

− 2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) v ∂ζwϕdReζ dImζ.

Thus it can be obtained

J3 + J4 + J5 + J6 + J7 + J8 + J11 + J12 =

= −6Eλ̄2
∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂ζv ϕdReζ dImζ + 12

√
−Eλ̄

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂2ζ v ϕdReζ dImζ−

− 6E

λ̄2

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂ζ̄v ϕdReζ dImζ +

12
√
−E
λ̄

∫∫

C

e
√

−E
2

(λ̄ζ+ ζ̄

λ̄
) ∂2ζ̄v ϕdReζ dImζ. (A.7)

Finally,

J14 = 3i(
√
E)3

(

λ3 − 1

λ3

)

b(λ, t) (A.8)

and thus from (A.5)-(A.8) we obtain formula (4.17).
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