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Sobolev Extension Property for Tree-shaped Domains with Self-contacting Fractal Boundary

In this paper, we investigate the existence of extension operators from W 1,p (Ω) to W 1,p (R 2 ) (1 < p < ∞) for a class of tree-shaped domains Ω with a self-similar fractal boundary previously studied by Mandelbrot and Frame. When the fractal boundary has no self-contact, the results of Jones imply that there exist such extension operators for all p ∈ [1, ∞]. In the case when the fractal boundary self-intersects, this result does not hold. Here, we prove however that extension operators exist for p < p ⋆ where p ⋆ depends only on the dimension of the self-intersection of the boundary. The construction of these operators mainly relies on the self-similar properties of the domains.

Introduction

This work deals with some extension results from W 1,p (Ω) to W 1,p (R 2 ) (1 < p < ∞) for some domains Ω ⊂ R 2 with a self-similar fractal boundary. The focus will be put on the special case when the boundary of Ω is self-contacting. Such a geometry (see Figure 2) can be seen as a bidimensional idealization of the bronchial tree. We will investigate if the domains Ω introduced below have the W 1,p -extension property (1 < p < ∞). A domain D ⊂ R n is said to have the W 1,p -extension property for 1 p ∞ if there exists a bounded linear operator Λ : W 1,p (D) → W 1,p (R n ), such that Λu |D = u for all u ∈ W 1,p (D). Such domains are called W 1,p -extension domains. A domain that has the W 1,p -extension property p ∈ [1, ∞] is sometimes referred to as a Sobolev extension domain.

It is well known that every Lipschitz domain in R n , that is every domain whose boundary is locally the graph of a Lipschitz function, is a Sobolev extension domain. Calderón proved the W 1,p -extension property for p ∈ (1, ∞) (see [START_REF] Calderón | Lebesgue spaces of differentiable functions and distributions[END_REF]), and Stein extended the result to the cases p = 1 and p = ∞ (see [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF]). In [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF], Jones improved this result by introducing a class of domains in R n called (ε, δ)domains, every member of which is a Sobolev extension domain. Jones' proof uses as a main ingredient Whitney's extension theory. Such domains were introduced by Martio and Sarvas who referred to them as locally uniform domains (see [START_REF] Martio | Injectivity theorems in plane and space[END_REF]). This result is almost optimal in the plane, in the sense that every plane finitely connected Sobolev extension domain is an (ε, δ)-domain, see [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF][START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF]. The case when the domain D ⊂ R 2 is unbounded has been studied in [START_REF] Vodop ′ Janov | A criterion for the extension of functions of the class L 1 2 from unbounded plane domains[END_REF].

In [START_REF] Koskela | Extensions and imbeddings[END_REF], Koskela proved that in the general case, if an open domain D ⊂ R n has the W 1,nextension property, then it has the W 1,p -extension property for all p n. He also showed that if the embedding W 1,p (D) ֒→ C 0,1-n/p (D) holds for some p > n, then D is a W 1,q -extension domain for all q > p. The case p < n is not as well understood. Haj lasz, Koskela and Tuominem proved that every W 1,p -extension domain in R n for 1 p < ∞ is a n-set, as defined in e.g. [START_REF] Jonsson | Function spaces on subsets of R n[END_REF], and provided several characterizations of W 1,p -extension domains for 1 < p < ∞, see [START_REF] Haj Lasz | Sobolev embeddings, extensions and measure density condition[END_REF]. They also investigated these questions in the setting of metric measure spaces, see [START_REF] Haj Lasz | Measure density and extendability of Sobolev functions[END_REF].

The domains we consider in the present work do not have the W 1,p -extension property for any p > 2, and we will study the case when p < 2. We focus on a class of tree-shaped domains Ω in R 2 with a self-similar fractal boundary Γ ∞ which self-intersects, see for example Figure 2. The set Γ ∞ is defined as the unique compact set such that

Γ ∞ = f 1 (Γ ∞ ) ∪ f 2 (Γ ∞ ),
where f 1 and f 2 are two contracting similitudes with opposite rotation angles ±θ (0 θ < π 2 ) and contraction ratio a ∈ [0, 1). This type of fractal sets were first studied by Mandelbrot and Frame in [START_REF] Mandelbrot | The canopy and shortest path in a self-contacting fractal tree[END_REF]. We will see in paragraph 2.1.1 that there exists a critical ratio a ⋆ θ dependent on the rotation angle of the similitude such that for every a < a ⋆ θ , the set Γ ∞ is totally disconnected, and for a = a ⋆ θ , it is connected. In the first case, the domain Ω is an (ε, δ)-domain and Ω is a Sobolev extension domain. In this paper, emphasis will be put on the latter case, in which Ω is not an (ε, δ)-domain and Ω is not a Sobolev extension domain. In this case, the assumptions required in [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF] for the construction of Whitney extension operators are not satisfied. Particular care will be given to the notion of trace on the set Γ ∞ for functions in W 1,p (Ω). We will use two different definitions of trace on Γ ∞ .

• The first one, referred to as the classical or strictly defined trace below, relies on the notion of the strict definition of a locally integrable function, see for instance [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] page 206. For a function u in W 1,p (Ω) or W 1,p (R d ), this trace, noted u |Γ ∞ below, is defined as its strictly defined counterpart on the subset of Γ ∞ where u is strictly defined.

• The second one was first introduced in [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF]. Its construction is recalled in §3. This trace operator, noted ℓ ∞ below, is obtained by exploiting the self-similarity as the limit of a sequence of operators ℓ n which map W 1,p (Ω) to piecewise constant functions on a partition of Γ ∞ into 2 n sets whose measure is 2 -n . Achdou and Tchou provided in [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF] a characterization of functions in the trace space ℓ ∞ (W 1,p (Ω)) in terms of Lipschitz functions with jumps (see Section 4) that will be helpful in the proof of the main theorems. Embeddings of the trace space in some Sobolev spaces on the set Γ ∞ were studied especially in [START_REF] Achdou | JLip versus Sobolev spaces on a class of self-similar fractal foliages[END_REF], see §4.3.

A consequence of the main result of this paper is that these two definitions of trace on Γ ∞ in fact coincide (almost everywhere) on the set Γ ∞ ; this is proved in [ADT].

Jonsson and Wallin have proved extension and trace results for Besov and Sobolev spaces on d-sets (see [START_REF] Jonsson | Function spaces on subsets of R n[END_REF]). See §2.2.3 for a definition of the Besov spaces on such sets in the special case of Γ ∞ which is a d-set where d is its Hausdorff dimension. In particular, see [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] page

183, W 1,p (R 2 ) |Γ ∞ = W 1-2-d p ,p (Γ ∞ ) for p ∈ (1, ∞)
, where the trace is meant in the classical sense. The extension part of the theorem mainly relies on Whitney's extension theorem.



On the other hand, It has been proved in [START_REF] Achdou | JLip versus Sobolev spaces on a class of self-similar fractal foliages[END_REF] that there exists a real number p ⋆ > 1 such that p ⋆ only depends on the Hausdorff dimension of the self-intersection of Γ ∞ and

• if p < p ⋆ , then ℓ ∞ (W 1,p (Ω)) = W 1-2-d p ,p (Γ ∞ ),
• if p > p ⋆ , then the previous result does not hold.

The main extension result of this paper (Theorem B) states that when p < p ⋆ , the domains Ω in fact have the W 1,p -extension property. To prove this result, we start by proving in Theorem A that there exists a continuous lifting operator from W

1-2-d p ,p (Γ ∞ ) to W 1,p (R 2
) in the sense of the trace operator ℓ ∞ . We prove this last result by constructing an extension operator based on the Haar wavelet decomposition of functions on Γ ∞ . The strategy we propose can be seen as a self-similar adaptation of the Whitney decomposition (see [START_REF] Whitney | Analytic extensions of differentiable functions defined in closed sets[END_REF]). The proof of Theorem B relies on the construction of a sequence of operators converging to the desired extension operator. The construction uses the operator of Theorem A and self-similar properties of this operator that a priori are not guaranteed by the lifting operator of Jonsson and Wallin in the classical sense.

Theorem B is sharp in the sense that whenever p > p ⋆ , Ω is not a W 1,p -extension domain, in Remark 6 below. The case p = p ⋆ is partially discussed in Remark 6.

An immediate consequence of this extension theorem is that, for p ∈ (1, p ⋆ ), the Sobolev embeddings hold in Ω.

Note that the question of extensions or traces naturally arises in boundary value or transmission problems in domains with fractal boundaries. Results in this direction have been given by Mosco and Vivaldi (see [START_REF] Mosco | Variational problems with fractal layers[END_REF]), Lancia (see [START_REF] Lancia | A transmission problem with a fractal interface[END_REF][START_REF] Lancia | Second order transmission problems across a fractal surface[END_REF]), and Capitanelli (see [START_REF] Capitanelli | Asymptotics for mixed Dirichlet-Robin problems in irregular domains[END_REF]) for the Koch flake. Boundary value problems posed in the domains Ω displayed in Figure 2 were studied e.g. in [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF], and numerical methods were proposed to compute the solutions in subdomains of Ω. Such a geometry can be seen as a bidimensional idealization of the bronchial tree, for example. The problems studied in the latter papers aim at simulating the diffusion of medical sprays in human lungs.

The paper is organized as follows: the geometry of the studied domains is presented in Section 2. In Section 3, we briefly treat the less interesting sub-critical case when a < a ⋆ θ and recall the construction of the trace operator introduced in [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF]. The theory proposed in [START_REF] Jonsson | Haar wavelets of higher order on fractals and regularity of functions[END_REF] is reviewed in Section 4, where we also recall the characterization of the trace space proved in [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF] and the trace theorems proved in [START_REF] Achdou | JLip versus Sobolev spaces on a class of self-similar fractal foliages[END_REF]. The main results of the paper are Theorems A and B which are stated in Section 5 and proved in Sections 6 and 7. For the ease of the reader, the geometrical lemmas, which are crucial but technical, are proved in the Appendix at the end of the paper.

The geometry

In this section, we define the geometry of fractal self-similar sets Γ ∞ , and ramified domains Ω whose boundary contains Γ ∞ , see for example Figure 2.

2.1 The self-similar set Γ ∞

Definitions and notations

Consider four real numbers a, α, β, θ such that 0 < a < 1/ √ 2, α > 0, β > 0 and 0 < θ < π/2. Let f i , i = 1, 2 be the two similitudes in R 2 given by

f 1 x 1 x 2 = -α β + a x 1 cos θ -x 2 sin θ x 1 sin θ + x 2 cos θ , f 2 x 1 x 2 = α β + a x 1 cos θ + x 2 sin θ -x 1 sin θ + x 2 cos θ .
The two similitudes have the same dilation ratio a and opposite angles ±θ. One can obtain f 2 by composing f 1 with the symmetry with respect to the axis {x 1 = 0}. We denote by Γ ∞ the self-similar set associated to the similitudes f 1 and f 2 , i.e. the unique compact subset of R 2 such that

Γ ∞ = f 1 (Γ ∞ ) ∪ f 2 (Γ ∞ ).

Notations We denote by

• A n the set containing all the 2 n mappings from {1, . . . , n} to {1, 2} also called strings of length n for n 1,

• A 0 the set containing only one element called the empty string, that we agree to note ǫ,

• A the set defined by A = ∪ n 0 A n containing the empty string and all the finite strings,

• A ∞ = {1, 2} N\{0} the set of the sequences σ = (σ(i) ) i=1,...,∞ with values σ(i) ∈ {1, 2}, i.e. the set of all infinite strings.

We will use the following notations:

• if n, m are nonnegative integers and σ ∈ A n , σ ′ ∈ A m , define:

σσ ′ = (σ(1), . . . , σ(n), σ ′ (1), . . . , σ ′ (m)) ∈ A n+m , (1) 
if m = ∞, we define similarly σσ ′ ∈ A ∞ ,

• for n > 0, σ ∈ A n , and k 0, we define

σ k = σσ . . . σ k ∈ A nk , σ ∞ = σσ . . . σ . . . ∈ A ∞ , (2) 
• for σ, τ ∈ A, define:

σ|τ = {σ, τ } ⊂ A, (3) 
• for σ ∈ A and X ⊂ A ∪ A ∞ , define the set:

σX = {στ, τ ∈ X }, (4) 
similarly, if X ⊂ A, define the set X σ = {τ σ, τ ∈ X },
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• for X ⊂ A and k ∈ N, introduce the sets:

X k = {σ 1 . . . σ k , σ 1 , . . . , σ k ∈ X }, X ∞ = {σ 1 σ 2 . . . ∈ A ∞ , ∀i, σ i ∈ X }, X ⋆ = k∈N X k .
Example 1. The set (12|21) ∞ is the set of infinite strings σ ∈ A ∞ such that σ(2k) = σ(2k -1) for all positive integers k.

For n 0, the set (12|21) n (1|2|ǫ) is the set of strings σ ∈ A 2n ∪A 2n+1 such that σ(2k) = σ(2k-1) for all integers k ∈ [1, n].

The set (12|21) ⋆ (1|2|ǫ) is the set of strings σ ∈ A such that σ ∈ (12|21) n (1|2|ǫ) for some n 0.

We say that

σ ∈ A is a prefix of τ ∈ A ∪ A ∞ if τ = σσ ′ for some σ ′ ∈ A ∪ A ∞ . For σ ∈ A n (n ∈ N)
and k n, we denote by σ ↾k the only prefix of σ in A k :

σ ↾k = (σ(1), . . . , σ(k)) ∈ A k . (5) 
Similarly, we say that

σ ′ ∈ A ∪ A ∞ is a suffix of τ ∈ A ∪ A ∞ if τ = σσ ′ for some σ ∈ A.
For a positive integer n and σ ∈ A n , we define the similitude f σ by

f σ = f σ(1) • . . . • f σ(n) . (6) 
We also agree that f ǫ = Id. Similarly, if σ ∈ A ∞ , define

f σ = lim n→∞ f σ(1) • . . . • f σ(n) . (7) 
If σ ∈ A ∞ and x ∈ R 2 , we know that f σ (x) ∈ Γ ∞ does not depend on the point x. We call this point the limit point of the string σ and sometimes write it f σ . We recall that the set of all limit points of strings in A ∞ is exactly Γ ∞ (see for example [START_REF] Kigami | Analysis on fractals[END_REF]).

For σ ∈ A, let the subset Γ ∞,σ of Γ ∞ be defined by

Γ ∞,σ = f σ (Γ ∞ ). ( 8 
)
The definition of Γ ∞ implies that for all n > 0, Γ ∞ = σ∈An Γ ∞,σ . We also define the set

Ξ = f 1 (Γ ∞ ) ∩ f 2 (Γ ∞ ). ( 9 
)
The critical contraction ratio a ⋆ θ The following theorem was stated by Mandelbrot et al. in [MF99] (a complete proof is given in [Deh]):

Theorem 1. For any θ, 0 < θ < π/2, there exists a unique positive number

a ⋆ θ < 1/ √ 2 which does not depend on (α, β) such that if 0 < a < a ⋆ θ then Ξ = ∅ and Γ ∞ is totally disconnected, if a = a ⋆ θ then Ξ = ∅ and Γ ∞ is connected. ( 10 
)
The critical parameter a ⋆ θ is the unique positive root of the polynomial equation:

m θ -1 i=0 X i+2 cos iθ = 1 2 , ( 11 
)
where

m θ is the smallest integer such that m θ θ π/2. ( 12 
)
Remark 1. From (11), it can be seen that θ → a ⋆ θ is a continuous and increasing function from (0, π/2) onto (1/2, 1/ √ 2) and that lim θ→0 a ⋆ θ = 1/2. Hereafter, for a given θ, 0 < θ < π/2, we will write for brevity m instead of m θ and a ⋆ instead of a ⋆ θ , and we will only consider a such that 0 < a a ⋆ .

Characterization of Ξ

We recall a characterization of Ξ defined in (9). We know that Ξ = ∅ if and only if a = a ⋆ . Let us denote by Λ the vertical axis: Λ = {(x 1 , x 2 ), x 1 = 0} and by O the origin O = (0, 0).

Since f 1 (Γ ∞ ) = Γ ∞ ∩ {x 1 0} and f 2 (Γ ∞ ) = Γ ∞ ∩ {x 1 0}, we immediately see that Ξ = Γ ∞ ∩ Λ.
It can be observed (see [Deh] for the proof) that the sequences σ ∈ A ∞ such that the limit point f σ (O) of σ lies on Λ and that σ(1) = 1 are characterized by the following property: for all n 1, the truncated sequence σ ↾n achieves the maximum of the abscissa of f τ (O) over all τ ∈ A n such that τ (1) = 1.

Let us make out two cases, according to the value of m defined in (12):

⋄ if mθ > π/2 and a = a ⋆ , then Ξ is reduced to a single point f σ (O), where

σ = 12 m+1 (12) ∞ or σ = 21 m+1 (21) ∞ , (13) 
see paragraph 2.1.1 and Example 1 for the notations,

⋄ if mθ = π/2 and a = a ⋆ , then Ξ = {f σ (O), σ ∈ 12 m+1 (12|21) ∞ } = {f σ (O), σ ∈ 21 m+1 (12|21) ∞ }. ( 14 
)
2.2 Ramified domains 2.2.1 The construction Call P 1 = (-1, 0) and P 2 = (1, 0) and Γ 0 the line segment Γ 0 = [P 1 P 2 ]. We impose that f 2 (P 1 ), and f 2 (P 2 ) have positive coordinates, i.e. that a cos θ < α and a sin θ < β.

Γ 0 Y 0 f 1 (Γ 0 ) f 2 (Γ 0 ) P 2 P 1
(15)

We also impose that the open domain Y 0 inside the closed polygonal line joining the points P 1 , P 2 , f 2 (P 2 ), f 2 (P 1 ), f 1 (P 2 ), f 1 (P 1 ), P 1 in this order must be convex and hexagonal except if θ = 0. With (15), this is true if and only if

(α -1) sin θ + β cos θ > 0. ( 16 
)
Under assumptions (15) and ( 16), the domain Y 0 is contained in the half-plane x 2 > 0 and symmetric with respect to the vertical axis x 1 = 0. We introduce K 0 = Y 0 . It is possible to glue together K 0 , f 1 (K 0 ) and f 2 (K 0 ) and obtain a new polygonal domain, also symmetric with respect to the axis {x 1 = 0}. The assumptions (15) and ( 16) imply that

Y 0 ∩ f 1 (Y 0 ) = ∅ and Y 0 ∩ f 2 (Y 0 ) = ∅.
We define the ramified open domain Ω (see Figure 2):

Ω = Interior σ∈A f σ (K 0 ) . ( 17 
)
Note that Ω is symmetric with respect to the axis x 1 = 0. For a given θ, with a ⋆ defined as above, we shall make the following assumption on (α, β):  Assumption 1. For 0 < θ < π/2, the parameters α and β satisfy (15) and ( 16) for a = a ⋆ , and are such that

   i. for all a, 0 < a a ⋆ , the sets Y 0 , f σ (Y 0 ), σ ∈ A n , n > 0, are disjoint, ii. for all a, 0 < a < a ⋆ , f 1 (Ω) ∩ f 2 (Ω) = ∅, iii. for a = a ⋆ , f 1 (Ω) ∩ f 2 (Ω) = ∅. Remark 2. Assumption 1 implies that if a = a ⋆ , then f 1 (Ω) ∩ f 2 (Ω) = ∅.
The following theorem proved in [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF] asserts that for all θ, 0 < θ < π/2, there exists (α, β) satisfying Assumption 1.

Theorem 2. If θ ∈ (0, π/2), then for all α > a ⋆ cos θ, there exists β > 0 such that β > a ⋆ sin θ and (α -1) sin θ + β cos θ 0 and for all β β, (α, β) satisfies Assumption 1.

Displayed on Figure 2 are two examples where Assumption 1 is satisfied. In the left part, we make the choice θ = π 5 , and in the right part, we chose θ = π 4 (see also Example 1). Note the difference between the two cases: in the former case m θ θ = π/2 and the set Ξ defined in ( 9) is not countable whereas in the latter case, m θ θ > π/2 and the set Ξ is a singleton. 

Ω Γ ∞ Ω Γ ∞

The Moran condition

The Moran condition (or open set condition), see [START_REF] Moran | Additive functions of intervals and Hausdorff measure[END_REF][START_REF] Kigami | Analysis on fractals[END_REF], is that there should exist a nonempty bounded open subset

ω of R 2 such that f 1 (ω) ∩ f 2 (ω) = ∅ and f 1 (ω) ∪ f 2 (ω) ⊂ ω.
For a given θ ∈ (0, π/2), let (α, β) satisfy Assumption 1; for 0 < a a ⋆ , the Moran condition is satisfied with ω = Ω because

• f 1 (Ω) ∩ f 2 (Ω) = ∅, which stems from point ii) in Assumption 1 if a < a ⋆ ,

and from

Remark 2 if a = a ⋆ ;

• by construction of Ω, we also have

f 1 (Ω) ∪ f 2 (Ω) ⊂ Ω. The Moran condition implies that the Hausdorff dimension of Γ ∞ is dim H (Γ ∞ ) = d ≡ -log 2/ log a, see [Mor46, Kig01]. Note that if a > 1/2, then d > 1. For instance, if θ = π/4 and a = a ⋆ π/4 , then dim H (Γ ∞ ) ≃ 1.3284371. It can be shown that if 0 < θ < π/2, we have 0 < a a ⋆ < 1/ √ 2 and thus d < 2.
It can also be seen that if mθ = π/2 and a = a ⋆ , then the Hausdorff dimension of Ξ is d/2.

2.2.3

The self-similar measure µ and the spaces W s,p (Γ ∞ )

To define traces on Γ ∞ , we recall the classical result on self-similar measures, see [START_REF] Falconer | Techniques in fractal geometry[END_REF][START_REF] Hutchinson | Fractals and self-similarity[END_REF] and [START_REF] Kigami | Analysis on fractals[END_REF] page 26: Theorem 3. There exists a unique Borel regular probability measure µ on Γ ∞ such that for any

Borel set A ⊂ Γ ∞ , µ(A) = 1 2 µ f -1 1 (A) + 1 2 µ f -1 2 (A) . ( 18 
)
The measure µ is called the self-similar measure defined in the self-similar triplet

(Γ ∞ , f 1 , f 2 ).
Proposition 1. The measure µ is a d-measure on Γ ∞ , with d =log 2/ log a, according to the definition in [START_REF] Jonsson | Function spaces on subsets of R n[END_REF], page 28: there exist two positive constants c 1 and c 2 such that

c 1 r d µ(B(x, r)) c 2 r d ,
for any r 0 < r < 1 and x ∈ Γ ∞ , where B(x, r) is the Euclidean ball in Γ ∞ centered at x and with radius r. In other words the closed set Γ ∞ is a d-set, see [START_REF] Jonsson | Function spaces on subsets of R n[END_REF], page 28.

Proof. The proof stems from the Moran condition. It is due to Moran [Mor46] and has been extended by Kigami, see [START_REF] Kigami | Analysis on fractals[END_REF], §1.5, especially Proposition 1.5.8 and Theorem 1.5.7. ⊓ ⊔

We define L p (Γ ∞ ), p ∈ [1, +∞) as the space of the measurable functions v on Γ ∞ such that Γ ∞ |v| p dµ < ∞, endowed with the norm v L p (Γ ∞ ) = Γ ∞ |v| p dµ 1/q . We also introduce L ∞ (Γ ∞
), the space of essentially bounded functions with respect to the measure µ. A Hilbertian basis of L 2 (Γ ∞ ) can be constructed with e.g. Haar wavelets.

We also define the space W s,p (Γ ∞ ) for s ∈ (0, 1) and

p ∈ [1, ∞) as the space of functions v ∈ L p (Γ ∞ ) such that |v| W s,p (Γ ∞ ) < ∞, where |v| W s,p (Γ ∞ ) = Γ ∞ Γ ∞ |v(x) -v(y)| p |x -y| d+ps dµ(x)dµ(y) 1 p , endowed with the norm v W s,p (Γ ∞ ) = v L p (Γ ∞ ) + |v| W s,p (Γ ∞ ) .

Additional notations

For what follows, it is important to define the polygonal open domain Y N obtained by stopping the above construction at step N + 1,

Y N = Interior K 0 ∪ N n=1 σ∈An f σ (K 0 ) . ( 19 
)
We introduce the open domains

Y σ = f σ (Y 0 ), Ω σ = f σ (Ω) and Ω N = ∪ σ∈A N Ω σ , for N > 0.
When needed, we will agree to say that Ω 0 = Ω. We define the sets Γ σ = f σ (Γ 0 ) and Γ N = ∪ σ∈A N Γ σ . The one-dimensional Lebesgue measure of Γ σ for σ ∈ A N and of Γ N are

|Γ σ | = a N |Γ 0 | and |Γ N | = (2a) N |Γ 0 |.
We also introduce the sets Ω σ = f σ (Ω) for all σ ∈ A.

We will sometimes use the notation or to indicate that there may arise constants in the estimates, which are independent of the index n in Γ n , or of the index σ in Γ σ or Γ ∞,σ . We may also write A ≃ B if A B and B A.

3 The space W 1,p (Ω)

Hereafter, we consider a domain Ω as defined in Section 2, with θ in [0, π/2), a a ⋆ and we suppose that the parameters α, β are such that Assumption 1 is satisfied.

Basic facts For a real number p 1, let W 1,p (Ω) be the space of functions in L p (Ω) with first order partial derivatives in L p (Ω). The space W 1,p (Ω) is a Banach space with the norm

u p L p (Ω) + ∂u ∂x 1 p L p (Ω) + ∂u ∂x 2 p L p (Ω) 1 p , see for example [AF03], p 60. Elementary calculus shows that u W 1,p (Ω) ≡ u p L p (Ω) + ∇u p L p (Ω) 1 p is an equivalent norm, with ∇u p L p (Ω) ≡ Ω |∇u| p and |∇u| = | ∂u ∂x 1 | 2 + | ∂u ∂x 2 | 2 .
The spaces W 1,p (Ω) as well as elliptic boundary value problems in Ω have been studied in [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF], with, in particular Poincaré inequalities and a Rellich compactness theorem. The same results in a similar but different geometry were proved by Berger [START_REF] Berger | Eigenvalue distribution of elliptic operators of second order with Neumann boundary conditions in a snowflake domain[END_REF] with other methods.

Extension result in the case a < a ⋆ We first briefly discuss the less interesting case when a < a ⋆ and the self-similar set Γ ∞ is totally disconnected. In this case, the domain Ω is an (ε, δ)-domain as defined in [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF] (see [START_REF] Achdou | Trace results on domains with self-similar fractal boundaries[END_REF], Lemma 1 p.5). Therefore, Theorem 1 in [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF] yields a continuous extension operator from W 1,p (Ω) to W 1,p (R 2 ) for every p ∈ (1, ∞).

The case a = a ⋆ We will focus on that case in the rest of the present paper. It can be seen that in this case, the domain Ω is not an (ε, δ)-domain, and the previous argument does not hold. However, it will be proved in Theorem B that the same result is true when 1 < p < 2 for angles θ ∈ [0, π 2 ) such that mθ > π 2 , and when 1 < p < 2 -d 2 for angles such that mθ = π 2 . It will also be seen (see Remark 6) that if p > 2 in the first case, and if p > 2 -d 2 in the second case, the extension result cannot hold.

A trace operator on Γ ∞ We construct a sequence (ℓ n ) n of approximations of the trace operator: consider the sequence of linear operators

ℓ n : W 1,p (Ω) → L p (Γ ∞ ), ℓ n (v) = σ∈An 1 |Γ σ | Γ σ v dx ½ fσ(Γ ∞ ) , (20) 
where |Γ σ | is the one-dimensional Lebesgue measure of Γ σ . The following result was proved in [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF].

Proposition 2. The sequence (ℓ n ) n converges in L(W 1,p (Ω), L p (Γ ∞ )) to an operator that we call ℓ ∞ .
4 The spaces JLip(t, p, q; 0; Γ ∞ ) for 0 < t < 1

In [START_REF] Jonsson | Haar wavelets of higher order on fractals and regularity of functions[END_REF], A. Jonsson has introduced Haar wavelets of arbitrary order on self-similar fractal sets and has used these wavelets to construct a family of Lipschitz spaces. These function spaces are named JLip(t, p, q; m; S), where S is the fractal set, t is a nonnegative real number, p, q are two real numbers not smaller than 1 and m is an integer (m is the order of the Haar wavelets used for the construction of the space). Here J stands for jumps, since the considered functions may jump at some points of S. If the fractal set S is totally disconnected, then these spaces coincide with the Lipschitz spaces Lip(t, p, q; m; S) also introduced in [START_REF] Jonsson | Haar wavelets of higher order on fractals and regularity of functions[END_REF]. The latter are a generalization of the more classical spaces Lip(t, p, q; S) introduced in [JW84] since Lip(t, p, q; [t]; S) = Lip(t, p, q; S). Note that Lip(t, p, p; [t]; S) = W t,p (S), see [START_REF] Jonsson | The dual of Besov spaces on fractals[END_REF]. We will focus on the case when S = Γ ∞ , m = 0 and p = q, since this is sufficient for what follows.

4.1 Definition of the spaces JLip(t, p, p; 0; Γ ∞ )

The definition of JLip(t, p, p; 0; Γ ∞ ) for p ∈ [1, ∞) presented below is adapted to the class of fractal sets Γ ∞ considered in the present paper. It was proved in [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF] that this definition coincides with the original and more general one that was proposed in [START_REF] Jonsson | Haar wavelets of higher order on fractals and regularity of functions[END_REF]. Consider a real number t, 0 < t < 1. Following [START_REF] Jonsson | Haar wavelets of higher order on fractals and regularity of functions[END_REF], it is possible to characterize JLip(t, p, p; 0; Γ ∞ ) by using expansions in the standard Haar wavelet basis on Γ ∞ . Consider the Haar mother wavelet g 0 on Γ ∞ ,

g 0 = ½ f 1 (Γ ∞ ) -½ f 2 (Γ ∞ ) , (21) 
and for n ∈ N, n > 0, σ ∈ A n , let g σ be given by

g σ |Γ ∞,σ = 2 n/2 g 0 • f -1 σ , and g σ |Γ ∞ \Γ ∞,σ = 0. ( 22 
)
It is proved in [START_REF] Jonsson | Wavelets on fractals and Besov spaces[END_REF] §5 that a function f ∈ L p (Γ ∞ ) can be expanded in the Haar basis as follows:

f = P 0 f + n 0 σ∈An β σ g σ , (23) 
where

P 0 f = Γ ∞ f dµ. For any function f ∈ L p (Γ ∞ ), we define |f | JLip(t,p,p;0;Γ ∞ ) by: |f | JLip(t,p,p;0;Γ ∞ ) = n 0 2 n pt d 2 n( p 2 -1) σ∈An |β σ | p 1 p , (24) 
where the numbers β σ , σ ∈ A are the coefficients of f in the Haar wavelet basis expansion given in (23).

Definition 1. A function f ∈ L p µ belongs to JLip(t, p, p; 0; Γ ∞ ) if and only if the norm f JLip(t,p,p;0;Γ ∞ ) = |P 0 f | + |f | JLip(t,p,p;0;Γ ∞ ) (25) 
is finite.

Remark 3. An equivalent definition of JLip(t, p, p; 0; Γ ∞ ) can be given using projection of f on constants on Γ ∞,σ , see [START_REF] Jonsson | Haar wavelets of higher order on fractals and regularity of functions[END_REF][START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF].

Remark 4. Here, since we focus on the case m = 0, we do not need to suppose that Γ ∞ is not contained in a straight line, as it was done in [START_REF] Jonsson | Haar wavelets of higher order on fractals and regularity of functions[END_REF] in order to obtain that the fractal set has a Markov property.

4.2 Characterization of the traces on Γ ∞ of functions in W 1,p (Ω)

We recall the following theorem proved in [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF] which provides a characterization of the trace space ℓ ∞ (W 1,p (Ω)) in terms of JLip spaces, and will prove very useful in the proof of the main theorems.

Theorem 4. For a given θ, 0 θ < π/2, if (α, β) satisfies Assumption 1 and Ω is constructed as in §2.2.1, with 1/2 a a ⋆ , then for all p, 1 < p < ∞,

ℓ ∞ W 1,p (Ω) = JLip(1 -2-d p , p, p; 0; Γ ∞ ). ( 26 
)

JLip versus Sobolev spaces on Γ ∞

We briefly recall the result obtained in [START_REF] Achdou | JLip versus Sobolev spaces on a class of self-similar fractal foliages[END_REF], which compares the JLip spaces and the Besov spaces on Γ ∞ .

Theorem 5. There exists a real number p ⋆ θ > 0 depending only on the dimension of the selfintersection of the fractal set Γ ∞ , such that

⋄ if a = a ⋆ and 1 < p < p ⋆ θ , then JLip(1 -2-d p , p, p; 0; Γ ∞ ) = W 1-2-d p ,p (Γ ∞ ), (27) 
⋄ if a = a ⋆ and p > p ⋆ θ , then

JLip(1 -2-d p , p, p; 0; Γ ∞ ) ⊂ W 1-2-d p ,p (Γ ∞ ). ( 28 
)
The number p ⋆ θ is given by:

p ⋆ θ = 2 if θ ∈ { π 2k , k > 0}, p ⋆ θ = 2 -d/2 if θ = π 2k , k > 0, (29) 
that is p ⋆ θ = 2dim H Ξ. Together with Theorem 4, Theorem 5 provides another characterization of the trace space ℓ ∞ (Ω) when p < p ⋆ θ .

The main extension result

We will focus on the case a = a ⋆ in the rest of the paper. As was seen in paragraph 3, the domain Ω is not an (ε, δ)-domain in this case, and the argument given for the case a < a ⋆ does not hold. However, it will be proved in Theorem B that the extension result is true when 1 < p < p ⋆ θ . It will also be seen (see Remark 6) that if p > p ⋆ θ , the extension result cannot hold. Theorem A below states that when p ∈ (1, p ⋆ θ ), there exist liftings in W 1,p (R 2 ) for functions in the trace space JLip(1 -2-d p , p, p; 0; Γ ∞ ) of W 1,p (Ω) on Γ ∞ (see ( 26)), where the trace is meant in the sense of the operator ℓ ∞ . This result is the main ingredient to prove Theorem B. The proof of Theorem A can be seen as a self-similar adaptation of the Whitney construction based on the wavelet decomposition of functions on Γ ∞ . Remark 5. Using Theorem 5 above and the trace theorem of Jonsson and Wallin stating that

W 1-2-d p ,p (Γ ∞ ) = W 1,p (R 2 ) |Γ ∞ for p ∈ (1, ∞), it can be proved that JLip(1 -2-d p , p, p; 0; Γ ∞ ) = W 1,p (R 2 ) |Γ ∞ , (30) 
where we recall that the trace u |Γ ∞ of a function u is meant in the classical sense (see [START_REF] Jonsson | Function spaces on subsets of R n[END_REF]).

It should be noted that Theorem A below differs from the previous result in that the trace is meant in the sense of ℓ ∞ , which will be of particular importance, especially in the proof of Theorem B below.

The method proposed in the proof of Theorem B uses the lifting of Theorem A and the selfsimilar properties of the trace operator. Another choice could have been to work with the Whitney extension operator of (30), but we then could not have exploited the self-similar properties of the geometry as is done to prove Theorem B.

In [ADT], Theorems A and B below are key ingredients in the proof that u |Γ ∞ = ℓ ∞ (u) µ-almost everywhere for all p > 1 and u ∈ W 1,p (Ω).

The second result (Theorem B) states that there exists a continuous extension operator from W 1,p (Ω) to W 1,p (R 2 ) when 1 < p < p ⋆ θ . The proof consists in the construction of a sequence of operatiors converging to the extension operator, with the help of the lifting introduced in Theorem A.

Theorem A.

1. If θ ∈ π 2N and p ∈ (1, 2), then there exists a continuous linear lifting operator

E from JLip(1 -2-d p , p, p; 0; Γ ∞ ) to W 1,p (R 2 ) in the sense of ℓ ∞ , i.e. ∀v ∈ JLip(1 -2-d p , p, p; 0; Γ ∞ ), ℓ ∞ ((Ev) |Ω ) = v. (31) 
2. If θ ∈ π 2N and p ∈ (1, 2 -d 2 ), then the conclusion remains true.

We immediately deduce the following result for functions in W 1,p (Ω) with 1 < p < p ⋆ θ .

Corollary 1. If p ∈ (1, p ⋆ θ ) and u ∈ W 1,p (Ω), then the function ū = Eℓ ∞ (u) ∈ W 1,p (R 2 ) satisfies ℓ ∞ (ū) = ℓ ∞ (u).
We will deduce the main extension result of this paper:

Theorem B.
1. If θ ∈ π 2N and p ∈ (1, 2), then there exists a continuous linear operator

F from W 1,p (Ω) to W 1,p (R 2 ) such that, for all u ∈ W 1,p (Ω), Fu |Ω = u. 2. If θ ∈ π 2N and p ∈ (1, 2 -d 2 )
, then the extension result remains true. In other words, if p ∈ (1, p ⋆ θ ), then Ω has the W 1,p -extension property.

Remark 6. The extension result of Theorem B is sharp in the following sense. As was seen in Remark 5, it is proved a posteriori in [ADT] that the trace operator ℓ ∞ coincides with the trace operator introduced by Jonsson and Wallin in [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] µ-almost everywhere. Therefore, if Ω is a W 1,p -extension domain for some p > p ⋆ θ , then, by the trace theorem in [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] (p.182),

ℓ ∞ (W 1,p (Ω)) = W 1-2-d
p ,p (Γ ∞ ), which contradicts (28). In the case when θ ∈ π 2N , we have p ⋆ θ = 2, and we can conclude that Ω does not have the W 1,p ⋆ θextension property: if it did, then Koskela's theorem in [START_REF] Koskela | Extensions and imbeddings[END_REF] (Theorem B) would imply that Ω has the W 1,p -extension property for all p > p ⋆ θ . The case θ ∈ π 2N is open.

In this section, we prove Theorem A.

Proof of point 1

Recall that in this case, θ ∈ { π 2k , k > 0}, and mθ > π 2 , where m was introduced in (12). We start by lifting the Haar wavelets on Γ ∞ into functions in W 1,p (R 2 ), 1 < p < ∞. This will yield a natural lifting for functions in JLip(1 -2-d p , p, p; 0; Γ ∞ ), defined as the lifting of their expansion in the Haar wavelets basis.

Lifting of the Haar wavelets

In this section, we define liftings ḡσ of the Haar wavelets g σ , σ ∈ A, such that ḡσ ∈ W 1,p (R 2 ) for all p ∈ (1, ∞). It will be of particular importance to control the pairwise intersections of the sets supp ∇ḡ σ in order to limit their contribution to the W 1,p -norm of the exended function.

To that end, we will make sure that these intersections are contained in some cones centered at the points f η (A) (η ∈ A), where A is the single point contained in

f 1 (Γ ∞ ) ∩ f 2 (Γ ∞ ).
It is not hard to show that there exists an angle ϕ 0 small enough so that the vertical cone C with vertex A and angle ϕ 0 does not intersect

f 1 (Ω) or f 2 (Ω) (in particular, ϕ 0 < min( π 2 -(m - 1)θ, mθ -π 2 )
). We impose that the liftings ḡσ , σ ∈ A should satisfy the following condition: if

σ = τ , then supp ∇ḡ σ ∩ supp ∇ḡ τ ⊂ η∈A f η (C ). (32) 
Proposition 4 below will imply in particular that this condition is satisfied.

We proceed in three steps: we successively construct liftings for the constants, the Haar mother wavelet, and the other Haar wavelets.

Lifting of the constants We will introduce a lifting of the constant function 1 on Γ ∞ , in order to define liftings for the Haar wavelets by self-similarity.

The proof of Lemma 3 in [START_REF] Achdou | JLip versus Sobolev spaces on a class of self-similar fractal foliages[END_REF] (see especially Figure 3 in [START_REF] Achdou | JLip versus Sobolev spaces on a class of self-similar fractal foliages[END_REF]) can be easily modified to obtain the existence of a constant c > 0 such that for all σ ∈ A n (n > 0) with σ ∈ B,

d(f σ (Ω), C ) > ca n , (33) 
where

B = {σ ∈ A, σ is a prefix of 12 m+1 (12) ∞ or 21 m+1 (21) ∞ }, (34) 
see paragraph 2.1.1 for the notations. Recall that the elements of B are those strings σ ∈ A such that d(f σ (Ω), Λ) = 0 where Λ is the axis given by {x 1 = 0} (cf. §2.1.2).

We consider a smooth compactly supported function χ on R 2 such that χ ≡ 1 in a neighborhood of the closure of the ramified domain Ω, and such that χ is symmetric with respect to the axis Λ, see Figure 3.

Lifting of the Haar mother wavelet

We introduce a function ψ in R 2 such that -ψ ≡ 1 in {x 1 0} \ C and ψ ≡ 0 in {x 1 > 0} \ C , -ψ is smooth in the interior of C , ∂ψ ∂ϕ (r, ϕ) is constant and ∂ψ ∂r (r, ϕ) ≡ 0 in int(C ), where (r, ϕ) are the polar coordinates centered at the vertex A of the cone C , Define the lifting ḡ0 of the Haar mother wavelet by:

ḡ0 = ψ • (χ • f -1 1 ) -(1 -ψ) • (χ • f -1 2 ). ( 35 
)
Note that ḡ0 ∈ W 1,p (R 2 ) if and only if p < 2: it is enough to observe that

∇ψ p L p (supp ḡ0 ) = ∇ψ p L p (supp ḡ0 ∩C ) R -R ϕ 0 -ϕ 0 1 r p r dr dϕ R -R dr r p-1 , (36) 
where R = diam supp ḡ0 .

Observe that the function χ can be chosen such that ḡ0 satisfies the geometric condition:

C ∩ supp ḡ0 ⊂ conv(Ω), (37) 
where conv(Ω) refers to the convex hull of the ramified domain Ω. We assume this condition is fulfilled in the following.

Lifting of the Haar wavelets

We use the function ḡ0 and the self-similarity to define the liftings of the other Haar wavelets. We first define the natural lifting g σ of g σ , for σ ∈ A n by

g σ = 2 n 2 ḡ0 • f σ -1 .
Note that the functions g σ , σ ∈ A do not satisfy condition (32) (take for example σ = 1 and τ = 2). Hence, we will define cut-off functions whose gradients are supported in the cones f τ (C ). Take σ ∈ A \ {ǫ}. For any prefix τ ∈ A k of σ such that τ = σ, we define

γ σ τ = ½ σ(k+1)=1 ψ • f τ -1 + ½ σ(k+1)=2 (1 -ψ) • f τ -1 . (38) 
Note that the function γ σ τ is 1 on one connected component of R 2 \ f τ (C ), and 0 on the other. This definition is based on the observation that for all prefix τ ∈ A k of σ such that τ = σ,

Ω σ ⊂ f τ ({x 1 < 0}) if σ(k + 1) = 1, and Ω σ ⊂ f τ ({x 1 > 0}) if σ(k + 1) = 2.
For σ ∈ A, we introduce the set M(σ) of all those prefixes τ ∈ A of σ such that f

τ (A) ∈ Γ ∞,σ . It is easily checked that M(σ) = {τ ∈ A, σ = τ σ ′ , σ ′ ∈ B}, ( 39 
)
where B is defined in (34). If τ ∈ M(σ) \ {σ}, then the function g σ needs to be multiplied by the cut-off function γ σ τ .



Remark 7.

1. If σ ∈ B, then ǫ ∈ M(σ).

2. For all n > 0 and σ ∈ A n , one has σ, σ ↾n-1 ∈ M(σ), since the empty string and the string (σ(n)) belong to B.

We may now define the cut off lifting ḡσ of the Haar wavelet

g σ , σ ∈ A n by ḡσ = τ ∈M(σ) τ =σ γ σ τ g σ . ( 40 
)
Example In Figure 4, we present an example where θ = π 3 (hence m = 2), and σ = 12 3 12. Therefore, M(σ) = {ǫ, 12 3 , 12 3 1, 12 3 12}.

The gray area shows the support of ∇ḡ σ . In Figure 4, we have only represented the domain Ω σ , which corresponds to the small area in dark gray in Figure 3. In what follows, we will need a uniform bound on the cardinal of M(σ), σ ∈ A: Lemma 1. There exists a constant C such that for all σ ∈ A,

C 12 3 1 C C 12 3 C 12 3 12
#M(σ) C. (41) 
Proof. Take n > 0 and σ ∈ A n . If n 2, then the result is clear. Suppose n > 2, we first note that σ ↾n-1 , σ ∈ M(σ) (see Remark 7). Let us look for elements of M(σ) distinct from σ ↾n-1 and σ.

First assume that σ(n) = σ(n -1); take for example σ(n) = 2. Then, any suffix σ ′ of σ such that σ ′ ∈ B is of the form 12 k with k m + 1. If there were two of them, then one of them would be a suffix of the other, which is impossible. Therefore, in this case, #M(σ) 3. If σ(n) = σ(n -1), then (σ(n -1), σ(n)) ∈ B, which implies that σ ↾n-2 ∈ M(σ). Let us look for a string σ ′ ∈ M(σ) such that σ ′ ∈ A k with k > 2. Suppose for example σ(n) = 2. Then σ ′ must be of the form 12 m+1 (12) l or 21 m+1 (21) l 2, for some l > 0. As for the previous case, were there two such strings, one of them would be a suffix of the other, which is impossible. Hence, in this case, #M(σ) 4. ⊓ ⊔ Proposition 3. For σ ∈ A n and p < 2,

∇ḡ σ p L p (R 2 ) 2 n( p 2 + 2-p d ) . ( 42 
)
Proof. First, we note that 2

n 2 ∇(ḡ 0 • f -1 σ ) p L p (R 2 ) = 2 np 2 a n(2-p) ∇ḡ 0 p L p (R 2 ) ≃ 2 n( p 2 + 2-p d ) .
The other terms to consider are of the form 2

n 2 ḡ0 • f -1 σ ∇(ψ • f -1 τ ) p L p (R 2 ) , where τ ∈ M(σ) \ {σ}. One has 2 n 2 ḡ0 • f -1 σ ∇(ψ • f -1 τ ) p L p (R 2 ) 2 np 2 ∇(ψ • f -1 τ ) p L p (fσ(supp ḡ0 )) = 2 np 2 a k(2-p) ∇ψ p L p (f σ ′ (supp ḡ0 )) , (43) 
where σ = τ σ ′ , τ ∈ A k and σ ′ ∈ B (see ( 39)). We show as in (36) that

∇ψ p L p (f σ ′ (supp ḡ0 )) a (2-p)(n-k) .
Together with (41) and (43), this achieves the proof since a d = 1/2. ⊓ ⊔

We deduce in particular from Proposition 3 that ḡσ ∈ W 1,p (R 2 ) for p < 2.

Geometrical results

The following geometrical results will be crucial in the proof of Theorem A. The proofs of these results rely on simple but technical geometrical arguments and are postponed to Section 8 for the ease of the reader.

We introduce the truncated cones S = C ∩ supp ḡ0 and S τ = f τ (S) for τ ∈ A. Define S = τ ∈A S τ to be the union of these truncated cones. We also define F = supp ∇ḡ 0 \ S, and

F τ = f τ (F ) for τ ∈ A. Note that, for σ ∈ A, supp ∇ḡ σ ⊂ F σ ∪   τ ∈M(σ) S τ   . ( 44 
)
Proposition 4 below states a stronger version of condition (32). Propositions 6 and 7 below describe the case when, for a given τ ∈ A, ∇ḡ σ is not identically zero in S τ .

Proposition 6. There exists a constant C > 0 such that for all τ ∈ A and x ∈ S τ ,

#{σ ∈ A, τ ∈ M(σ), ∇(ḡ 0 • f -1 σ )(x) = 0} C. Proposition 7. If σ, τ ∈ A and τ ∈ M(σ), then ∇ḡ σ ≡ 0 in S τ .
In particular, if ∇ḡ σ ≡ 0 on S τ , then τ is a prefix of σ.

Proof of point 1 in Theorem A

The proof will use the following discrete Hardy inequality (see [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] p.121).

Lemma 2. If p 1, for any γ > 0 and a ∈ (0, 1), there exists a constant C such that, for any sequence of positive real numbers

(c k ) k∈N , n∈N a γn   k n c k   p C n∈N a γn c n p . ( 47 
)
Proof of point 1. Take v ∈ JLip(1 -2-d p , p, p, 0; Γ ∞ ) and suppose in the first place that v Γ ∞ = Γ ∞ v dµ = 0. The function v then reads v = n σ∈An β σ g σ where the β σ are the coefficients of v in the Haar wavelet basis of Γ ∞ . We introduce the lifting Ev of v defined on R 2 by:

Ev = n∈N σ∈An β σ ḡσ . ( 48 
)
Recall that S is the union of all the truncated cones S τ , τ ∈ A. By Proposition 3 and Proposition 4,

∇(Ev) p L p (R 2 \S ) = R 2 \S n∈N σ∈An β σ ∇ḡ σ (x) p dx = n∈N σ∈An |β σ | p supp ḡσ\S |∇ḡ σ (x)| p dx n∈N 2 n( p 2 + p d -2 d ) σ∈An |β σ | p = v p JLip(1-2-d p ,p,p,0;Γ ∞ )
.

On the other hand,

∇(Ev) p L p (S ) = S n∈N σ∈An β σ ∇ḡ σ (x) p dx = τ ∈A S τ n∈N σ∈An β σ ∇ḡ σ (x) p dx.
Take k ∈ N and τ ∈ A k . By Proposition 7, if σ ∈ A n (n ∈ N) is such that ∇ḡ σ ≡ 0 in S τ , then τ ∈ M(σ). Therefore, by Proposition 5, ḡσ coincides with γ σ τ gσ in S τ . Hence,

S τ n∈N σ∈An β σ ∇ḡ σ (x) p dx = S τ n∈N σ∈An, τ ∈M(σ) 2 n 2 β σ ∇ (ḡ 0 • f -1 σ ).γ σ τ (x) p dx I τ 1 + I τ 2
, where

I τ 1 = S τ n∈N σ∈An, τ ∈M(σ) 2 n 2 β σ ∇(ḡ 0 • f -1 σ )(x) p dx I τ 2 = S τ n∈N σ∈An, τ ∈M(σ) 2 n 2 β σ ḡ0 • f -1 σ (x)∇γ σ τ (x) p dx. (49) 
Let us first consider I τ 1 . By Proposition 6, one has:

I τ 1 C p-1 n∈N σ∈An τ ∈M(σ) 2 np 2 |β σ | p S τ |∇(ḡ 0 • f -1 σ )(x)| p dx C p-1 n∈N 2 np 2 a (2-p)n σ∈An |β σ | p S τ |∇ḡ 0 (x)| p dx, (50) 
where C is the constant in Proposition 6. Therefore,

τ ∈A I τ 1 n∈N 2 np 2 a (2-p)n σ∈An |β σ | p τ ∈A S τ |∇ḡ 0 (x)| p dx n∈N 2 np 2 a (2-p)n σ∈An |β σ | p R 2 |∇ḡ 0 (x)| p dx v p JLip(1-2-d p ,p,p,0;Γ ∞ ) . (51) 
We are left with dealing with I τ 2 . Denote Φ = (-ϕ 0 , ϕ 0 ) ∪ (πϕ 0 , π + ϕ 0 ). We resort to a polar change of variables centered at the point f τ (A) such that the vertical half-line originating at the point f τ (A) and pointing up is given by {ϕ = 0}:

I τ 2 ∞ 0 Φ n∈N σ∈An, τ ∈M(σ) 2 n 2 β σ ḡ0 • f -1 σ (r, ϕ) p r 1-p dr dϕ, (52) 
since for r > 0 and ϕ ∈ Φ,

|∇γ σ τ (r, ϕ)| 1 r . Define R = diam supp ḡ0 . If τ ∈ M(σ), then f τ (A) ∈ Ω σ ⊂ supp ḡ0 • f -1 σ , by the definition of M(σ) in (39). Therefore, if supp ḡ0 • f -1 σ ∩ C (f τ (A), r) = ∅ where C(f τ (A), r
) is the circle centered at f τ (A) with radius r, then r a n R, i.e. n N r where N r = log r/R log a . Hence

I τ 2 a k R 0 Φ [Nr] n=k σ∈An, τ ∈M(σ) 2 n 2 β σ ḡ0 • f -1 σ (r, ϕ) p r 1-p dr dϕ a k R 0    [Nr] n=k σ∈An τ ∈M(σ) 2 n 2 |β σ |    p r 1-p dr.  Recall that if τ ∈ M(σ), then σ is of the form τ σ ′ with σ ′ ∈ B. Consequently, I τ 2 a k R 0   [N k r ] n=0 σ ′ ∈B 2 n+k 2 |β τ σ ′ |   p r 1-p dr,
where

N k r = N r -k = log(r/(a k R)) log a
. Therefore, the change of variable ρ = N k r yields:

I τ 2 ∞ 0 a (ρ+k)(2-p)   [ρ] n=0 σ ′ ∈B 2 n+k 2 |β τ σ ′ |   p dρ ∞ m=0 a (m+k)(2-p) m n=0 σ ′ ∈B 2 n+k 2 |β τ σ ′ | p , since ρ → a (ρ+k)(2-p) [ρ] n=0 σ ′ ∈B 2 n 2 |β τ σ ′ | is increasing.
Then, by the discrete Hardy inequality stated in Lemma 2,

I τ 2 ∞ m=0 a (m+k)(2-p) 2 (m+k)p 2 σ ′ ∈B |β τ σ ′ | p = ∞ m=k a m(2-p) 2 mp 2 σ∈Am τ ∈M(σ) |β σ | p . (53) 
Therefore, we obtain:

τ ∈A I τ 2 k∈N τ ∈A k ∞ m=k a m(2-p) 2 mp 2 σ∈Am τ ∈M(σ) |β σ | p = m∈N a m(2-p) 2 mp 2 σ∈Am m k=0 τ ∈A k τ ∈M(σ) |β σ | p m∈N a m(2-p) 2 mp 2 σ∈Am |β σ | p , (54) 
since #M(σ) 4 by Lemma 1, which shows that

τ ∈A I τ 2 v p JLip(1-2-d p ,p,p,0;Γ ∞ ) . Finally, if v Γ ∞ = 0, then we get the desired result by taking Ev = v Γ ∞ χ + E(v -v Γ ∞ ). ⊓ ⊔

Proof of point 2

We will proceed in the same manner as we did in the proof of point 1 in Theorem A. The extensions of the Haar wavelets will have to be constructed with more care since the set Ξ

= f 1 (Γ ∞ ) ∩ f 2 (Γ ∞
) is now infinite.

Lifting of the Haar wavelets

We start by constructing a set C playing the same role as the cone constructed in the proof of point 1. Let A u be the limit point of the string 12 m+1 (12) ∞ and A l the limit point of 12 m+1 (21) ∞ , see Figure 5. The points A u and A l are respectively the upper and lower ends of the set Ξ. As in the proof of point 1, it is not hard to show that there exists an angle ϕ 0 ∈ (0, θ) small enough so that the vertical open half-cone C u pointing up with vertex A u and angle ϕ 0 (resp. the vertical open half-cone C l pointing down with vertex A l and angle ϕ 0 ), intersects neither f 1 (Ω) nor f 2 (Ω) (see Figure 5).

We introduce the points M 1 = f 12 m+1 12(21) ∞ (O) and M 2 = f 12 m+1 21(12) ∞ (O). Call D the diamond-shaped intersection of the vertical open half-cones with respective vertices M 1 and M 2 and with common angle ϕ 0 , as in Figure 5. Call M 3 and M 4 the other two vertices of D, see Figure 5.

It is easily checked that the set D does not intersect the ramified domain Ω.

Call D 0 = f -1 12 m+1 (D) and D η = f η (D 0 ) for η ∈ A. Note that with this notation D = D 12 m+1 . Similarly, we define M η i = f η (f -1 12 m+1 (M i )) for i = 1
, 2 and η ∈ B + ; note that M η 1 and M η 2 are vertices of the diamond D η . Write B + = 12 m+1 (12|21) ⋆ , we also introduce the sets

D = η∈B + D η and C = C u ∪ C l ∪ D. (55) 
The set C corresponds to the gray area in the right part of Figure 5.

In view of (14), introduce the set B ⊂ A such that σ ∈ B if and only if one of the two following conditions is satisfied: (i) σ is a prefix of 12 m or 21 m , (ii) σ belongs to the set 12 m+1 (12|21) ⋆ (1|2|ε) or the set 21 m+1 (12|21) ⋆ (1|2|ε),

where the notations have been defined in paragraph 2.1.1, see also Example 1. As previously, B is the set of finite strings σ such that d(f σ (Ω), Λ) = 0. An analogous result to (33) can be proved in this case (see Lemma 11 in [START_REF] Achdou | JLip versus Sobolev spaces on a class of self-similar fractal foliages[END_REF] and [Deh]): there exists a constant c > 0 such that for any σ ∈ A n (n ∈ N) such that σ ∈ B,

d(conv(Ω σ ), C ) > ca n . ( 57 
)
We introduce a smooth compactly supported function χ in R 2 such that -χ ≡ 1 in a neighborhood of the closure of the ramified domain Ω, -χ is symmetric with respect to the axis Λ,

We also introduce a function

ψ in R 2 such that -ψ ≡ 1 in {x 1 0} \ (C u ∪ C l ) and ψ ≡ 0 in {x 1 > 0} \ (C u ∪ C l ),
-ψ is smooth in the interior of C u (resp. C l ) and ∇ψ(r, ϕ) = (0, α r ) in int(C u ) (resp. in int(C l )), where (r, ϕ) are the polar coordinates centered at the vertex

A u of C u (resp. the vertex A l of C l ) and α is a constant, -ψ is continuous in R 2 \ [A u A l ]. Finally, consider a function ζ in R 2 such that valued in [0, 1] such that -ζ| [M 1 M 3 ) = ζ| [M 3 M 2 ) ≡ 1, and ζ| [M 2 M 4 ) = ζ| [M 4 M 1 ) ≡ 0 -∇ζ(r, ϕ) = (0, α r ) in the triangle M 1 M 3 M 4 (resp.
in the triangle M 2 M 4 M 3 ) where (r, ϕ) are the polar coordinates centered at M 1 (resp. at M 2 ).

For η ∈ B + , define ζ η = ζ • f 12 m+1 • f -1 η ∈ W 1,p (D η
). We introduce the function 

Ψ : x = (x 1 , x 2 ) ∈ R 2 →          ζ η (x) if x ∈ D η , η ∈ B + , ψ(x) if x ∈ C u ∪ C l , 1 if x 1 0 and x ∈ C , 0 if x 1 > 0 and x ∈ C , (58) 
Γ 21 m+1 21 Λ A u A l M 1 M 2 D M 4 M 3 Ψ = 1 Ψ = 0
= (χ • f -1 1 )Ψ -(χ • f -1 2 )(1 -Ψ). (59) 
One has:

η∈B + D η |∇ζ η | p ≃ n∈N η∈An∩B + a n(2-p) R 2 |∇ζ| p n∈N 2 n 2 a n(2-p) ∇ζ p L p (R 2 ) , since #A n ∩ B + 2 n 2 . Since 2 n a 2n(2-p) = 2 n 1+ 2(p-2) d
and p < 2 -d 2 , the latter sum converges, and Ψ ∈ W 1,p loc . Since the function Ψ is continuous in R 2 \ Ξ, so is ḡ0 , which implies that ḡ0 ∈ W 1,p (R 2 ).

We will need cut-off functions

γ σ τ = (½ σ(k+1)=1 Ψ + ½ σ(k+1)=2 (1 -Ψ)) • f -1 τ , (60) 
for σ ∈ A and τ ∈ A k a prefix of σ, as we did in paragraph 6.1.1. For every σ ∈ A, we introduce the set

M(σ) = {τ ∈ A, σ = τ σ ′ , σ ′ ∈ B}, (61) 
as in paragraph 6.1.1, where B was defined in (56). Note that Lemma 1 is still true in that case. The liftings ḡσ for the Haar wavelets are defined in an analogous manner as previously: for n > 0 and σ

∈ A n , ḡσ = τ ∈M(σ) τ =σ γ σ τ gσ . (62) 
As in (42), there is a constant C such that for all σ ∈ A,

R 2 |∇ḡ σ | p C 2 n( 1 2 + p-2 d ) R 2 |∇ḡ 0 | p . ( 63 
)
As in paragraph 6.1.1, we introduce the sets S = C ∩ supp ḡ0 , C τ = f τ (C ) and S τ = f τ (S) for τ ∈ A, S = τ ∈A S τ . We also write S u = C u ∩ S, S l = C l ∩ S and S τ u = f τ (S u ), S τ l = f τ (S l ) for τ ∈ A. Finally, we define F = supp ∇ḡ 0 \ S, and F τ = f τ (F ) for τ ∈ A.

Geometrical results

The proof of point 2 in Theorem A will require a few geometrical results. A first observation is that Propositions 4, 5, 6 and 7 remain true in this case (a proof will be given in Section 8). We will also use the following result, whose proof is also postponed to Section 8. Proposition 8.

1. Take η ∈ B + and σ ∈ A with σ(1) = η(1). If σ is not a prefix of η12(21) ∞ or η21(12) ∞ , then gσ ≡ 0 in D η .

2. If σ ∈ A is not a prefix of 12 m+1 (12) ∞ or 21 m+1 (21) ∞ (resp. 12 m+1 (21) ∞ or 21 m+1 (12) ∞ , then gσ ≡ 0 in S u (resp. S l ).

Proof of point 2 in Theorem A

The proof that ∇(Ev) p

L p (R 2 \S ) v p JLip(1-2-d p ,p,p;0;Γ ∞ )
is the same as in the proof of point 1.

We are left with dealing with ∇(Ev) p L p (S ) . Since Proposition 7 still holds, we can still write

∇(Ev) p L p (S ) τ ∈A (I τ 1 + I τ 2 ), (64) 
where I τ 1 and I τ 2 are as in (49). Since Proposition 6 remains true, we can deal with τ ∈A I τ 1 as in the proof of point 1.

Since S τ = S τ u ∪ S τ l ∪ f τ (D), the integration on S τ in I τ 2 can be decomposed into integrals on S τ u , S τ l and f τ (D). The first two integrals can be dealt with exactly as in the proof of point 1. We refer to the last one as J τ 2 . For η ∈ B + , call B η = {σ ∈ A, σ is a prefix of η12(21) ∞ or η12(21) ∞ }. Proposition 8 together with an argument of self-similarity imply that ∇ḡ σ ≡ 0 on

f τ (D η ) if σ ∈ τ B η . Therefore, J τ 2 = η∈B + fτ (D η ) n∈N σ∈An∩τ Bη 2 n 2 β σ ḡ0 • f -1 σ (x)∇γ σ τ (x) p dx. (65) 
We split the integral over f τ (D η ) into two integrals over portions of cones with respective vertices f τ (M η 1 ) and f τ (M η 2 ). As in (52), we express them in polar coordinates centered respectively at  f τ (M η 1 ) and f τ (M η 2 ). Call ℓ the length of the sides of the diamond D 0 . The length of the sides of f τ (D η ) is a k+l ℓ a k+l R, and we may take r a k+l R in the integrals. As in the proof of point 1, we note that if τ ∈ M(σ) and supp ḡ0

• f -1 σ ∩ C(f τ (M τ i ), r) = ∅, i = 1, 2, then n N r where N r = log(r/R) log a . Therefore, n∈N σ∈An∩τ Bη 2 n 2 β σ ḡ0 • f -1 σ ∇γ σ τ p L p (fτ (D η )) a k+l R 0   [Nr] n=k σ∈An∩τ Bη 2 n 2 |β σ |   p r 1-p dr = a k+l R 0   [Nr]-k n=0 σ ′ ∈An∩Bη 2 n+k 2 |β τ σ ′ |   p r 1-p dr ∞ m=0 a (m+k+l)(2-p)   m n=0 σ ′ ∈An∩Bη 2 n+k 2 |β τ σ ′ |   p a l(2-p) ∞ m=k a m(2-p) 2 mp 2 σ∈An∩τ Bη |β σ | p ,
where we have proceeded exactly as in the proof of point 1, using the discrete Hardy inequality stated in Lemma 2. Hence,

J τ 2 ∞ l=0 η∈A l ∩B + a l(2-p) ∞ m=k a m(2-p) 2 mp 2 σ∈An∩τ Bη |β σ | p ∞ l=0 a l(2-p) 2 l 2 ∞ m=k a m(2-p) 2 mp 2 σ∈An τ ∈M(σ) |β σ | p , since #A l ∩ B + 2 l 2 and #A n ∩ τ B η = 2. Therefore, since a l(2-p) 2 l 2 = a l(2-d 2 -p) and p < 2 -d 2 , J τ 2 ∞ m=k a m(2-p) 2 mp 2 σ∈An τ ∈M(σ) |β σ | p . ( 66 
)
We show that

τ ∈A J τ 2 v p JLip(1-2-d p ,p,p;0;Γ ∞ )
exactly as in the proof of point 1 (see (54)).

Proof of the extension theorem

Take θ ∈ (0, π 2 ), and p ∈ (1, p ⋆ θ ). We will construct a sequence of continuous linear operators

F n : W 1,p (Ω) → W 1,p (R 2 ) such that for all u ∈ W 1,p (Ω), (F n u) |Z n = u |Z n , (67) 
where

Z n = int {Y σ , σ ∈ A k , k n}. This implies that ℓ n ((F n u) |Ω ) = ℓ n (u).
It will be proved in Proposition 10 that the sequence (F n ) n converges pointwise to a continuous linear operator F, which will yield Theorem B since Fu |Ω = u for all u ∈ W 1,p (Ω). An immediate consequence is that ℓ ∞ (Fu) = ℓ ∞ (u).

First, we introduce an extension operator from W 1,p (Ω) to W 1,p ( Ω), where Ω is a larger ramified domain defined below and presented in Figure 6.

The domain Ω Take ε < 2 and write P ′ 1 = (-1ε, 0), and P ′ 2 = (1 + ε, 0). Define Y 0 to be the open domain inside the closed polygonal line joining the points P ′ 1 , P ′ 2 , f 2 (P ′ 2 ), f 2 (P ′ 1 ), f 1 (P ′ 2 ), f 1 (P ′ 1 ), P ′ 1 in this order. Let K 0 be the closure of Y 0 . We define the wider ramified domain Ω to be:

Ω = Interior K 0 ∪ σ∈A f σ ( K 0 ) , (68) 
see Figure 6. We can suppose ε > 0 is small enough so that f 2 (P ′ 1 ) and f 2 (P ′ 2 ) have positive coordinates, the domain Y 0 is convex, and Assumption 1 is satisfied.

We introduce the open domains Y σ = f σ ( Y 0 ) for σ ∈ A, along with their closures K σ . We also write Ω σ = f σ ( Ω) for σ ∈ A, and Ω n = σ∈An Ω σ . We introduce the open domain Y 0 1 inside the polygonal line joining the points P ′ 1 , P 1 , f 1 (P 1 ), f 1 (P ′ 1 ), P ′ 1 , its symmetric Y 0 2 with respect to the vertical axis Λ, and the open domain Y 0 3 inside the polygonal line joining the points f 1

Y 0 P 2 f 2 (P ′ 2 ) f 2 (P ′ 1 ) f 1 (P ′ 2 ) f 1 (P 1 ) f 2 (P 2 ) f 1 (P ′ 1 ) f 1 (P 2 ) f 2 (P 1 ) P ′ 1 P 1 P ′ 2 Y 0 1 Y 0 3 Y 0 2
(P 2 ), f 2 (P 1 ), f 2 (P ′ 1 ), f 1 (P ′ 2 ), f 1 (P 2 ). For σ ∈ A and i = 1, 2, 3, write Y σ i = f σ (Y 0 i ).
Proposition 9. There exists a continuous extension operator G from W 1,p (Ω) to W 1,p ( Ω).

Proof. First, we introduce continuous mappings ξ i : Y 0 i → Y 0 satisfying the following selfsimilarity properties :

⋄ ξ 1 ≡ f 1 • ξ 1 • f 1 -1 on f 1 (P ′ 1 P 1 ), ⋄ ξ 3 ≡ f 2 • ξ 1 • f 2 -1 on f 2 (P ′ 1 P 1 ),
⋄ ξ 2 is the symmetric of ξ 1 with respect to the vertical axis Λ and ξ 3 is symmetric with respect to Λ.



We now define the mapping ξ : Ω → Ω by

ξ : x → x if x ∈ Ω f σ • ξ i • f σ -1 (x) if x ∈ Y σ i
Note that the conditions imposed on the functions ξ imply that the function ξ is unambiguously defined and continuous.

For any function u ∈ W 1,p (Ω), we put Gu = u • ξ. Observe that for all σ ∈ A and i ∈ {1, 2, 3},

Y σ i |∇Gu| p C Y σ |∇u| p , (69) 
where the constant C is independent of i and σ. Since ξ is continuous, Gu ∈ W 1,p loc ( Ω), which implies that Gu ∈ W 1,p ( Ω), and we deduce from (69) that G is continuous. ⊓ ⊔

The extension operators F n Let us now construct the sequence (F n ) n . Introduce a smooth function χ in Y 0 valued in [0, 1] such that χ ≡ 1 in Y 0 , the trace of χ on the segments [P ′ 1 f 1 (P ′ 1 )], [P ′ 2 f 2 (P ′ 2 )] and [f 1 (P ′ 2 )f 2 (P ′ 1 )] is 0, and

χ • f 1 -1 ≡ χ on f 1 ([P ′ 1 P ′ 2 ]), χ • f 2 -1 ≡ χ on f 2 ([P ′ 1 P ′ 2 ]). (70) 
Condition (70) implies that a certain self-similar property is satisfied by χ.

Introduce a smooth function η in K 0 with values in [0, 1] such that η = 1 on Γ 0 = [P ′ 1 P ′ 2 ], and η = 0 on f 1 ( Γ 0 ) ∪ f 2 ( Γ 0 ).

For every n > 0, we define a function ρ n on R 2 by

ρ n = n k=0 σ∈A k χ • f σ -1 ½ K σ + σ∈A n+1 χη • f σ -1 ½ K σ .
(71) Note that ρ n is continuous in R 2 .

Introduce the linear operators F n on W 1,p (Ω) defined by:

F n u = ρ n Gu + (1 -ρ n )Eℓ ∞ (u), ∀u ∈ W 1,p (Ω). (72) 
Condition (70) implies that for all u ∈ W 1,p (Ω), F n u ∈ W 1,p loc (R 2 ), and therefore F n u ∈ W 1,p (R 2 ). Moreover, note that since G, E and ℓ ∞ are continuous, so are the operators F n .

Proposition 10. The sequence (F n ) n∈N converges pointwise to a continuous operator F in the space L(W 1,p (Ω), W 1,p (R 2 )) such that (Fu) |Ω = u for all u ∈ W 1,p (Ω).

The proof of Proposition 10 will use the following Poincaré-Wirtinger inequality: if u ∈ W 1,p ( Ω), there exists a constant C > 0 such that:

Y 0 |u(x) -u Γ 0 | p dx C Y 0 |∇u(x)| p dx. (73) 
We will also use a strengthened trace inequality proved in [AT10] (Theorem 1.3.3). We will in fact use a slighlty different version of this inequality, whose proof can be easily adapted to get the following result.

Theorem 6. For all real number κ satisfying (2a 2 ) p-1 < κ < 1, there exists a constant C > 0 such that for all u ∈ W 1,p (Ω),

ℓ ∞ (u) -u Γ 0 p L p (Γ ∞ ) C i∈N κ i τ ∈A i ∇u p L p (Y τ ) . (74) 
Proof of Proposition 10. Take u ∈ W 1,p (Ω). Let us prove that (F n u) n∈N is a Cauchy sequence in W 1,p (R 2 ). Take n, m ∈ N with n < m. We denote û = Gu and ū = Eℓ ∞ (u). First, we note that We are left with considering S 2 . Since for all τ ∈ A n with n > k, ḡτ | Y σ ≡ 0,

Y σ |ū -u Γ σ | p = Y σ |P 0 ℓ ∞ (u) + i k τ ∈A i β τ ḡτ -u Γ σ | p (80)
By writing the expansions of ℓ ∞ (u•f σ ) and ℓ ∞ (u) in the Haar wavelet basis on Γ ∞ , and observing that ℓ ∞ (u • f σ ) = ℓ ∞ (u) • f σ we observe that on Γ ∞,σ ,

P 0 ℓ ∞ (u) + i<k τ ∈A i β τ g τ = P 0 ℓ ∞ (u • f σ ). ( 81 
)
If i < k and τ ∈ A i , then ḡτ is constant on f τ (f j (Ω)), j = 1, 2, therefore ḡτ is constant on Y σ and ḡτ (Y σ ) = g τ (Γ ∞,σ ). Hence, the following equality holds in Y σ :

P 0 ℓ ∞ (u) + i<k τ ∈A i β τ ḡτ = P 0 ℓ ∞ (u • f σ ). ( 82 
)
Therefore, combining (82) with (80), we get:

Y σ |ū -u Γ σ | p a 2k |P 0 ℓ ∞ (u • f σ ) -u Γ σ | p + Y σ |β σ ḡσ | p (83) 
a 2k Γ ∞ |ℓ ∞ (u • f σ ) -u • f σ Γ 0 | p dµ + 2 kp 2 |β σ | p . ( 84 
)
By Theorem 6, for all κ ∈](2a 2 ) p-1 , 1[,

Γ ∞ |ℓ ∞ (u • f σ ) -u • f σ Γ 0 | p dµ C i 0 κ i τ ∈A i Y τ |∇(u • f σ )| p = C a (p-2)k i 0 κ i τ ∈A i Y στ |∇u| p = C a (p-2)k i k κ i-k τ ∈A i , τ ↾k =σ Y τ |∇u| p . (85) 
Hence, 

m+1 k=n+1 σ∈A k a (2-p)k Γ ∞ |ℓ ∞ (u • f σ ) -u • f σ Γ 0 | p dµ
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 4 If σ, τ ∈ A and σ = τ , then supp ∇ḡ σ ∩ supp ∇ḡ τ ⊂ S . (45)  Proposition 5 below somehow justifies the definition of the cut-off functions γ σ τ . Proposition 5. If σ ∈ A and τ ∈ M(σ) \ {σ}, then ḡσ = γ σ τ gσ in S τ . (46)
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R 2 |F

 2 m u -F n u| p = m+1 k=n+1 Y k |F m u -F n u| p = m+1 k=n+1 Y k |(ρ nρ m )(ûū)| p Ω n |û -ū| p -→ since û -ū| Ω ∈ L p ( Ω). On the other hand, R 2 |∇F m u -∇F n u| p = m+1 k=n+1 σ∈A k Y σ |∇F m u -∇F n u| p .(76)Take k ∈ N such that n k m and σ ∈ A k . One has:Y σ |∇F m u -∇F n u| p = Y σ |∇((ρ mρ n )(ûū))| p C Y σ |∇(ûū)| p + a -kp Y σ |û -ū| p ,where C is a constant independent of σ, since ρ m -ρ n = χ • f σ -1 if k > n, and ρ mρ n = χ • f σ -1χη • f σ -1 if k = n.Therefore, the first term of the right hand side in (77), we note that:m k=n σ∈A k Y σ |∇(ûū)| p = ∇(ûū) p L p ( Ω n ) areleft with considering the second term. For σ ∈ A k , one has: m+1 k=n+1 σ∈A k a -pk Y σ |û -ū| p S 1 + S 2 ,  where S 1 = m+1 k=n+1 σ∈A k a -pk Y σ |ûu Γ σ | p and S 2 =

m+1 k=n+1 σ∈A k i k κ i-kτ

  ∈A i , τ ↾k =σ Y τ |∇u| p = i n+1 τ ∈A i min(i,m+1) k=n+1 κ i-k Y τ |∇u| p i n τ ∈A i Y τ |∇u| p = Ω n |∇u| p .

Then, (84) yields:

σ∈A k a (2-p)k |β σ | p < ∞. This proves that the sequence (F n u) n has a limit in W 1,p (R 2 ). We define Fu to be the latter limit; F obviously defines a linear operator from W 1,p (Ω) to W 1,p (R 2 ). Therefore, Banach Steinhaus Theorem insures that F is continuous. The fact that (Fu) |Ω = u is a direct consequence of (67). ⊓ ⊔

Proof of the geometrical results

In this section, we prove the geometrical results stated in paragraphs 6.1.2 and 6.2.2.

8.1 Proof of the geometrical results from paragraph 6.1.2

First, we observe that we may assume that we have chosen the function χ such that

where d 1 = d(Ω, supp ∇χ) and d 2 = sup{d(x, Ω), x ∈ supp χ}, see Figure 3. Condition (88) plays an important role in the proof that (32) is indeed fulfilled. Conditions (87) and (37) helps dealing with the pairwise intersections of the sets supp ∇ḡ σ . Before proving the results from §6.1.2, we prove several geometrical lemmas.

where B was defined in (34).

Proof. We first observe that, by self-similarity and by symmetry, sup{d(x, Ω\Y 0 ), x ∈ supp ḡ0 } ad 2 , where we recall that d 2 = sup{d(x, Ω), x ∈ supp χ}. Therefore, by an argument of selfsimilarity, sup{d(x, 



Proof. Take τ ∈ A k and σ ∈ A n such that τ is a prefix of σ. We first note that, by an argument of self-similarity and by symmetry, d(Ω \Y 0 , F ) ad 1 , where we recall that

On the other hand, as seen in the proof of Lemma 3, sup{d(x, Ω σ \ Y σ ), x ∈ supp ḡσ } a n+1 d 2 . Since k < n, condition (88) yields:

where σ = σ ↾k σ ′ .

Proof. First observe that for any τ ′ ∈ M(σ ′ ), one has

Proof. Take σ ∈ A \ {ǫ}, and suppose for example σ(1) = 1. The set Ω σ lies in the convex set D defined by {x 1 < 0} \ C . Therefore, its convex hull conv(Ω σ ) also lies in D. Since condition (37) is fulfilled, S σ ⊂ conv(Ω σ ), S σ lies in D, and S σ ∩ C = ∅, hence the result. Now take σ, τ ∈ A such that σ = τ , and suppose at first that τ is a prefix of σ:

If none of the strings σ, τ is a prefix of the other, then there exist η ∈ A and non-empty strings σ ′ , τ ′ such that σ = ησ ′ and τ = ητ ′ with σ ′ (1) = τ ′ (1). Therefore, S σ ′ ∩ C = S τ ′ ∩ C = ∅ and, since the vertices of S σ ′ and S τ ′ lie in opposite sides of the vertical axis Λ, 

. Therefore, the connected set S τ ∩ supp ḡσ lies in the connected component

which yields the result. ⊓ ⊔ Proof of Proposition 6. Take x ∈ S τ and write

If σ, σ ′ ∈ M x , write σ = τ η and σ ′ = τ η ′ where η, η ′ ∈ B. Suppose that η, η ′ are prefixes of 12 m+1 (12) ∞ and distinct from ǫ. Therefore, one of the two strings η, η ′ is a prefix of the other. Assume for example that η ′ is a prefix of η. Consequently, σ ′ is a prefix of σ, and Lemma 5

. Therefore, there is at most one string σ ∈ M x \ {τ } such that σ is a prefix of 12 m+1 (12) ∞ . Similarly, there is at most one string σ ∈ M x \ {τ } such that σ is a prefix of 21 m+1 (21) ∞ . Since τ ∈ M x , there are at most three strings in M x . ⊓ ⊔ Proof of Proposition 7. For n, k ∈ N, take σ ∈ A n and τ ∈ A k .

1. First, we prove that if n < k, then ∇ḡ σ ≡ 0 in S τ .

For all η ∈ M(σ) with η ∈ A m , one has m n < k, and η = τ , which implies by Lemma 7 that S τ ∩ S η = ∅. Therefore, by (44), supp ∇ḡ σ ∩ S τ ⊂ F σ . If σ is a prefix of τ , then Lemma 5 implies that supp ∇ḡ σ ∩ S τ = ∅ since S τ ⊂ supp ḡτ . If σ is not a prefix of τ , then there exists m < n such that σ = σ ↾m σ ′ , τ = σ ↾m τ ′ with σ ′ , τ ′ ∈ A \ {ǫ} and σ ′ (1) = τ ′ (1). Remark 8 and Lemma 4 imply that supp ḡσ ′ \ S and S τ ′ lie in opposite sides of the axis Λ. Since S ∩ S τ ′ = ∅ , supp ḡσ ′ ∩ S τ ′ = ∅. Therefore, supp ∇ḡ σ ∩ S τ = ∅, since supp ḡσ ⊂ f σ ↾k (supp ḡσ ′ ) by Lemma 6.

2. Second, we prove that if n k and τ ∈ M(σ), then ḡσ ≡ 0 on S τ . This will achieve the proof of Proposition 7. Suppose τ ∈ M(σ). If τ is not a prefix of σ, then the same argument as above applies. If τ is a prefix of σ, write σ = τ σ ′ . Since τ ∈ M(σ), σ ′ ∈ B and supp ḡσ ′ ∩ S = ∅ by Lemma 3. Lemma 6 yields the result as above. ⊓ ⊔ 8.2 Proof of the geometrical results from paragraph 6.2

First, it is straightforward to check that, with the notations introduced in paragraph 6.2.1 and (57), Lemmas 3, 4, 5 and 6 still hold in this case. We will now prove that the other results still hold as well.

Note that up to taking a smaller angle ϕ 0 for the diamonds D η , η ∈ B + , one can assume that sup x∈D d(x, Λ) < ca m+2 where c is the constant from (57). We assume this is true in the following.

Observe that a consequence of the previous assumption is that sup

8.2 Proof of the geometrical results from paragraph 6.2  ca m+2 , which implies by self-similarity that sup

We may further assume that we have chosen the function χ such that -conditions (87) and ( 88) are satisfied, with the same notations, -χ satisfies the following condition that replaces condition (37) in the proof of point 1:

where we recall that d 2 = sup{d(x, Ω), x ∈ supp χ}. Condition (94) implies by a simple geometric argument that

Proof. Take η ∈ A n \ B and suppose η(1) = 1. By (57), we know that d(conv(Ω η ), C ) > ca n . By (93), we have sup

We now give the proof that Lemma 7 also remains true:

Proof. Take a string σ = ǫ. The proof that S σ ∩ C u = S σ ∩ C l = ∅ is the same as in Lemma 7.

We are left with checking that S σ ∩ D = ∅. Take η ∈ B + , and suppose first that none of the strings η, σ is a prefix of the other. That is, there exist non-empty strings η ′ , σ ′ and k 0 such that η = η ↾k η ′ , σ = η ↾k σ ′ and σ ′ (1) = η ′ (1). Suppose for example that σ ′ (1) = 1. Then S σ ′ ⊂ conv(Ω σ ′ ) ⊂ {x 1 > 0}. On the other hand, by Lemma 8, since η ′ (1) = 2, D η ′ ⊂ {x 1 > 0}, and S σ ∩ D η = ∅. We now examine the cases when one string is a prefix of the other.

-If η = σ, then S σ ∩ D η = ∅ by (95) and by self-similarity.

-If σ = ησ ′ with σ ′ = ǫ, then S σ ⊂ conv(Ω σ ) ⊂ conv(Ω ησ ′ (1) ). It is easy to see that conv(f i (Ω))∩ D 0 = ∅, i = 1, 2, from which we deduce by self-similarity that conv(Ω ησ ′ (1) )∩ D η = ∅, and S σ ∩ D η = ∅.

-If η = ση ′ with η ′ = ǫ, then necessarily η ′ ∈ B, which implies by Lemma 8 that D η ′ ∩C = ∅. We deduce that D η ∩ S σ = ∅. We may now conclude that S σ ∩ S τ = ∅ when σ = τ as in Lemma 7. ⊓ ⊔ Therefore, Propositions 4, 5 and 7 still hold, with the same proofs. We now gove a proof of Proposition 8.

Proof of Proposition 8. Take σ ∈ A such that σ is not a prefix of τ η12(21) ∞ or τ η21(12) ∞ . We first note that if σ ∈ B, then Lemma 3 yields the result. In the following, we assume that σ ∈ B. By the hypothesis, σ cannot be a prefix of η. We now examine the other cases.

-We first suppose η is not a prefix of σ. By symmetry, we can assume that σ(1) = η(1) = 1. There exists an integer k > 0 such that η = η ↾k η ′ , σ = η ↾k σ ′ with η ′ (1) = σ ′ (1). Suppose for example σ ′ (1) = 1. Since σ ∈ B, σ ′ ∈ B, and Lemma 3 implies that supp gσ ′ ⊂ {x 1 < 0}. Since η ′ ∈ B and η ′ (1) = 2, the set D η ′ lies in {x 1 > 0} by Lemma 8, which implies that supp gσ ′ ∩ D η ′ = ∅. We conclude by self-similarity.

-In the case when η is a prefix of σ, the hypothesis we made on σ and η imply that σ has a prefix of the form η12(21) l 1 or η21(12) l 2 with l 0. Suppose for example that the former is true, and write σ = η12(21) l σ ′ . Therefore, since σ ′ ∈ B, supp gσ ⊂ {x 1 < 0} by Lemma 3, from which we deduce that supp gσ lies above the horizontal axis f η12(21) l (Λ). On the other hand, the limit point of η12(21) ∞ lies below this axis. Since this point is the highest vertex of the set D η , the result follows.

The second point of the Proposition can be proved with the same argument as above. ⊓ ⊔

We may now deduce from Proposition 8 that Proposition 6 also remains true in this case.

Proof. The proof is very similar to that of Proposition 6, we use the same notations. Take x ∈ S τ = S τ u ∪ f τ (D) ∪ S τ l . By Proposition 8, if x ∈ S τ u or x ∈ S τ l , the same proof as that of Propostion 8 applies, and #M x 3. Now suppose x ∈ D η for η ∈ B + . If σ ∈ M x , write σ = τ σ ′ . Then, by Proposition 8, σ ′ is a prefix of η12(21) ∞ or η21(12) ∞ if σ ′ (1) = η(1). If σ(1) = η(1), then the situation is symmetric. The same argument as in the proof of Proposition 6 applies, and there are at most 5 strings in M x . ⊓ ⊔