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Asymptotics of a vanishing period :

General existence theorem and basic properties of

frescos.

Daniel Barlet∗.

5/1/12.

Abstract

In this paper we introduce the word ”fresco” to denote a [λ]−primitive monogenic
geometric (a,b)-module. The study of this ”basic object” (generalized Brieskorn
module with one generator) which corresponds to the minimal filtered (regular) dif-
ferential equation satisfied by a relative de Rham cohomology class, began in [B.09]
where the first structure theorems are proved. Then in [B.10] we introduced the
notion of theme which corresponds in the [λ]−primitive case to frescos having a
unique Jordan-Hölder sequence. Themes correspond to asymptotic expansion of a
given vanishing period, so to the image of a fresco in the module of asymptotic
expansions. For a fixed relative de Rham cohomology class (for instance given by a
smooth differential form d−closed and df−closed) each choice of a vanishing cycle in
the spectral eigenspace of the monodromy for the eigenvalue exp(2iπ.λ) produces
a [λ]−primitive theme, which is a quotient of the fresco associated to the given
relative de Rham class itself.
The first part of this paper shows that, for any [λ]−primitive fresco there exists
an unique Jordan-Hölder sequence (called the principal J-H. sequence) with corre-
sponding quotients giving the opposite of the roots of the Bernstein polynomial in a
non decreasing order. Then we introduce and study the semi-simple part of a given
fresco and we characterize the semi-simplicity of a fresco by the fact for any given
order of the roots of its Bernstein polynomial we may find a J-H. sequence making
them appear with this order. Then, using the parameter associated to a rank 2
[λ]−primitive theme, we introduce inductiveley a numerical invariant, that we call
the α−invariant, which depends polynomially on the isomorphism class of a fresco
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(in a sens which has to be defined) and which allows to give an inductive way to
produce a sub-quotient rank 2 theme of a given [λ]−primitive fresco assuming non
semi-simplicity.
In the last section we prove a general existence result which naturally associate a
fresco to any relative de Rham cohomology class of a proper holomorphic function
of a complex manifold onto a disc. This is, of course, the motivation for the study
of frescos.

AMS Classification. 32 S 25, 32 S 40, 32 S 50.

Key words. Fresco, theme, (a,b)-module, asymptotic expansion, vanishing pe-
riod, Gauss-Manin connection, filtered differential equation.
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Introduction

Let f : X → D be an holomorphic function on a connected complex manifold.
Assume that {df = 0} ⊂ {f = 0} := X0. We consider X as a degenerating family
of complex manifolds parametrized by D∗ := D \ {0} with a singular member X0

at the origin of D. Let ω be a smooth (p+1)−differential form on X satisfying
dω = 0 = df ∧ω. Then in many interesting cases (see for instance [B.II] , [B.III] for
the case of a function with 1-dimensional singular set and the section 4 for the gen-
eral proper case) the relative family of de Rham cohomology classes induced on the
fibers (Xs)s∈D∗ of f by ω

/

df is solution of a minimal filtered differential equation
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defined from the Gauss-Manin connection of f . This object, called a fresco is a
monogenic regular (a,b)-module satisfying an extra condition, called ”geometric”,
which encodes simultaneously the regularity at 0 of the Gauss-Manin connection,
the monodromy theorem and B. Malgrange’s positivity theorem.
We study the structure of such an object in order to determine the possible quo-
tient themes of a given fresco. Such a theme corresponds to a possible asymptotic
expansion of vanishing periods constructed from ω by choosing a vanishing cycle
γ ∈ Hp(Xs0,C) and definig

Fγ(s) :=

∫

γs

ω
/

df

where γs is the (multivalued) horizontal family of cycles defined from γ in the
fibers of f (see [M.74]).

Let me describe the content of this article.
After some easy preliminaries, we prove in section 1 that a [λ]−primitive fresco
E admits an unique Jordan-Hölder sequence, called the principal J-H. sequence,
in which the opposite of the roots of the Bernstein polynomial of E appears in
a non decreasing order. This uniqueness result is important because it implies, for
instance, that the isomorphism classes of each quotient of terms of the principal
J-H. sequence only depends on the isomorphism class of E.

In section 2 we define and study semi-simple regular (a,b)-modules and the cor-
responding semi-simple filtration. In the case of a [λ]−primitive fresco we prove
that semi-simplicity is characterized by the fact that we may find a J-H. sequence
in which the opposite of the roots of the Bernstein polynomial appears in strictely
decreasing order (but also in any given order).

In section 3 we answer to the following question : How to recognize from the principal
J-H. sequence of a [λ]−primitive fresco if it is semi-simple. Of course the answer is
obvious if some rank 2 sub-quotient theme appears from this sequence. But when
it is not the case, such a rank 2 sub-quotient theme may appear after commuting
some terms in the J-H. sequence. The simplest example is when

E := Ã
/

Ã.(a− λ1.b)(1 + α.bp1+p2)−1.(a− λ2.b).(a− λ3.b)

with λi+1 = λi + pi − 1 for i = 1, 2 with pi ∈ N∗, i = 1, 2 and α ∈ C∗. Using
the identity in Ã

(a− λ2.b).(a− λ3.b) = (a− (λ3 + 1).b).(a− (λ2 − 1).b)

it is easy to see that (a− (λ2− 1).b).[1] generates a (normal) rank 2 theme in E,
because we assume α 6= 0.

We solve this question introducing for a [λ]−primitive rank k ≥ 2 fresco E such
Fk−1 and E

/

F1 are semi-simple, where (Fj)j∈[1,k] is the principal J-H. sequence of
E, the α−invariant α(E). This complex number only depends on the isomorphism
class of E and is zero if and only E is semi-simple. We also prove that when
α(E) is not zero it gives the parameter of any normal rank 2 sub-theme of E.
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In section 4 we give, using tools introduced in [B.II], a general existence theorem
for the fresco associated to a relative de Rham cohomology class in the geometric
situation described in the begining of this introduction, assuming the function f
proper.

1 Preliminaries.

1.1 Definitions and characterization as Ã−modules.

We are interested in ”standard ” formal asymptotic expansions of the following type

p
∑

q=1

N
∑

j=0

C[[s]].sλq−1.(Log s)j

where λ1, . . . , λq are positive rational numbers, and in fact in vector valued such
expansions. The two basic operations on such expansions are

• the multiplication by s that we shall denote a,

• and the primitive in s without constant that we shall denote b.

This leads to consider on the set of such expansions a left module structure on the
C−algebra

Ã := {

∞
∑

ν=0

Pν(a).b
ν , where Pν ∈ C[x] }

defined by the following conditions

• The commutation relation a.b − b.a = b2 which is the translation of the
Leibnitz rule ;

• The continuity for the b−adic filtration of Ã of the left and right multipli-
cations by a.

Define now for λ in Q∩ ]0, 1] and N ∈ N the left Ã−module

Ξ
(N)
λ := ⊕N

j=0 C[[s]].sλ−1.(Log s)j = ⊕N
j=0 C[[a]].sλ−1.(Log s)j = ⊕N

j=0 C[[b]].sλ−1.(Log s)j.

Of course we let a and b act on Ξ
(N)
λ as explained above.

Define also, when Λ is a finite subset in Q∩ ]0, 1], the Ã−module

Ξ
(N)
Λ := ⊕λ∈Λ Ξ

(N)
λ .

More generally, if V is a finite dimensional complex vector space we shall put a
structure of left Ã−module on Ξ

(N)
Λ ⊗C V with the following rules :

a.(ϕ⊗ v) = (a.ϕ)⊗ v and b.(ϕ⊗ v) = (b.ϕ)⊗ v

for any ϕ ∈ Ξ
(N)
Λ and any v ∈ V . It will be convenient to denote Ξλ the

Ã−module
∑

N∈N Ξ
(N)
λ .
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Definition 1.1.1 A Ã−module is call a fresco when it is isomorphic to a sub-
module Ã.ϕ ⊂ Ξ

(N)
Λ ⊗ V where ϕ is any element in Ξ

(N)
Λ ⊗ V , for some choice

of Λ, N and V as above.
A fresco is a theme when we may choose V := C in the preceeding choice.

Now the characterization of frescos among all left Ã−modules is not so obvious.
The following theorem is proved in [B.09].

Theorem 1.1.2 A left Ã−module E is a fresco if and only if it is a geometric
(a,b)-module which is generated (as a Ã−module) by one element. Moreover the
annihilator in Ã of any generator of E is a left ideal of the form Ã.P where
P may be written as follows

P = (a− λ1.b).S
−1
1 .(a− λ2.b).S

−1
2 . . . (a− λk.b).S

−1
k , k := dimC(E

/

b.E)

where λj are rational numbers such that λj + j > k for j ∈ [1, k] and where
S1, . . . , Sk are invertible elements in the sub-algebra C[[b]] of Ã.
Conversely, for such a P ∈ Ã the left Ã−module E := Ã

/

Ã.P is a fresco and
it is a free rank k module on C[[b]].

Let me recall briefly for the convenience of the reader the definitions of the notions
involved in the previous statement.

• A (a,b)-module E is a free finite rank C[[b]] module endowed with an
C−linear endomorphism a such that a.S = S.a + b2.S ′ for S ∈ C[[b]];
or, in an equivalent way, a Ã−module which is free and finite type over the
subalgebra C[[b]] ⊂ Ã.
It has a simple pole when a satisfies a.E ⊂ b.E. In this case the Bernstein
polynomial BE of E is defined as the minimal polynomial of −b−1.a acting
on E

/

b.E.

• A (a,b)-module E is regular when it may be embedded in a simple pole
(a,b)-module. In this case there is a minimal such embedding which is the
inclusion of E in its saturation E♯ by b−1.a. The Bernstein polynomial
of a regular (a,b)-module is, by definition, the Bernstein polynomial of its
saturation E♯.

• A regular (a,b)-module E is called geometric when all roots of its Bernstein
polynomial are rational and strictly negative.

Note that the formal completion in b of the Brieskorn module of a function with
an isolated singularity is a geometric (a,b)-module. The last section of this article
shows that this structure appears in a rather systematic way in the study of the
Gauss-Manin connection of a proper holomorphic function on a complex manifold.

Definition 1.1.3 A submodule F in E is normal when F ∩ b.E = b.F .
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For any sub-module F of a (a,b)-module E there exists a minimal normal sub-
module F̃ of E containing F . We shall call it the normalization of F . It
is easy to see that F̃ is the pull-back by the quotient map E → E

/

F of the
b−torsion of E

/

F .

When F is normal the quotient E
/

F is again a (a,b)-module. Note that a sub-
module of a regular (resp. geometric) (a,b)-module is regular (resp. geometric) and
when F is normal E

/

F is also regular (resp. geometric).

Lemma 1.1.4 Let E be a fresco and F be a normal sub-module in E. Then F
is a fresco and also the quotient E

/

F .

proof. The only point to prove, as we already know that F and E
/

F are geo-
metric (a,b)-modules thanks to [B.09], is the fact that F and E

/

F are generated

as Ã−module by one element. This is obvious for E
/

F , but not for F . We shall
use the theorem 1.1.2 for E

/

F to prove that F is generated by one element. Let
e be a generator of E and let P as in the theorem 1.1.2 which generates the
annihilator ideal of the image of e in E

/

F . Then P.e is in F . We shall prove

that P.e generates F as a Ã−module. Let y be an element in F and write
y = u.e where u is in Ã. As P is, up to an invertible element in C[[b]], a monic
polynomial in a with coefficients in C[[b]], we may write u = Q.P +R where Q
and R are in Ã and R is a polynomial in a with coefficient in C[[b]] of degree
r < deg(P ) = rank(E

/

F ). Now, as y is in F , the image in E
/

F of u.e is 0,

and this implies that R annihilates the image of e in E
/

F . So R lies in Ã.P
and so R = 0. Then we have u = Q.P and y = Q.P.e proving our claim. �

In the case of a fresco the Bernstein polynomial is more easy to describe, thanks to
the following proposition proved in [B.09].

Proposition 1.1.5 Soit E = Ã
/

Ã.P be a rank k fresco as described in the
previous theorem. The Bernstein polynomial of E is the characteristic polynomial
of −b−1.a acting on E♯

/

b.E♯. And the Bernstein element PE of E, which is

the element in Ã defined by the Bernstein polynomial BE of E by the following
formula

PE := (−b)k.BE(−b−1.a)

is equal to (a− λ1.b) . . . (a− λk.b) for any such choice of presentation of E.

As an easy consequence, the k roots of the Bernstein polynomial of E are the
opposite of the numbers λ1 + 1− k, . . . , λk + k− k. So the Bernstein polynomial is
readable on the element P : the initial form of P in (a,b) is the Bernstein element
PE of E.

Remark. If we have an exact sequence of (a,b)-modules

0 → F → E → G → 0
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where E is a fresco, then F and G are frescos and the Bernstein elements satisfy
the equality PE = PF .PG in the algebra Ã (see [B.09] proposition 3.4.4.). �

example. The Ã−module Ξ
(N)
λ is a simple pole (a,b) with rank N + 1. Its

Bernstein polynomial is equal to (x+ λ)N+1.

The theme Ã.ϕ ⊂ Ξ
(N)
λ where ϕ = sλ−1.(Log s)N has rank N +1 and Bernstein

element (a− (λ+N).b)(a − (λ+N − 1).b) . . . (a− λ.b). Its saturation is Ξ
(N)
λ .

The dual of a regular (a,b)-module is regular, but duality does not preserve the
property of being geometric because duality change the sign of the roots of the
Bernstein polynomial. As duality preserves regularity (see [B.95]), to find again
a geometric (a,b)-module it is sufficient to make the tensor product by a rank 1
(a,b)-module Eδ for δ a large enough rational number1. The next lemma states
that this ”twist duality” preserves the notion of fresco.

Lemma 1.1.6 Let E be a fresco and let δ be a rational number such that E∗⊗Eδ

is geometric. Then E∗ ⊗Eδ is a fresco.

The proof is obvious. �

The following definition is useful when we want to consider only the part of asymp-
totic expansions corresponding to prescribe eigenvalues of the monodromy.

Definition 1.1.7 Let Λ be a subset of Q∩ ]0, 1]. We say that a regular (a,b)-
module E is [Λ]−primitive when all roots of its Bernstein polynomial are in
−Λ + Z.

The following easy proposition is proved in [B.09]

Proposition 1.1.8 Let E be a regular (a,b)-module and Λ a subset of Q∩ ]0, 1].
Then there exists a maximal submodule E[Λ] in E which is [Λ]−primitive.
Moreover the quotient E

/

E[Λ] is a [Λc]−primitive (a,b)-module, where we denote
Λc := Q∩ ]0, 1] \ Λ.

We shall mainly consider the case where Λ is a single element. Note that the
[λ]−primitive part of an (a,b)-module E ⊂ Ξ

(N)
Λ ⊗V corresponds to its intersection

with Ξ
(N)
λ ⊗ V .

1.2 The principal Jordan-Hölder sequence.

The classification of rank 1 regular (a,b)-module is very simple : each isomorphy
class is given by a complex number and to λ ∈ C corresponds the isomorphy class of

1to tensor by Eδ is the same that to replace a by a+ δ.b ; see [B.I] for the general definition
of the tensor product.
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Eλ := Ã
/

Ã.(a− λ.b). Then Jordan-Hölder sequence for a regular (a,b)-module
E is a sequence

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk = E

of normal sub-modules such that for each j ∈ [1, k] the quotient Fj

/

Fj−1 has rank
1. Then to each J-H. sequence we may associate an ordered sequence of complex
numbers λ1, . . . , λk such that Fj

/

Fj−1 ≃ Eλj
.

example. A regular rank 1 (a,b)-module is a fresco if and only if it is isomorphic
to Eλ for some λ ∈ Q+∗. All rank 1 frescos are themes. The classification of rank
2 regular (a,b)-modules given in [B.93] gives the list of [λ]−primitive rank 2 frescos
which is the following, where λ1 > 1 is a rational number :

E = E ≃ Ã
/

Ã.(a− λ1.b).(a− (λ1 − 1).b) (1)

E ≃ Ã
/

Ã.(a− λ1.b).(1 + α.bp)−1.(a− (λ1 + p− 1).b) (2)

where p ∈ N \ {0} and α ∈ C.
The themes in this list are these in (1) and these in (2) with α 6= 0. For a
[λ]−primitive fresco in case (2) the number α will be called the parameter of
the rank 2 fresco. By convention we shall define α := 1 in the case (1). �

The following existence result is proved in [B.93]

Proposition 1.2.1 For any regular (a,b)-module E of rank k there exists a J-H.
sequence. The numbers exp(2iπ.λj) are independant of the J-H. sequence, up to

permutation. Moreover the number µ(E) :=
∑k

j=1 λj is also independent of the
choice of the J-H. sequence of E.

Exercice. Let E be a regular (a,b)-module and E ′ ⊂ E be a sub-(a,b)-module
with the same rank than E. Show that E ′ has finite C−codimension in E given
by

dimC E
/

E ′ = µ(E ′)− µ(E).

hint : make an induction on the rank of E. �

For a [λ]−primitive fresco a more precise result is proved in [B.09]

Proposition 1.2.2 For any J-H. sequence of a rank k [λ]−primitive fresco E
the numbers λj + j − k, j ∈ [1, k] are the opposite of the roots (with multiplicities)
of the Bernstein polynomial of E. So, up to a permutation, they are independant
of the choice of the J-H. sequence. Moreover, there always exists a J-H. sequence
such that the associated sequence λj + j is non decreasing.

For a [λ]−primitive theme the situation is extremely rigid (see [B.09]) :

8



Proposition 1.2.3 Let E a rank k [λ]−primitive theme. Then, for each j in
[0, k], there exists an unique normal rank j submodule Fj. The numbers associated
to the unique J-H. sequence satisfy the condition that λj + j, j ∈ [1, k] is an non
decreasing sequence.

Definition 1.2.4 Let E be a [λ]−primitive fresco of rank k and let

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk = E

be a J-H. sequence of E. Then for each j ∈ [1, k] we have Fj

/

Fj−1 ≃ Eλj
, where

λ1, . . . , λk are in λ+N. We shall say that such a J-H. sequence is principal when
the sequence [1, k] ∋ j 7→ λj + j is non decreasing.

Proposition 1.2.5 Let E be a [λ]−primitive fresco. Then its principal J-H.
sequence is unique.

We shall prove the uniqueness by induction on the rank k of E.
We begin by the case of rank 2.

Lemma 1.2.6 Let E be a rank 2 [λ]−primitive fresco and let λ1, λ2 the numbers
corresponding to a principal J-H. sequence of E (so λ1 + 1 ≤ λ2 + 2). Then the
normal rank 1 submodule of E isomorphic to Eλ1

is unique.

Proof. The case λ1+1 = λ2+2 is obvious because then E is a [λ]−primitive
theme (see [B.10] corollary 2.1.7). So we may assume that λ2 = λ1 + p1 − 1 with
p1 ≥ 1 and that E is the quotient E ≃ Ã

/

Ã.(a − λ1.b).(a − λ2.b) (see the
classification of rank 2 frescos in 2.2), because the result is clear when E is a
theme. We shall use the C[[b]]−basis e1, e2 of E where a is defined by the
relations

(a− λ2.b).e2 = e1 (a− λ1.b).e1 = 0.

This basis comes from the isomorphism E ≃ Ã
/

Ã.(a − λ1.b).(a − λ2.b) deduced
from the classification of rank 2 frescos with e2 = [1] and e1 = (a− λ2.b).e2.
Let look for x := U.e2 + V.e1 such that (a− λ1.b).x = 0. Then we obtain

b2.U ′.e2 + U.(a− λ2.b).e2 + (λ2 − λ1).b.U.e2 + b2.V ′.e1 = 0

which is equivalent to the two equations :

b2.U ′ + (p1 − 1).b.U = 0 and U + b2.V ′ = 0.

The first equation gives U = 0 for p1 ≥ 2 and U ∈ C for p1 = 1. As the second
equation implies U(0) = 0, in all cases U = 0 and V ∈ C. So the solutions are in
C .e1. �

Remark that in the previous lemma, if we assume p1 ≥ 1 and E is not a theme,
it may exist infinitely many different normal (rank 1) submodules isomorphic to
Eλ2+1. But then, λ2 + 2 > λ1 + 1. This happens in the following example.
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Example. Let E := Ã
/

Ã.P with

P := (a− λ1.b).(a− λ2.b)(1 + α.bp2)−1.(a− λ3.b)

where λ1 > 2 is rational, p1 and p2 are in N∗, λ2 = λ1 + p1 − 1, λ3 = λ2 + p2 − 1
and α is in C∗.
Then using the identity (see the commuting lemma in [B.09])

(a− λ1.b).(a− λ2.b) = U−1.(a− (λ2 + 1).b).U2.(a− (λ1 − 1).b).U−1

with U := 1+ ρ.bp1 , ρ ∈ C∗, it is easy to see that the rank 3 fresco E admits the
rank 2 theme T with fundamental invariants (λ1 − 1, λ3) and parameter ρ.α.
Remark that if we use the previous identity with ρ = 0 (so U = 1), then using
the identity

(a− (λ1 − 1).b).(1 + α.bp2)−1.(a− λ3.b) =

V −1.(a− (λ3 + 1).b).V 2.(1 + α.bp2)−1.(a− (λ1 − 2).b).V −1

where V = 1 + β.bp2 and β := (1 + p2/p1).α we see that E contains a normal
rank 2 sub-theme which has fundamental invariants equal to (λ2 +1, λ3+1) and
parameter β. �

proof of proposition 1.2.5. As the result is obvious for k = 1, we may assume
k ≥ 2 and the result proved in rank ≤ k − 1. Let Fj, j ∈ [1, k] and Gj , j ∈ [1, k]
two J-H. principal sequences for E. As the sequences λj + j and µj + j cöıncide
up to the order and are both non decreasing, they cöıncide. Now let j0 be the first
integer in [1, k] such that Fj0 6= Gj0. If j0 ≥ 2 applying the induction hypothesis
to E

/

Fj0−1 gives Fj0

/

Fj0−1 = Gj0

/

Fj0−1 and so Fj0 = Gj0.
So we may assume that j0 = 1. Let H be the normalization of F1 + G1. As F1

and G1 are normal rank 1 and distinct, then H is a rank 2 normal submodule.
It is a [λ]−primitive fresco of rank 2 with two normal rank 1 sub-modules which
are isomorphic as λ1 = µ1. Moreover the principal J-H. sequence of H begins by
a normal submodule isomorphic to Eλ1

. So the previous lemma implies F1 = G1.
So for any j ∈ [1, k] we have Fj = Gj . �

Definition 1.2.7 Let E be a [λ]−primitive fresco and consider its principal J-H.
sequence Fj, j ∈ [1.k]. Put Fj

/

Fj−1 ≃ Eλj
for j ∈ [1, k] (with F0 = {0}). We

shall call fundamental invariants of E the ordered k-tuple (λ1, . . . , λk).

Of course, if we have any J-H. sequence for a [λ]−primitive fresco E with rank
1 quotients associated to the rational numbers µ1, . . . , µk, it is easy to recover the
fundamental invariants of E because the numbers µj + j, j ∈ [1, k] are the same
than the numbers λj + j up to a permutation. But as the sequence λj + j is non
decreasing with j, it is enough to put the µj + j in the non decreasing order with
j to conclude.
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Let λ1, . . . , λk be the fundamental invariants of a [λ]−primitive fresco E0, and
not F(λ1, . . . , λk) the set of isomorphism classes of frescos with these fundamental
invariants. The uniqueness of the principal J-H. sequence of a [λ]−primitive fresco
allows to define for each (i, j) 1 ≤ i < j ≤ k a map

qi,j : F(λ1, . . . , λk) → F(λi, . . . , λj)

defined by qi,j([E]) = [Fj

/

Fi−1] where (Fh)h∈[0,k] is the principal J-H. sequence
of E. This makes sens because any isomorphism ϕ : E1 → E2 between two
[λ]−primitive frescos induces isomorphisms between each term of the corresponding
principal J-H. sequences.
For instance classification of rank 2 [λ]−primitive frescos gives (see example before
proposition 1.2.1) for any rational number λ1 > 1 and p1 ∈ N :

for p1 = 0 F(λ1, λ1 − 1) = {pt}

for p1 ≥ 1 α : F(λ1, λ1 + p1 − 1)
≃

−→ C

and {pt} is given by the isomorphism class of Ã
/

Ã.(a−λ1.b).(a− (λ1−1).b) and
the isomorphism class associated to α−1(x) for x ∈ C in the case p1 ≥ 1 is given
by Ã

/

Ã.(a− λ1.b).(1 + x.bp1)−1.(a− (λ1 + p1 − 1).b).

2 Semi-simplicity.

2.1 Semi-simple regular (a,b)-modules.

Definition 2.1.1 Let E be a regular (a,b)-module. We say that E is semi-
simple if it is a sub-module of a finite direct sum of rank 1 regular (a,b)-modules.

Note that if E is a sub-module of a regular (a,b)-module it is necessary regular. As
a direct sum of regular (a,b)-modules if regular, our assumption that E is regular
is superfluous.
It is clear from this definition that a sub-module of a semi-simple (a,b)-module is
semi-simple and that a (finite) direct sum of semi-simple (a,b)-modules is again
semi-simple.

Remark. A rather easy consequence of the classification of rank 2 (a,b)-modules
given in [B.93] is that the rank 2 simple pole (a,b)-modules defined in the C[[b]]−basis
x, y by the relations :

(a− (λ+ p).b).x = bp+1.y and (a− λ).y = 0

for any λ ∈ C and any p ∈ N are not semi-simple. We leave the verification of
this point to the reader.
Let us begin by a characterization of the semi-simple (a,b)-modules which have a
simple pole. First we shall prove that a quotient of a semi-simple (a,b)-module is
semi-simple. This will be deduced from the following lemma.
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Lemma 2.1.2 Let E be a (a,b)-module which is direct sum of regular rank 1
(a,b)-modules, and let F ⊂ E be a rank 1 normal sub-module. Then F is a
direct factor of E.

Corollary 2.1.3 If E is a semi-simple regular (a,b)-module and F a normal
sub-module of E, the quotient E

/

F is a (regular) semi-simple (a,b)-module.

Proof of the lemma. Let E = ⊕k
j=1 Eλj

and assume that F ≃ Eµ. Let ej
be a standard generator of Eλj

and e a standard generator of Eµ. Write

e =
k

∑

j=1

Sj(b).ej

and compute (a− µ.b).e = 0 using the fact that ej , j ∈ [1, k] is a C[[b]]−basis of
E and the relations (a − λj.b).ej = 0 for each j. We obtain for each j ∈ [1, k]
the relation

b.S ′
j − (µ− λj).Sj = 0.

So, if µ− λj is not in N, we have Sj = 0. When µ = λj + pj with pj ∈ N we
obtain Sj(b) = ρj .b

pj for some ρj ∈ C. As we assume that e is not in b.E, there
exists at least one j0 ∈ [1, k] such that pj0 = 0 and ρj0 6= 0. Then it is clear that
we have

E = F ⊕
(

⊕j 6=j0 Eλj

)

concluding the proof. �

Proof of the corollary. We argue by induction on the rank of F . In the
rank 1 case, we have F ⊂ E ⊂ E := ⊕k

j=1 Eλj
. Let F̃ the normalization of F

in ⊕k
j=1 Eλj

. Then the lemma shows that there exists a j0 ∈ [1, k] such that

E = F̃ ⊕⊕j 6=j0Eλj
.

Then, as F̃ ∩E = F , the quotient map E → E
/

F̃ ≃ ⊕j 6=j0Eλj
induces an injection

of E
/

F in a direct sum of regular rank 1 (a,b)-modules. So E
/

F is semi-simple.
Assume now that the result is proved for F with rank ≤ d− 1 and assume that
F has rank d. Then using a rank 1 normal sub-module G in F , we obtain that
F
/

G is a normal rank d − 1 sub-module of E
/

G. Using the rank 1 case we
know that E

/

G is semi-simple, and the induction hypothesis gives that

E
/

F = (E
/

G)
/

(F
/

G)

is semi-simple. �

Proposition 2.1.4 Let E be a simple pole semi-simple (a,b)-module. Then E is
a direct sum of regular rank 1 (a,b)-modules.
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proof. We shall prove the proposition by induction on the rank k of E. As the
rank 1 case is obvious, assume the proposition proved for k − 1 and that E is
a simple pole rank k ≥ 2 semi-simple (a,b)-module. From the existence of J-H.
sequence, we may find an exact sequence

0 → F → E → Eλ → 0

where F has rank k− 1. By definition F is semi-simple, but it also has a simple
pole because a.F ⊂ a.E ⊂ b.E implies that a.F ⊂ F ∩ b.E = b.F as F is
normal in E. So by the induction hypothesis F is a direct sum of regular rank 1
(a,b)-modules.
Let e ∈ E such that its image in Eλ is eλ a standard generator of Eλ satisfying
a, eλ = λ.b.eλ. Then we have (a−λ.b).e ∈ F . We shall first look at the case k = 2.
So F is a rank 1 and we have F ≃ Eµ for some µ ∈ C. Let eµ be a standard
generator in F and put

(a− λ.b).e = S(b).eµ.

Our simple pole assumption on E implies S(0) = 0 and we may write
S(b) = b.S̃(b). We look for T ∈ C[[b]] such that ε := e + T (b).eµ satisfies

(a− λ.b).ε = 0.

If such a T exists, then we would have E = Eµ⊕Eλ where Eλ is the submodule
generated by ε, because it is clear that we have E = F⊕C[[b]].e as a C[[b]]−module.
To find T we have to solve in C[[b]] the differential equation

b.S̃(b) + (µ− λ).b.T (b) + b2.T ′(b) = 0.

If λ− µ is not a non negative integer, such a T exists and is unique. But when
λ = µ+ p with p ∈ N, the solution exists if and only if the coefficient of bp in S̃
is zero. If it is not the case, define T̃ as the solution of the differential equation

S̃(b)− α.bp + b.T̃ ′(b)− p.T̃ (b) = 0

where α is the coefficient of bp in S̃ and where we choose T̃ by asking that it
has no bp term. Then ε1 := e + T̃ (b).eλ−p satisfies

(a− (λ− p).b).ε1 = α.bp+1.eλ−p.

Then, after changing λ−p in λ and eλ−p in α.eλ−p, we recognize one of the rank
2 modules which appears in the previous remark and which is not semi-simple. So
we have a contradiction. This concludes the rank 2 case.

Now consider the case k ≥ 3 and using the induction hypothesis write

F ≃ ⊕k−1
j=1 Eµj
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and denote ej a standard generator for Eµj
. Write

(a− λ.b).e =
k−1
∑

j=1

Sj(b).ej .

The simple pole assumption again gives Sj(0) = 0 for each j; now we look for

T1, . . . , Tk−1 in C[[b]] such that, defining ε := e +
∑k−1

j=1 Tj(b).ej , we have

(a− λ.b).ε = 0.

For each j this leads to the differential equation

b.S̃j(b) + (µj − λ).b.Tj(b) + b2.T ′
j(b) = 0

where we put Sj(b) = b.S̃j(b). We are back, for each given j ∈ [1, k − 1], to the
previous problem in the rank 2 case. So if for each j ∈ [1, k−1] we have a solution
Tj ∈ C[[b]] it is easy to conclude that

E ⊂ F ⊕ C[[b]].ε ≃ F ⊕ Eλ.

If for some j0 there is no solution, the coefficient of bj0 in S̃j0 does not vanish and
then the image of E in E

/

⊕j 6=j0 Eµj
is a rank 2 not semi-simple (a,b)-module.

This contradicts the corollary 2.1.3 and concludes the proof. �

Remark. Let E be a semi-simple rank k (a,b)-module and let E♯ its saturation
by b−1.a, then E♯ is semi-simple because there exists N ∈ N with an inclusion
E♯ ⊂ b−N .E. Also E♭ its maximal simple pole sub-module is semi-simple. Then
we have

E♭ ≃ ⊕k
j=1 Eλj+dj ⊂ E ⊂ E♯ ≃ ⊕k

j=1 Eλj

where d1, . . . , dk are non negative integers.

Corollary 2.1.5 Let E be a semi-simple (a,b)-module. Then its dual E∗ is
semi-simple.

proof. For a regular (a,b)-module E we have (E♭)∗ = (E∗)♯. But the dual
of Eλ is E−λ and the duality commutes with direct sums. So we conclude that
E∗ ⊂ (E♭)∗ and so E∗ is a semi-simple. �

Remark. The tensor product of two semi-simple (a,b)-modules is semi-simple as
a consequence of the fact that Eλ ⊗Eµ = Eλ+µ.
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2.2 The semi-simple filtration.

Definition 2.2.1 Let E be a regular (a,b)-module and x an element in E. We
shall say that x is semi-simple if Ã.x is a semi-simple (a,b)-module.

It is clear that any element in a semi-simple (a,b)-module is semi-simple. The next
lemma shows that the converse is true.

Lemma 2.2.2 Let E be a regular (a,b)-module such that any x ∈ E is semi-
simple. Then E is semi-simple.

proof. Let e1, . . . , ek be a C[[b]]−basis of E. Then each Ã.ej is semi-simple,
and the map ⊕k

j=1Ã.ej → E is surjective. So E is semi-simple thanks to the
corollary 2.1.3 and the comment following the definition 2.1.1. �

Lemma 2.2.3 Let E be a regular (a,b)-module. The subset S1(E) of semi-simple
elements in E is a normal submodule in E.

proof. As a direct sum and quotient of semi-simple (a,b)-modules are semi-simple,
it is clear that for x and y semi-simple the sum Ã.x + Ã.y is semi-simple. So
x+ y is semi-simple. This implies that S1(E) is a submodule of E. If b.x is in
S1(E), then Ã.b.x is semi-simple. Then Ã.x ≃ Ã.b.x ⊗ E−1 is also semi-simple,
and so S1(E) is normal in E. �

Definition 2.2.4 Let E be a regular (a,b)-module. Then the submodule S1(E)
of semi-simple elements in E will be called the semi-simple part of E.
Defining Sj(E) as the pull-back on E of the semi-simple part of E

/

Sj−1(E)
for j ≥ 1 with the initial condition S0(E) = {0}, we define a sequence of normal
submodules in E such that Sj(E)

/

Sj−1(E) = S1(E
/

Sj−1(E). We shall call it the
semi-simple filtration of E. The smallest integer d such we have Sd(E) = E
will be called the semi-simple depth of E and we shall denote it d(E).

Remarks.

i) As S1(E) is the maximal semi-simple sub-module of E it contains any rank
1 sub-module of E. So S1(E) = {0} happens if and only if E = {0}.

ii) Then the ss-filtration of E is strictly increasing for 0 ≤ j ≤ d(E).

iii) It is easy to see that for any submodule F in E we have Sj(F ) = Sj(E)∩F .
So Sj(E) is the subset of x ∈ E such that d(x) := d(Ã.x) ≤ j and d(E)
is the supremum of d(x) for x ∈ E. �
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Lemma 2.2.5 Let 0 → F → E → G → 0 be an exact sequence of regular (a,b)-
modules such that F and G are semi-simple and such that for any roots λ, µ of
the Bernstein polynomial of F and G respectively we have λ− µ 6∈ Z. Then E
is semi-simple.

proof. By an easy induction we may assume that F is rank 1 and also that G
is rank 1. Then the conclusion follows from the classification of the rank 2 regular
(a,b)-module. �

Application. A regular (a,b)-module E is semi-simple if and only if for each
λ ∈ C its primitive part E[λ] is semi-simple.

The following easy facts are left as exercices for the reader.

1. Let 0 → F → E → G → 0 be a short exact sequence of regular (a,b)-modules.
Then we have the inequalities

sup{d(F ), d(G)} ≤ d(E) ≤ d(F ) + d(G).

2. Let E ⊂ Ξ
(N)
λ ⊗V be a sub-module where V is a finite dimensional complex

space. Then for each j ∈ [1, N + 1] we have

Sj(E) = E ∩
(

Ξ
(j−1)
λ ⊗ V

)

.

3. In the same situation as above, the minimal N for such an embedding of a
geometric [λ]−primitive E is equal to d(E)− 1.

4. In the same situation as above, the equality S1(E) = E ∩ Ξ
(0)
λ ⊗ V implies

rank(S1(E)) ≤ dimC V . It is easy to see that any [λ]−primitive semi-simple

geometric (a,b)-module F may be embedded in Ξ
(0)
λ ⊗ V for some V of

dimension rank(F ). But it is also easy to prove that when F = S1(E) with
E as above, such an embedding may be extended to an embedding of E into
Ξ
(d(E)−1)
λ ⊗ V . �

2.3 Semi-simple frescos.

We begin by a simple remark : A [λ]−primitive theme is semi-simple if and only if
it has rank ≤ 1. This is an easy consequence of the fact that the saturation of a
rank 2 [λ]−primitive theme is one of the rank 2 (a,b)-modules considered in the
remark following the definition 2.1.1 which are not semi-simple

Lemma 2.3.1 A geometric (a,b)-module E is semi-simple if and only if any
quotient of E which is a [λ]−primitive theme for some [λ] ∈ Q

/

Z is of rank
≤ 1.

16



proof. The condition is clearly necessary as a quotient of a semi-simple (a,b)-
module is semi-simple (see corollary 2.1.3), thanks to the remark above. Using the
application of the lemma 2.2.5, it is enough to consider the case of a [λ]−primitive

fresco to prove that the condition is sufficient. Let ϕ : E → Ξ
(N)
λ ⊗ V be an

embedding of E which exists thanks to the embedding theorem 4.2.1. of [B.09],
we obtain that each component of this map in a basis v1, . . . vp of V has rank
at most 1 as its image is a [λ]−primitive theme. Then each of these images is
isomorphic to some Eλ+q for some integer q. So we have in fact an embedding of
E in a direct sum of Eλ+qi and E is semi-simple. �

Remark. The preceeding proof shows that a fresco is a non zero [λ]−primitive
theme for some [λ] ∈ Q

/

Z if and only if S1(E) has rank 1. �

Lemma 2.3.2 Let E be a semi-simple fresco with rank k and let λ1, . . . , λk

be the numbers associated to a J-H. sequence of E. Let µ1, . . . , µk be a twisted
permutation2 of λ1, . . . , λk. Then there exists a J-H. sequence for E with quotients
corresponding to µ1, . . . , µk.

Proof. As the symetric group Sk is generated by the transpositions tj,j+1 for
j ∈ [1, k−1], it is enough to show that, if E has a J-H. sequence with quotients given
by the numbers λ1, . . . , λk, then there exists a J-H. sequence for E with quotients
λ1, . . . , λj−1, λj+1 + 1, λj − 1, λj+2, . . . , λk for j ∈ [1, k − 1]. But G := Fj+1

/

Fj−1

is a rank 2 sub-quotient of E with an exact sequence

0 → Eλj
→ G → Eλj+1

→ 0.

As G is a rank 2 semi-simple fresco, it admits also an exact sequence

0 → G1 → G → G
/

G1 → 0

with G1 ≃ Eλj+1+1 and G
/

G1 ≃ Eλj−1. Let q : Fj+1 → G be the quotient map.
Now the J-H. sequence for E given by

F1, . . . , Fj−1, q
−1(G1), Fj+1, . . . , Fk = E

satisfies our requirement. �

Proposition 2.3.3 Let E be a [λ]−primitive fresco. A necessary and sufficient
condition in order that E is semi-simple is that it admits a J-H. sequence with
quotient corresponding to µ1, . . . , µk such that the sequence µj + j is strictly
decreasing.

2This means that the sequence µj + j, j ∈ [1, k] is a permutation (in the usual sens) of
λj + j, j ∈ [1, k].
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Remarks.

1. As a fresco is semi-simple if and only if for each [λ] its [λ]−primitive part is
semi-simple, this proposition gives also a criterium to semi-simplicity for any
fresco.

2. This criterium is a very efficient tool to produce easily examples of semi-simple
frescos.

Proof. Remark first that if we have, for a [λ]−primitive fresco E, a J-H. se-
quence Fj, j ∈ [1, k] such that λj + j = λj+1 + j + 1 for some j ∈ [1, k − 1],
then Fj+1

/

Fj−1 is a sub-quotient of E which is a [λ]−primitive theme of rank
2. So E is not semi-simple. As a consequence, when a [λ]−primitive fresco E is
semi-simple the principal J-H. sequence corresponds to a strictly increasing sequence
λj + j. Now, thanks to the previous lemma we may find a J-H. sequence for E
corresponding to the strictly decreasing order for the sequence λj + j.

No let us prove the converse. We shall use the following lemma.

Lemma 2.3.4 Let F be a rank k semi-simple [λ]−primitive fresco and let
λj + j the strictly increasing sequence corresponding to its principal J-H. sequence.
Let µ ∈ [λ] such that 0 < µ+k < λ1+1. Then any fresco E in an exact sequence

0 → F → E → Eµ → 0

is semi-simple (and [λ]−primitive).

Proof. The case k = 1 is obvious, so assume that k ≥ 2 and that we have a
rank 2 quotient ϕ : E → T where T is a [λ]−primitive theme. Then Ker ϕ ∩F
is a normal submodule of F of rank k − 2 or k − 3 (for k ≥ 3). If Ker ϕ ∩ F
is of rank k − 3, the rank of F

/

(Ker ϕ ∩ F ) is 2 and it injects in T via ϕ. So
F
/

(Ker ϕ ∩ F ) is a rank 2 [λ]−primitive theme. As it is semi-simple, because F
is semi-simple, we get a contradiction.
So the rank of F

/

(Ker ϕ ∩ F ) is 1 and we have an exact sequence

0 → F
/

(Ker ϕ ∩ F ) → T → E
/

F → 0.

Put F
/

(Ker ϕ ∩F ) ≃ F1(T ) ≃ Eν . Because T is a [λ]−primitive theme, we have
the inequality ν + 1 ≤ µ+ 2. Looking at a J-H. sequence of E ending by

· · · ⊂ Ker ϕ ∩ F ⊂ ϕ−1(F1(T )) ⊂ E

we see that ν+k−1 is in the set {λj + j, j ∈ [1, k]} and as λ1+1 is the infimum
of this set we obtain λ1 + 1 ≤ µ+ k contradicting our assumption. �
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End of proof of the proposition 2.3.3. Now we shall prove by induction on
the rank of a [λ]−primitive fresco E that if it admits a J-H. sequence corresponding
to a strictly decreasing sequence µj + j, it is semi-simple. As the result is obvious
in rank 1, we may assume k ≥ 1 and the result proved for k. So let E be a fresco
of rank k + 1 and let Fj , j ∈ [1, k + 1] a J-H. sequence for E corresponding to
the strictly decreasing sequence µj + j, j ∈ [1, k + 1]. Put Fj

/

Fj−1 ≃ Eµj
for all

j ∈ [1, k + 1], define F := Fk and µ := µk+1; then the induction hypothesis gives
that F is semi-simple and we apply the previous lemma to conclude. �

The following interesting corollary is an obvious consequence of the previous propo-
sition.

Corollary 2.3.5 Let E be a fresco and let λ1, . . . , λk be the numbers associated
to any J-H. sequence of E. Let µ1, . . . , µd be the numbers associated to any J-H.
sequence of S1(E). Then, for j ∈ [1, k], there exists a rank 1 normal submodule of
E isomorphic to Eλj+j−1 if and only if there exists i ∈ [1, d] such that we have
λj + j − 1 = µi + i− 1.

Of course, this gives the list of all isomorphy classes of rank 1 normal submodules
contained in E. So, using shifted duality, we get also the list of all isomorphy
classes of rank 1 quotients of E. It is interesting to note that this is also the list
of the possible initial exponents for maximal logarithmic terms which appear in the
asymtotic expansion of a given relative de Rham cohomology class after integration
on any vanishing cycle in the spectral subspace of the monodromy associated to the
eigenvalue exp(2iπ.λ).

3 A criterion for semi-simplicity.

3.1 Polynomial dependance.

All C−algebras have a unit.

When we consider a sequence of algebraically independent variables ρ := (ρi)i∈N we
shall denote by C[ρ] the C−algebra generated by these variables. Then C[ρ][[b]]
will be the commutative C−algebra of formal power series

∞
∑

ν=0

Pν(ρ).b
ν

where Pν(ρ) is an element in C[ρ] so a polynomial in ρ0, . . . , ρN(ν) where N(ν)
is an integer depending on ν. So each coefficient in the formal power serie in b
depends only on a finite number of the variables ρi.
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Definition 3.1.1 Let E be a (a,b)-module and let e(ρ) be a family of elements
in E depending on a family of variables (ρi)i∈N. We say that e(ρ) depends

polynomially on ρ if there exists a fixed C[[b]]−basis e1, . . . , ek of E such
that

e(ρ) =

k
∑

j=1

Sj(ρ).ej

where Sj is for each j ∈ [1, k] an element in the algebra C[ρ][[b]].

Remarks.

1. It is important to remark that when e(ρ) depends polynomially of ρ, then
a.e(ρ) also. Then for any u ∈ Ã, again u.e(ρ) depends polynomially on ρ.

2. It is easy to see that we obtain an equivalent condition on the family e(ρ) by
asking that the coefficient of e(ρ) are in C[ρ][[b]] in a C[[b]]−basis of E
whose elements depend polynomially of ρ.

3. The invertible elements in the algebra C[ρ][[b]] are exactly those elements
with a constant term in b invertible in the algebra C[ρ]. As we assume that
the variables (ρ)i∈N are algebraically independent, the invertible elements are
those with a constant term in b in C∗. �

Proposition 3.1.2 Let E be a rank k [λ]−primitive fresco and let λ1, . . . , λk

its fundamental invariants. Let e(ρ) be a family of generators of E depending
polynomially on a family of algebraically independant variables (ρi)i∈N. Then there
exists S1, . . . , Sk in C[ρ][[b]] such that Sj(ρ)[0] ≡ 1 for each j ∈ [1, k] and such
that the annihilator of e(ρ) in E is generated by the element of Ã

P (ρ) := (a− λ1.b).S1(ρ)
−1 . . . Sk−1(ρ)

−1.(a− λk.b).Sk(ρ)
−1.

Proof. The key result to prove this proposition is the rank 1 case. In this case
we may consider a standard generator e1 of E which is a C[[b]]−basis of E and
satisfies

(a− λ1.b).e1 = 0.

Then, by definition, we may write

e(ρ) = S1(ρ).e1

where S1 is in C[ρ][[b]] is invertible in this algebra, so has a constant term in C∗.
Up to normalizing e1, we may assume that S1(ρ)[0] ≡ 1 and then define

P (ρ) := (a− λ1.b).S1(ρ)
−1.
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It clearly generates the annihilator of e(ρ) for each ρ.
Assume now that the result is already proved for the rank k − 1 ≥ 1. Then con-
sider the family [e(ρ)] in the quotient E

/

Fk−1 where Fk−1 is the rank k − 1
sub-module of E in its principal J-H. sequence. Remark first that [e(ρ)] is a
family of generators of E

/

Fk−1 which depends polynomially on ρ. This is a trivial
consequence of the fact that we may choose a C[[b]]−basis e1, . . . , ek in E such
that e1, . . . , ek−1 is a C[[b]] basis of Fk−1 and ek maps to a standard generator
of E

/

Fk−1 ≃ Eλk
. Then the rank 1 case gives Sk ∈ C[ρ][[b]] with Sk(ρ)[0] = 1

and such that (a − λk.b).Sk(ρ)
−1.e(ρ) is in Fk−1 for each ρ. But then it is a

family of generators of Fk−1 which depends polynomially on ρ and the inductive
assumption allows to conclude. �

Fix now the fundamental invariants λ1, . . . , λk for a [λ]−primitive fresco.

Definition 3.1.3 Consider now a complex valued function f defined on a subset
F0 of the isomorphism classes F(λ1, . . . , λk) of [λ]−primitive frescos with fun-
damental invariants λ1, . . . , λk. We shall say that f depends polynomially on
the isomorphism class [E] ∈ F0 of the fresco E if the following condition is
satisfied :
Let s be the collection of algebraically independant variables corresponding to
the non constant coefficients of k élements S1, . . . , Sk in C[[b]] satisfying
Sj(0) = 1 ∀j ∈ [1, k] and consider for each value of s the rank k [λ]−primitive
fresco E(s) := Ã

/

Ã.P (s) where

P (s) := (a− λ1.b)S1(s)
−1 . . . (a− λk.b).Sk(s)

−1

where S1(s), . . . , Sk(s) correspond to the given values for s.
Then there exists a polynomial F ∈ C[s] such that for each value of s such that
[E(s)] is in F0, the value of F (s) is equal to f([E(s)]).

Example. Let (si)i∈N∗ a family of algebraically independant variables and let
S(s) := 1+

∑∞
i=1 si.b

i ∈ C[s][[b]]. Define E(s) := Ã
/

Ã.(a−λ1.b).S(s)[b]
−1.(a−λ2.b)

where λ1 > 1 is rational and λ2 := λ1+ p1− 1 with p1 ∈ N∗. Define α(s) := sp1.
Then the number α(s) depends only of the isomorphism class of the fresco E(s)
and defines a function on F(λ1, λ2) which depends polynomially on [E] ∈ F(λ1, λ2).
�

3.2 The α−invariant.

The first proposition will be the induction step in the construction of the α−invariant.

Proposition 3.2.1 Fix k ≥ 2. Denote F0(λ1, . . . , λk) the subset of F(λ1, . . . , λk)
of isomorphism class of rank k [λ]−primitive fresco E with invariants λ1, . . . , λk

such that Fk−1 and E
/

F1 are semi-simple where (Fj)j∈[1,k] is the principal J-H.
sequence of E.
We assume that, for k ≥ 3 we have :
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• for rank ≤ k − 1 frescos the α invariant is defined on the corresponding
subset F0;

• for [E] ∈ F0 the number α(E) is zero if and only if E is semi-simple

• and that [E] 7→ α(E) depends polynomially of [E] ∈ F0.

Fix E with [E] in F0(λ1, . . . , λk). Let e be a generator of E such that
(a−λk−1.b).(a−λk.b).e lies in Fk−2. Then the sub-module Gk−1 of E generated
by (a − (λk−1 − 1).b).e is a normal rank k − 1 sub-module of E which is
in F0(λ1, . . . , λk−2, λk + 1) and α(Gk−1) is independant of the choice of such a
generator e. Moreover, it defines a polynomial function on F0(λ1, . . . , λk).

Proof. We shall prove first that if e is a generator of e such that
(a−λk−1.b).(a−λk.b).e lies in Fk−2 then Gk−1 := Ã.(a−(λk−1−1).b.e is a normal
rank k−1 sub-module of E such that [Gk−1] belongs to F0(λ1, . . . , λk−2, λk+1).
Using the identity in Ã :

(a− λk−1.b).(a− λk.b) = (a− (λk + 1).b).(a− (λk−1 − 1).b)

we see that Gk−1 contains Fk−2, that Gk−1

/

Fk−2 ≃ Eλk+1 and Gk−1 admits

F1 ⊂ · · · ⊂ Fk−2 ⊂ Gk−1

as principal J-H. sequence. Then the fundamental invariants for Gk−1 are equal to
λ1, . . . , λk−2, λk + 1, and the corank 1 term Fk−2 is semi-simple. As Gk−1

/

F1 is
a sub-module of E

/

F1 it is semi-simple and we have proved that

[Gk−1] ∈ F0(λ1, . . . , λk−2, λk + 1).

Claim. If ε is another generator of E such that (a− λk−1.b).(a− λk.b).ε is in
Fk−2 we have

ε = ρ.e + σ.bpk−1−1.(a− λk.b).e modulo Fk−2

where (ρ, σ) is in C∗×C.
Write ε = U.ek + V.ek−1 modulo Fk−2 where ek := e and ek−1 := (a − λk.b).e
and where U, V are in C[[b]]. Now

(a− λk.b).ε = b2.U ′.ek + U.ek−1 + (λk−1 − λk).b.V.ek−1 + b2.V ′.ek−1 modulo Fk−2

and, as (a− λk−1.b).b
2.U ′ek ∈ Fk−1 implies U ′ = 0, we have U = ρ ∈ C∗, and we

obtain

(a− λk.b).ε =
[

ρ+ b2.V ′ − (pk−1 − 1).b.V
]

.ek−1 modulo Fk−2.

If T := ρ+ b2.V ′ − (pk−1 − 1).b.V we have

(a− λk−1.b).(a− λk.b).ε = b2.T ′.ek−1 modulo Fk−2
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and so T is a constant and equal to ρ. Then V = σ.bpk−1−1 for some complex
number σ and our claim is proved.

For τ ∈ C define
ε(τ) := ek + τ.bpk−1−1.ek−1

and let

Gτ
k−1 := Ã.(a− (λk−1 − 1).b).(ek + τ.bpk−1−1.ek−1) = Ã.(a− (λk−1 − 1).b).ε(τ).

Remark also that for any choice of ε such that (a−λk−1.b).(a−λk.b).ε is in Fk−2

the sub-module genrated by ε is equal to Gτ
k−1 for some τ ∈ C.

The generator (a−(λk+1).b).(a−(λk−1−1).b).ε(τ) of Fk−2 depends polynomially
on τ . Then the proposition 3.1.2 gives Q(τ) depending polynomially on τ which
annihilates for each τ this generator. Then Q(τ).(a− (λk + 1).b) annihilates the
generator (a− (λk−1 − 1).b).ε(τ) of Gτ

k−1. Remark now that for any τ ∈ C the
fresco Gτ

k−1 has its principal J-H. sequence given by F1 ⊂ · · · ⊂ Fk−2 ⊂ Gτ
k−1. So

Gτ
k−1

/

F1 and Fk−2 are semi-simple, and by our induction hypothesis, the number
α(Gτ

k−1) is well defined and τ 7→ α(Gτ
k−1) is a polynomial in τ .

The key point will be now to show that either α(Gτ
k−1) is identically zero or it

never vanishes. This will prove that this number is independant of τ concluding
the proof.
But if for some τ ∈ C we have α(Gτ) = 0, then Gτ is semi-simple. Now the
sub-module Fk−1 + Gτ

k−1 has rank k and is semi-simple. So its normalization
is also semi-simple. But this normalization is E. So any sub-module of E is
semi-simple and we have α(Gτ ′

k−1) = 0 for any τ ′.
This also shows that when α(Gτ

k−1) 6= 0 for some τ then it is not zero for any
choice of τ . Now a polynomial never vanishing is a constant, and this implies that
we may define α(E) := α(Gτ

k−1) for any value of τ .
To conclude the proof we have to show that, with this definition, the number α(E)
depends polynomially on E. For that purpose it is enough, thanks to the previous
computation, to produce a polynomial function F ∈ C[s] such that for each s
with E(s) ∈ F0(λ1, . . . , λk) we have F (s) = α([E(s)].
The first remark is that we may assume that Sk = 1. Then, thanks to the previous
computation and the induction on the rank, it is enough to show that we may also
reduce to the case where Sk−1 = 1 because in this case we have

α(E[s]) = α([Gk−1(s)])

where

Gk−1(s) = Ã
/

Ã.(a− λ1.b).S1(s)
−1 . . . Sk−2(s)

−1.(a− (λk + 1).b).

Denote sik−1, i ∈ N∗ the variables associated to the non constant coefficients of
Sk−1. Looking to a generator of the form

ẽ := ek +X.ek−1
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with X ∈ C[sk−1][[b]] such that (a− λk−1.b).(a− λk.b).ẽ is in Fk−2 this leads to
the equation

b2.X ′ − (pk−1 − 1).b.X = 1− Sk−1(s)

which has an unique solution X ∈ C[sk−1][[b]] without term in bpk−1−1 as we
assume E(s)

/

F1(s) semi-simple, hypothesis which implies that Sk−1 has no bpk−1

term. With this generator ẽ we have (a−λk−1.b).(a−λk .b).ẽ which is a generator
of Fk−2 which depends polynomially on sik−1. Now we may consider Fk−2 as a
fix fresco (so we fix the coefficients in S1, . . . , Sk−2 and apply the proposition 3.1.2
to obtain a Q(s) := (a− λ1.b).S1(s)

−1 . . . (a− λk−2.b).Sk−2(s)
−1 which annihilates

(a−λk−1.b).(a−λk.b).ẽ in E(s) and depends polynomially on s. We may conclude
by the induction assumption because we know that we have

α([E(s)]) = α([Gk−1(s)])

where Gk−1(s) = Ã.(a−λk−1− 1).b).ẽ(s) and because we know that the generator
(a− λk−1 − 1).b).ẽ(s) is annihilated by Q(s).(a− (λk + 1).b) which depends poly-
nomially on s. �

Theorem 3.2.2 Let λ1, . . . , λk be the fundamental invariants of a rank k [λ]−primitive
fresco such that pj ≥ 1 for each j ∈ [1, k − 1], and let F0(λ1, . . . , λk) the subset
of F(λ1, . . . , λk) of isomorphism classes of E satisfying the condition that Fk−1

and E
/

F1 are semi-simple, where (Fj)j∈[1,k] is the principal J-H. sequence of E.
Then there exists a unique polynomial function

α : F0(λ1, . . . , λk) → C

with the following properties :

i) α([E]) = 0 if and only if E is semi-simple.

ii) When E has a generator e such that (a− λk−1.b).(a − λk.b).e is in Fk−2,
we have α(E) = α(Gk−1) where Gk−1 := Ã.(a− λk−1 − 1).b).e.

iii) When E ≃ Ã
/

Ã.(a− λ1.b).(1 + x.bp1)−1.(a− λ2.b) then α([E]) = x.

proof. We define α for the rank 2 case as the coefficient of bp1 in S1 in
any standard presentation E ≃ Ã

/

Ã.(a−λ1.b).S
−1
1 .(a−λ2.b). This is given by the

easy computation which gives the rank 2 classification for [λ]−primitive frescos,
and fulfills condition iii). Then thanks to the previous proposition we may define
α(E) for any rank k ≥ 3 [λ]−primitive fresco E such that Fk−1 and E

/

F1 are
semi-simple via condition ii). The condition i) and the fact that α is a polynomial
function are proved in the induction step given by the proposition. �
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Let me give in rank 3 a polynomial F ∈ C[s] such that we have F (s) = α([E(s)])
for those s for which E(s) is in F0(λ1, λ2, λ3).
Assume p1 ≥ 1 and p2 ≥ 1. Then the necessary and sufficient condition to be in
F0(λ1, λ2, λ3) is s1p1 = s2p2 = 0.

Lemma 3.2.3 Let E := Ã
/

Ã.(a − λ1.b).S
−1
1 .(a − λ2.b).S

−1
2 .(a − λ3.b) such that

s1p1 = s2p2 = 0; the complex number α(E) is the coefficient of bp1+p2 in p2.V.S1

for j = 1, 2 where V ∈ C[[b]] is a solution of the differential equation

b.V ′ = p2.(V − S2).

The proof is left to the reader as an exercice.

This gives the following formula for F :

F (s) = p2.

p1+p2
∑

j 6=p2,j=0

s1p1+p2−j .
s2j

p2 − j
.

Remark that for S2 = 1 we find that F (s) reduces to s1p1+p2
. Using the commu-

tation relation (a − λ2.b).(a − λ3.b) = (a − (λ3 + 1).b).(a − (λ2 − 1).b) we find in
this case that E(s) has a normal rank 2 sub-module with fundamental invariants
λ1, λ3 + 1 and parameter s1p1+p2

which is precisely α(E(s)).

Consequence. If we have rank 4 [λ]−primitive fresco E with its principal J-H.
sequence such that Fj+1

/

Fj−1 is semi-simple for j ∈ [1, 3], we may look inductively
to α(F3). If it is zero then we may look at α(E/F1), and if it is zero we may look
at α(E). If this is zero then E is semi-simple, and so, the inductive vanishing
of all α−invariants of sub-quotients of the principal J-H. sequence give a necessary
and sufficient condition for semi-simplicity of E.
This easily extends to any rank k [λ]−primitive fresco. �

Now we shall show that in the previous situation when the α−invariant of E is not
zero it is the parameter of any normal rank 2 sub-theme of E. Although such a rank
2 normal sub-theme is not unique (in general), its isomorphism class is uniquely
determined from the fundamental invariants of E and from the α−invariant of E.

Proposition 3.2.4 Let E be a rank k ≥ 2 [λ]−primitive fresco such that Fk−1

and E
/

F1 are semi-simple and with α(E) 6= 0. Note λ1, . . . , λk the fundamental

invariants of E and p(E) :=
∑p−1

j=1 pj. Then there exists at least one rank 2
normal sub-theme in E and each rank 2 normal sub-theme of E is isomorphic
to

Ã
/

Ã.(a− λ1.b).(1 + α(E).bp(E))−1.(a− (λk + k − 2).b). (@)
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proof. The case k = 2 is clear, so we may assume that k ≥ 3 and we shall
prove the proposition by induction on k. So assume that the proposition is knwon
for the rank k− 1 ≥ 2 and let E be a rank k [λ]−primitive fresco satisfying our
assumptions. The fact that there exists a rank 2 normal sub-theme is consequence
of the induction hypothesis as Gτ for any τ ∈ C is normal rank k− 1 in E and
satisfies again our assumptions.
Recall that the fundamental invariants of Gτ are µ1, . . . , µk−1 with µj = λj for
j ∈ [1, k− 2] and µk−1 = λk + 1. We have also α(Gτ) = α(E) for each τ , thanks
to the proof of the theorem 3.2.2. As we have p(Gτ) = p(E) for each τ , and
µk−1 = µ1 + p(E) − 1 the inductive hypothesis implies that any rank 2 normal
sub-theme of any Gτ is isomorphic to (@). Then, to complete the proof, it is
enough to show that any rank 2 normal sub-theme of E is contained in some Gτ .

Let T be a rank 2 normal sub-theme of E. We shall first prove that its
fundamental invariants are equal to λ1, λk + k − 2. As E

/

F1 is semi-simple, the
image of T by the quotient map E → E

/

F1 has rank 1 and this implies that
F1 ∩ T is a rank 1 normal sub-module. Then this implies that F1 is the unique
normal rank 1 submodule of T , proving that λ1(T ) = λ1. We shall prove now

that λ2(T ) = λk + k − 2.
First remark that the uniqueness of the principal J-H. sequence of E implies the
uniqueness of the quotient map E → E

/

Fk−1 ≃ Eλk
because any surjective map

q : E → Eλk
will produce principal a J-H. sequence for E by adjoining a principal

J-H. sequence for Ker q. So a quotient E
/

H admits a surjective map on Eλk
if

(and only if) H ⊂ Fk−1. So H has to be semi-simple. Then the quotient E
/

T
has no surjective map on Eλk

.
The exact sequence of frescos

0 → T
/

F1 → E
/

F1 → E
/

T → 0

gives the equality in Ã :

P
T

/

F1

.P
E

/

T
= P

E

/

F1

= (a− λ2.b) . . . (a− λk.b).

But as E
/

T is semi-simple and does not has a quotient isomorphic to Eλk
this

implies T
/

F1 ≃ Eλk+k−2, proving our claim.

So T is isomorphic to Ã
/

Ã.(a−λ1.b).(1+β.bp(E))−1.(a− (λk + k− 2).b) for some
β ∈ C∗. Let x ∈ T be a generator of T which is annihilated by

(a− λ1.b).(1 + β.bp(E))−1.(a− (λk + k − 2).b).

It satisfies
(a− (λk + k − 2).b).x ∈ F1 ⊂ Fk−2. (*)

We shall determine all x ∈ E which satisfies the condition (∗) modulo Fk−2. Fix
a generator e := ek of E such that ek−1 := (a−λk.b).ek is in Fk−1 and satisfies
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(a− λk−1.b).ek−1 ∈ Fk−2. Then we look for U, V ∈ C[[b]] such that

x := U.ek + V.ek−1 satisfies (a− (λk + k − 2).b).x ∈ Fk−2.

This leads to the equations

b.U ′ − (k − 2).b.U = 0

U + b2.V ′ − (pk−1 + k − 3).V = 0

and so we get

U = ρ.bk−2 and V =
ρ

pk−1

.bk−3 + σ.bpk−1+k−3

Note that for ρ = 0 we would have x ∈ Fk−1 and this is not possible for the
generator of a rank 2 theme as Fk−1 is semi-simple. Then assuming ρ 6= 0 we
may write

x =
ρ.bk−3

pk−1

.

[

pk−1.b.ek + ek−1 +
pk−1.σ

ρ
.bpk−1 .ek−1

]

modulo Fk−2.

Now recall that the generator of Gτ is given by

(a− (λk−1 − 1).b).ε(τ)

where ε(τ) = ek + τ.bpk−1−1.ek−1. A simple computation gives

(a− (λk−1 − 1).b).ε(τ) = pk−1.b.ek + ek−1 + pk−1.τ.b
pk−1 .ek−1 modulo Fk−2.

As we know that each Gτ contains Fk−2, we conclude that any such x is in Gτ

for τ = σ
/

ρ, concluding the proof. �

Using duality we may deduce from this result the following corollary.

Corollary 3.2.5 In the situation of the previous proposition E as a rank 2 quo-
tient theme and any such rank 2 quotient theme is isomorphic to

Ã
/

Ã.(a− (λ1 − k + 2).b).(1 + β(E).bp(E))−1.(a− λk.b)

where

β(E) := (−1)k
p1.(p1 + p2) . . . (p1 + · · ·+ pk−2)

pk−1.(pk−2 + pk−1) . . . (p2 + . . . pk−1)
α(E)

The proof is left as an exercice for the reader who may use the following remark.

Remark. Let E be a rank 2 [λ]−primitive theme with fundamental invariants
λ1, λ2 and parameter α(E). For δ ∈ N, δ ≫ 1 E∗ ⊗Eδ is a 2 [1− λ]−primitive
theme with fundamental invariants (δ − λ2, δ − λ1 and parameter −α(E).
Then in the situation of the proposition 3.2.4 E∗ ⊗ Eδ, δ ≫ 1 satisfies again our
assumptions and we have α(E∗ ⊗ Eδ) = β(E).
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4 The existence theorem for frescos.

The aim of this section is to prove the the following existence theorem for the fresco
associated to a relative de Rham cohomology class :

Theorem 4.0.6 Let X be a connected complex manifold of dimension n+1 where
n is a natural integer, and let f : X → D be an non constant proper holomorphic
function on an open disc D in C with center 0. Let us assume that df is
nowhere vanishing outside of X0 := f−1(0).
Let ω be a C ∞ − (p + 1)−differential form on X such that dω = 0 = df ∧ ω.
Denote by E the geometric Ã−module Hp+1(X, (K̂•, d•)) and [ω] the image of
ω in E

/

B(E). Then Ã.[ω] ⊂ E
/

B(E) is a fresco.

Note that this result is an obvious consequence of the finiteness theorem 4.3.4 that
we shall prove below. It gives the fact that E is naturally an Ã−module which
is of finite type over the subalgebra C[[b]] of Ã, and so its b−torsion B(E) is a
finite dimensional C−vector space. Moreover, the finiteness theorem asserts that
E
/

B(E) is a geometric (a,b)-module.

4.1 Preliminaries.

Here we shall complete and precise the results of the section 2 of [B.II]. The situation
we shall consider is the following : let X be a connected complex manifold of
dimension n + 1 and f : X → C a non constant holomorphic function such
that {x ∈ X/ df = 0} ⊂ f−1(0). We introduce the following complexes of sheaves
supported by X0 := f−1(0)

1. The formal completion ”in f” (Ω̂•, d•) of the usual holomorphic de Rham
complex of X .

2. The sub-complexes (K̂•, d•) and (Î•, d•) of (Ω̂•, d•) where the subsheaves
K̂p and Îp+1 are defined for each p ∈ N respectively as the kernel and the
image of the map

∧df : Ω̂p → Ω̂p+1

given par exterior multiplication by df . We have the exact sequence

0 → (K̂•, d•) → (Ω̂•, d•) → (Î•, d•)[+1] → 0. (1)

Note that K̂0 and Î0 are zero by definition.

3. The natural inclusions Îp ⊂ K̂p for all p ≥ 0 are compatible with the
différential d. This leads to an exact sequence of complexes

0 → (Î•, d•) → (K̂•, d•) → ([K̂/Î]•, d•) → 0. (2)
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4. We have a natural inclusion f ∗(Ω̂1
C) ⊂ K̂1 ∩ Ker d, and this gives a sub-

complex (with zero differential) of (K̂•, d•). As in [B.07], we shall consider
also the complex (K̃•, d•) quotient. So we have the exact sequence

0 → f ∗(Ω̂1
C) → (K̂•, d•) → (K̃•, d•) → 0. (3)

We do not make the assumption here that f = 0 is a reduced equation of X0,
and we do not assume that n ≥ 2, so the cohomology sheaf in degree 1 of the
complex (K̂•, d•), which is equal to K̂1∩Ker d does not coincide, in general
with f ∗(Ω̂1

C). So the complex (K̃•, d•) may have a non zero cohomology
sheaf in degree 1.

Recall now that we have on the cohomology sheaves of the following complexes
(K̂•, d•), (Î•, d•), ([K̂/Î]•, d•) and f ∗(Ω̂1

C), (K̃
•, d•) natural operations a and b

with the relation a.b− b.a = b2. They are defined in a näıve way by

a := ×f and b := ∧df ◦ d−1.

The definition of a makes sens obviously. Let me precise the definition of b first
in the case of Hp(K̂•, d•) with p ≥ 2 : if x ∈ K̂p ∩Ker d write x = dξ with
ξ ∈ Ω̂p−1 and let b[x] := [df ∧ ξ]. The reader will check easily that this makes sens.
For p = 1 we shall choose ξ ∈ Ω̂0 with the extra condition that ξ = 0 on the
smooth part of X0 (set theoretically). This is possible because the condition
df ∧ dξ = 0 allows such a choice : near a smooth point of X0 we can choose co-
ordinnates such f = xk

0 and the condition on ξ means independance of x1, · · · , xn.
Then ξ has to be (set theoretically) locally constant on X0 which is locally con-
nected. So we may kill the value of such a ξ along X0.
The case of the complex (Î•, d•) will be reduced to the previous one using the next
lemma.

Lemma 4.1.1 For each p ≥ 0 there is a natural injective map

b̃ : Hp(K̂•, d•) → Hp(Î•, d•)

which satisfies the relation a.b̃ = b̃.(b+ a). For p 6= 1 this map is bijective.

Proof. Let x ∈ K̂p ∩Ker d and write x = dξ where x ∈ Ω̂p−1 (with ξ = 0
on X0 if p = 1), and set b̃([x]) := [df ∧ ξ] ∈ Hp(Î•, d•). This is independant on
the choice of ξ because, for p ≥ 2, adding dη to ξ does not modify the result
as [df ∧ dη] = 0. For p = 1 remark that our choice of ξ is unique.
This is also independant of the the choice of x in [x] ∈ Hp(K̂•, d•) because adding
θ ∈ K̂p−1 to ξ does not change [df ∧ ξ].
Assume b̃([x]) = 0 in Hp(Î•, d•); this means that we may find α ∈ Ω̂p−2 such
df ∧ ξ = df ∧ dα. But then, ξ − dα lies in K̂p−1 and x = d(ξ − dα) shows that
[x] = 0. So b̃ is injective.
Assume now p ≥ 2. If df ∧ η is in Îp ∩Ker d, then df ∧ dη = 0 and y := dη lies
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in K̂p ∩Ker d and defines a class [y] ∈ Hp(K̂•, d•) whose image by b̃ is [df ∧ η].
This shows the surjectivity of b̃ for p ≥ 2.
For p = 1 the map b̃ is not surjective (see the remark below).
To finish the proof let us to compute b̃(a[x] + b[x]). Writing again x = dξ, we get

a[x] + b[x] = [f.dξ + df ∧ ξ] = [d(f.ξ)]

and so
b̃(a[x] + b[x]) = [df ∧ f.ξ] = a.b̃([x])

which concludes the proof. �

Denote by i : (Î•, d•) → (K̂•, d•) the natural inclusion and define the action of
b on Hp(Î•, d•) by b := b̃ ◦ Hp(i). As i is a−linear, we deduce the relation
a.b− b.a = b2 on Hp(Î•, d•) from the relation of the previous lemma.

The action of a on the complex ([K̂/Î]•, d•) is obvious and the action of b is zero.

The action of a and b on f ∗(Ω̂1
C) ≃ E1 ⊗CX0

are the obvious one, where E1 is
the rank 1 (a,b)-module with generator e1 satisfying a.e1 = b.e1 (or, equivalentely,
E1 := C[[z]] with a := ×z, b :=

∫ z

0
and e1 := 1).

Remark that the natural inclusion f ∗(Ω̂1
C) →֒ (K̂•, d•) is compatible with the

actions of a and b. The actions of a and b on H1(K̃•, d•) are simply induced
by the corresponding actions on H1(K̂•, d•).

Remark. The exact sequence of complexes (1) induces for any p ≥ 2 a bijection

∂p : Hp(Î•, d•) → Hp(K̂•, d•)

and a short exact sequence

0 → CX0
→ H1(Î•, d•)

∂1

→ H1(K̂•, d•) → 0 (@)

because of the de Rham lemma. Let us check that for p ≥ 2 we have ∂p = (b̃)−1

and that for p = 1 we have ∂1 ◦ b̃ = Id. If x = dξ ∈ K̂p ∩ Ker d then
b̃([x]) = [df ∧ ξ] and ∂p[df ∧ ξ] = [dξ]. So ∂p ◦ b̃ = Id ∀p ≥ 0. For p ≥ 2 and
df ∧α ∈ Îp∩Ker d we have ∂p[df ∧α] = [dα] and b̃[dα] = [df ∧α], so b̃◦∂p = Id.
For p = 1 we have b̃[dα] = [df ∧ (α−α0)] where α0 ∈ C is such that α|X0

= α0.

This shows that in degree 1 b̃ gives a canonical splitting of the exact sequence (@).

4.2 Ã−structures.

Let us consider now the C−algebra

Ã := {
∑

ν≥0

Pν(a).b
ν}
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where Pν ∈ C[z], and the commutation relation a.b − b.a = b2, assuming that left
and right multiplications by a are continuous for the b−adic topology of Ã.
Define the following complexes of sheaves of left Ã−modules on X :

(Ω′•[[b]], D•) and (Ω′′•[[b]], D•) where (4)

Ω′•[[b]] :=

+∞
∑

j=0

bj .ωj with ω0 ∈ K̂p

Ω′′•[[b]] :=

+∞
∑

j=0

bj .ωj with ω0 ∈ Îp

D(

+∞
∑

j=0

bj .ωj) =

+∞
∑

j=0

bj .(dωj − df ∧ ωj+1)

a.

+∞
∑

j=0

bj .ωj =

+∞
∑

j=0

bj .(f.ωj + (j − 1).ωj−1) with the convention ω−1 = 0

b.

+∞
∑

j=0

bj .ωj =

+∞
∑

j=1

bj .ωj−1

It is easy to check that D is Ã−linear and that D2 = 0. We have a natural
inclusion of complexes of left Ã−modules

ĩ : (Ω′′•[[b]], D•) → (Ω′•[[b]], D•).

Remark that we have natural morphisms of complexes

u : (Î•, d•) → (Ω′′•[[b]], D•)

v : (K̂•, d•) → (Ω′•[[b]], D•)

and that these morphisms are compatible with i. More precisely, this means that
we have the commutative diagram of complexes

(Î•, d•)

i
��

u
// (Ω′′•[[b]], D•)

ĩ
��

(K̂•, d•)
v

// (Ω′•[[b]], D•)

The following theorem is a variant of theorem 2.2.1. of [B.II].

Theorem 4.2.1 Let X be a connected complex manifold of dimension n+1 and
f : X → C a non constant holomorphic function such that

{x ∈ X/ df = 0} ⊂ f−1(0).

Then the morphisms of complexes u and v introduced above are quasi-isomorphisms.
Moreover, the isomorphims that they induce on the cohomology sheaves of these com-
plexes are compatible with the actions of a and b.
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This theorem builds a natural structure of left Ã−modules on each of the complex
(K̂•, d•), (Î•, d•), ([K̂/Î]•, d•) and f ∗(Ω̂1

C), (K̃
•, d•) in the derived category of

bounded complexes of sheaves of C−vector spaces on X .
Moreover the short exact sequences

0 → (Î•, d•) → (K̂•, d•) → ([K̂/Î]•, d•) → 0

0 → f ∗(Ω̂1
C) → (K̂•, d•), (Î•, d•) → (K̃•, d•) → 0

are equivalent to short exact sequences of complexes of left Ã−modules in the
derived category.

Proof. We have to prove that for any p ≥ 0 the maps Hp(u) and Hp(v)
are bijective and compatible with the actions of a and b. The case of Hp(v) is
handled (at least for n ≥ 2 and f reduced) in prop. 2.3.1. of [B.II]. To seek for
completeness and for the convenience of the reader we shall treat here the case of
Hp(u).
First we shall prove the injectivity of Hp(u). Let α = df ∧ β ∈ Îp ∩Ker d and
assume that we can find U =

∑+∞
j=0 b

j .uj ∈ Ω′′p−1[[b]] with α = DU . Then we
have the following relations

u0 = df ∧ ζ, α = du0 − df ∧ u1 and duj = df ∧ uj+1 ∀j ≥ 1.

For j ≥ 1 we have [duj] = b[duj+1] in Hp(K̂•, d•); using corollary 2.2. of [B.II]

which gives the b−separation of Hp(K̂•, d•), this implies [duj] = 0, ∀j ≥ 1 in

Hp(K̂•, d•). For instance we can find β1 ∈ K̂p−1 such that du1 = dβ1. Now, by de
Rham, we can write u1 = β1 + dξ1 for p ≥ 2, where ξ1 ∈ Ω̂p−2. Then we conclude
that α = −df ∧ d(ξ1 + ζ) and [α] = 0 in Hp(Î•, d•).
For p = 1 we have u1 = 0 and [α] = [−df ∧ dξ1] = 0 in H1(Î•, d•).
We shall show now that the image of Hp(u) is dense in Hp(Ω′′•[[b]], D•) for its
b−adic topology. Let Ω :=

∑+∞
j=0 bj .ωj ∈ Ω′′p[[b]] such that DΩ = 0. The following

relations holds dωj = df ∧ ωj+1 ∀j ≥ 0 and ω0 ∈ Îp. The corollary 2.2. of [B.II]

again allows to find βj ∈ K̂p−1 for any j ≥ 0 such that dωj = dβj . Fix N ∈ N∗.
We have

D(

N
∑

j=0

bj .ωj) = bN .dωN = D(bN .βN )

and ΩN :=
∑N

j=0 b
j .ωj − bN .βN is D−closed and in Ω′′p[[b]]. And we have

Ω − ΩN ∈ bN .Hp(Ω′′•[[b]], D•), so the sequence (ΩN )N≥1 converges to Ω in
Hp(Ω′′•[[b]], D•) for its b−adic topology. Let us show that each ΩN is in the
image of Hp(u).
Write ΩN :=

∑N
j=0 b

j .wj. The condition DΩN = 0 implies dwN = 0 and
dwN−1 = df ∧ wN = 0. If we write wN = dvN we obtain d(wN−1 + df ∧ vN) = 0
and ΩN − D(bN .vN) is of degree N − 1 in b. For N = 1 we are left with
w0 + b.w1 − (−df ∧ v1 + b.dv1) = w0 + df ∧ v1 which is in Îp ∩ Ker d because
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dw0 = df ∧ dv1.
To conclude it is enough to know the following two facts

i) The fact that Hp(Î•, d•) is complete for its b−adic topology.

ii) The fact that Im(Hp(u)) ∩ bN .Hp(Ω′′•[[b]], D•) ⊂ Im(Hp(u) ◦ bN ) ∀N ≥ 1.

Let us first conclude the proof of the surjectivity of Hp(u) assuming i) and ii).
For any [Ω] ∈ Hp(Ω′′•[[b]], D•) we know that there exists a sequence (αN )N≥1

in Hp(Î•, d•) with Ω − Hp(u)(αN) ∈ bN .Hp(Ω′′•[[b]], D•). Now the property ii)
implies that we may choose the sequence (αN)N≥1 such that [αN+1] − [αN ] lies

in bN .Hp(Î•, d•). So the property i) implies that the Cauchy sequence ([αN ])N≥1

converges to [α] ∈ Hp(Î•, d•). Then the continuity of Hp(u) for the b−adic
topologies coming from its b−linearity, implies Hp(u)([α]) = [Ω].
The compatibility with a and b of the maps Hp(u) and Hp(v) is an easy
exercice.

Let us now prove properties i) and ii).
The property i) is a direct consequence of the completion of Hp(K̂•, d•) for its
b−adic topology given by the corollary 2.2. of [B.II] and the b−linear isomorphism
b̃ between Hp(K̂•, d•) and Hp(Î•, d•) constructed in the lemma 2.1.1. above.
To prove ii) let α ∈ Îp ∩Ker d and N ≥ 1 such that

α = bN .Ω+DU

where Ω ∈ Ω′′p[[b]] satisfies DΩ = 0 and where U ∈ Ω′′p−1[[b]]. With obvious
notations we have

α = du0 − df ∧ u1

· · ·

0 = duj − df ∧ uj+1 ∀j ∈ [1, N − 1]

· · ·

0 = ω0 + duN − df ∧ uN+1

which implies D(u0 + b.u1 + · · · + bN .uN) = α + bN .duN and the fact that duN

lies in Îp ∩Ker d. So we conclude that [α] + bN .[duN ] is in the kernel of Hp(u)
which is 0. Then [α] ∈ bN .Hp(Î•, d•). �

Remark. The map

β : (Ω′[[b]]•, D•) → (Ω′′[[b]]•, D•)

defined by β(Ω) = b.Ω commutes to the differentials and with the action of b. It
induces the isomorphism b̃ of the lemma 4.1.1 on the cohomology sheaves. So it is
a quasi-isomorphism of complexes of C[[b]]−modules.
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To prove this fact, it is enough to verify that the diagram

(K̂•, d•)

b̃
��

v
// (Ω′[[b]]•, D•)

β

��

(Î•, d•)
u

// (Ω′′[[b]]•, D•)

induces commutative diagams on the cohomology sheaves.
But this is clear because if α = dξ lies in K̂p∩Ker d we have D(b.ξ) = b.dξ−df∧ξ
so Hp(β) ◦ Hp(v)([α]) = Hp(u) ◦ Hp(b̃)([α]) in Hp(Ω′′[[b]]•, D•). �

4.3 The finiteness theorem.

Let us recall some basic definitions on the left modules over the algebra Ã.
Now let E be any left Ã−module, and define B(E) as the b−torsion of E. that
is to say

B(E) := {x ∈ E / ∃N bN .x = 0}.

Define A(E) as the a−torsion of E and

Â(E) := {x ∈ E / C[[b]].x ⊂ A(E)}.

Remark that B(E) and Â(E) are sub-Ã−modules of E but that A(E) is not
stable by b.

Definition 4.3.1 A left Ã−module E is called small when the following condi-
tions hold

1. E is a finite type C[[b]]−module ;

2. B(E) ⊂ Â(E) ;

3. ∃N / aN .Â(E) = 0 ;

Recall that for E small we have always the equality B(E) = Â(E) (see [B.I]
lemme 2.1.2) and that this complex vector space is finite dimensional. The quotient
E/B(E) is an (a,b)-module called the associate (a,b)-module to E.
Conversely, any left Ã−module E such that B(E) is a finite dimensional
C−vector space and such that E/B(E) is an (a,b)-module is small.
The following easy criterium to be small will be used later :

Lemma 4.3.2 A left Ã−module E is small if and only if the following conditions
hold :

1. ∃N / aN .Â(E) = 0 ;

2. B(E) ⊂ Â(E) ;
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3. ∩m≥0b
m.E ⊂ Â(E) ;

4. Ker b and Coker b are finite dimensional complex vector spaces.

As the condition 3 in the previous lemma has been omitted in [B.II] (but this does
not affect this article because this lemma was used only in a case were this condition
3 was satisfied, thanks to proposition 2.2.1. of loc. cit.), we shall give the (easy)
proof.

Proof. First the conditions 1 to 4 are obviously necessary. Conversely, assume
that E satisfies these four conditions. Then condition 2 implies that the action
of b on Â(E)

/

B(E) is injective. But the condition 1 implies that b2N = 0

on Â(E) (see [B.I] ). So we conclude that Â(E) = B(E) ⊂ Ker b2N which is
a finite dimensional complex vector space using condition 4 and an easy induction.
Now E/B(E) is a C[[b]]−module which is separated for its b−adic topology.
The finitness of Coker b now shows that it is a free finite type C[[b]]−module
concluding the proof. �

Definition 4.3.3 We shall say that a left Ã−module E is geometric when E
is small and when it associated (a,b)-module E/B(E) is geometric.

The main result of this section is the following theorem, which shows that the Gauss-
Manin connection of a proper holomorphic function produces geometric Ã−modules
associated to vanishing cycles and nearby cycles.

Theorem 4.3.4 Let X be a connected complex manifold of dimension n+1 where
n is a natural integer, and let f : X → D be an non constant proper holomorphic
function on an open disc D in C with center 0. Let us assume that df is
nowhere vanishing outside of X0 := f−1(0).
Then the Ã−modules

Hj(X, (K̂•, d•)) and Hj(X, (Î•, d•))

are geometric for any j ≥ 0.

In the proof we shall use the C ∞ version of the complex (K̂•, d•). We define
Kp

∞ as the kernel of ∧df : C ∞,p → C ∞,p+1 where C ∞,j denote the sheaf of
C

∞− forms on X of degree p, let K̂p
∞ be the f−completion and (K̂•

∞, d•) the
corresponding de Rham complex.
The next lemma is proved in [B.II] (lemma 6.1.1.)

Lemma 4.3.5 The natural inclusion

(K̂•, d•) →֒ (K̂•
∞, d•)

induce a quasi-isomorphism.
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Remark. As the sheaves K̂•
∞ are fine, we have a natural isomorphism

Hp(X, (K̂•, d•)) ≃ Hp
(

Γ(X, K̂•
∞), d•

)

.

Let us denote by X1 the generic fiber of f . Then X1 is a smooth compact complex
manifold of dimension n and the restriction of f to f−1(D∗) is a locally trivial
C ∞ bundle with typical fiber X1 on D∗ = D \ {0}, if the disc D is small enough
around 0. Fix now γ ∈ Hp(X1,C) and let (γs)s∈D∗ the corresponding multivalued

horizontal family of p−cycles γs ∈ Hp(Xs,C). Then, for ω ∈ Γ(X, K̂p
∞ ∩Ker d),

define the multivalued holomorphic function

Fω(s) :=

∫

γs

ω

df
.

Let now

Ξ := ⊕α∈Q∩]−1,0],j∈[0,n] C[[s]].sα.
(Logs)j

j!
.

This is an Ã−modules with a acting as multiplication by s and b as the
primitive in s without constant. Now if F̂ω is the asymptotic expansion at 0 of
Fω, it is an element in Ξ, and we obtain in this way an Ã−linear map

Int : Hp(X, (K̂•, d•)) → Hp(X1,C)⊗C Ξ.

To simplify notations, let E := Hp(X, (K̂•, d•)). Now using Grothendieck theorem
[G.65], there exists N ∈ N such that Int(ω) ≡ 0, implies aN .[ω] = 0 in E.
As the converse is clear we conclude that Â(E) = Ker(Int). It is also clear that
B(E) ⊂ Ker(Int) because Ξ has no b−torsion. So we conclude that E satisfies
properties 1 and 2 of the lemma 4.3.2. The property 3 is also true because of the
regularity of the Gauss-Manin connection of f .

End of the proof of theorem 4.3.4. To show that E := Hp(X, (K̂•, d•)) is
small, it is enough to prove that E satisfies the condition 4 of the lemma 4.3.2.
Consider now the long exact sequence of hypercohomology of the exact sequence of
complexes

0 → (Î•, d•) → (K̂•, d•) → ([K̂/Î]•, d•) → 0.

It contains the exact sequence

Hp−1(X, ([K̂
/

Î]•, d•)) → Hp(X, (Î•, d•))
Hp(i)
→ Hp(X, (K̂•, d•)) → Hp(X, ([K̂

/

Î]•, d•))

and we know that b is induced on the complex of Ã−modules quasi-isomorphic to
(K̂•, d•) by the composition i ◦ b̃ where b̃ is a quasi-isomorphism of complexes
of C[[b]]−modules. This implies that the kernel and the cokernel of Hp(i) are
isomorphic (as C−vector spaces) to Ker b and Coker b respectively. Now to
prove that E satisfies condition 4 of the lemma 4.3.2 it is enough to prove finite
dimensionality for the vector spaces Hj(X, ([K̂

/

Î]•, d•)) for all j ≥ 0.
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But the sheaves [K̂
/

Î]j ≃ [Ker df
/

Imdf ]j are coherent on X and supported in
X0. The spectral sequence

Ep,q
2 := Hq

(

Hp(X, [K̂
/

Î]•), d•
)

which converges to Hj(X, ([K̂
/

Î]•, d•)), is a bounded complex of finite dimensional
vector spaces by Cartan-Serre. This gives the desired finite dimensionality.
To conclude the proof, we want to show that E/B(E) is geometric. But this is an
easy consequence of the regularity of the Gauss-Manin connexion of f and of the
Monodromy theorem, which are already incoded in the definition of Ξ : the injec-
tivity on E/B(E) of the Ã−linear map Int implies that E/B(E) is geometric.
Remark now that the piece of exact sequence above gives also the fact that Hp(X, (Î•, d•))
is geometric, because it is an exact sequence of Ã−modules. �

Remark. It is easy to see that the properness assumption on f is only used for
two purposes :
–To have a (global) C ∞ Milnor fibration on a small punctured disc around 0, with
a finite dimensional cohomology for the Milnor fiber.
– To have compactness of the singular set {df = 0}, which contains the supports
of the coherent sheaves (Ker df

/

Imdf)i.
This allows to give with the same proof an analoguous finiteness result in many
other situations.
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