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Sobolev Extension Property for Tree-shaped Domains with

Self-contacting Fractal Boundary

Thibaut Deheuvels∗

Abstract

In this paper, we investigate the existence of extension operators fromW 1,p(Ω) toW 1,p(R2)
(1 ≤ p < ∞) for a class of tree-shaped domains Ω with a self-similar fractal boundary pre-
viously studied by Mandelbrot and Frame. Such a geometry can be seen as a bidimensional
modelization of the bronchial tree. When the fractal boundary has no self-contact, Jones
proved that there exist such extension operators for all p ∈ [1,∞]. In the case when the frac-
tal boundary self-intersects, this result does not hold. Here, we prove however that extension
operators exist for p < p⋆ where p⋆ depends only on the dimension of the self-intersection of
the boundary. The construction of these operators mainly relies on the self-similar properties
of the domains.

1 Introduction

Extension results for Sobolev function spaces are of significant importance in analysis. In par-
ticular, it is useful to know if an open domain in R

n has the W 1,p-extension property for some
p ∈ [1,∞], that is, there exists a bounded linear operator

Λ : W 1,p(Ω) →W 1,p(Rn),

such that Λu|Ω = u for all u ∈ W 1,p(Ω). Such domains are called W 1,p-extension domains. A
domain that has the W 1,p-extension property for all p ∈ [1,∞] is sometimes referred to as a
Sobolev extension domain.

Calderón proved that every Lipschitz domain in R
n, that is every domain whose boundary is

locally the graph of a Lipschitz function, has the W 1,p-extension property for all p ∈ (1,∞).
Stein extended his result to the cases p = 1 and p = ∞.

In [14], Jones improved this result by introducing a class of domains in R
n called (ε, δ)-domains,

every member of which is a Sobolev extension domain. Jones’ proof uses as a main ingredient
Whitney’s extension theory. Such domains were also defined by Martio and Sarvas who referred
to them as locally uniform domains (see [22]). This result is almost optimal in the plane, in the
sense that every plane finitely connected Sobolev extension domain is an (ε, δ)-domain.

In [20], Koskela proved that in the general case, if an open domain Ω ⊂ R
n has the W 1,n-

extension property, then it has the W 1,p-extension property for all p ≥ n. He also showed that
if the embedding W 1,p(Ω) →֒ C0,1−n/p(Ω) holds for some p > n, then Ω has the W 1,q-extension
property for all q > p. The case p < n is not as well understood.
In the present work, we consider a class of domains Ω ⊂ R

2 with a self-similar fractal boundary
that do not have the W 1,p-extension property for any p > 2, and we will study the case when
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p < 2.

We focus on a class of tree-shaped domains Ω in R
2 with a self-similar fractal boundary Γ∞

which self-intersects, see for example figure 1. The set Γ∞ is defined as the unique compact set
such that

Γ∞ = f1(Γ
∞) ∪ f2(Γ

∞),

where f1 and f2 are two contracting similitudes with opposite rotation angles ±θ (0 ≤ θ < π
2 )

and contraction ratio a ∈ [0, 1). This type of fractal sets were first studied by Mandelbrot and
Frame in [21].
We will see in paragraph 2.1.1 that there exists a critical ratio a⋆

θ dependent on the rotation angle
of the similitude such that for every a < a⋆

θ, the set Γ∞ is totally disconnected, and for a = a⋆
θ,

it is connected. In the first case, the domain Ω is an (ε, δ)-domain and Ω is a Sobolev extension
domain. In this paper, emphasis will be put on the latter case, in which we will see that Ω is
not an (ε, δ)-domain and Ω is not a Sobolev extension domain. In this case, the assumptions
required in [14] for the construction of Whitney extension operators are not satisfied.

Particular care will be given to the notion of trace on the set Γ∞ for functions in W 1,p(Ω). We
will use two different definitions of trace on Γ∞.

• The first one, referred to as the classical or strictly defined trace below, relies on the notion
of the strict definition of a locally integrable function, see for instance [17] page 206. For a
function u in W 1,p(Ω) or W 1,p(Rd), this trace, noted u|Γ∞ below, is defined as its strictly
defined counterpart on the subset of Γ∞ where u is striclty defined.

• The second one was first introduced in [6]. Its construction is recalled in §3. This trace
operator, noted ℓ∞ below, is obtained by exploiting the self-similarity as the limit of a
sequence of operators ℓn which map W 1,p(Ω) to piecewise constant functions on a partition
of Γ∞ into 2n sets whose measure is 2−n.

A consequence of the main result of this paper is that these two definitions of trace on Γ∞ in
fact coincide (almost everywhere) on the set Γ∞; this is proved in [5].

Jonsson and Wallin have proved extension and trace results for Besov and Sobolev spaces
on d-sets (see [17]). See §2.2.3 for a definition of the Sobolev spaces on such sets in the special
case of Γ∞ which is a d-set where d is its Hausdorff dimension. In particular, see [17] page 183,

W 1,p(R2)|Γ∞ = W 1− 2−d
p

,p(Γ∞) for p ∈ (1,∞), where the trace is meant in the classical sense.
The extension part of the theorem mainly relies on Whitney’s extension theorem.

It has been proved in [1] that there exists a real number p⋆ > 1 such that p⋆ only depends on
the Hausdorff dimension of the self-intersection of Γ∞ and

• if p < p⋆, then ℓ∞(W 1,p(Ω)) = W
1− 2−d

p
,p
(Γ∞),

• if p > p⋆, then the previous result does not hold.

The main extension result of this paper (Theorem 7) states that when p < p⋆, the domains Ω in
fact have the W 1,p-extension property. To prove this result, we prove in Theorem 6 that there
exists a continuous lifting operator E in the sense of ℓ∞ from the trace space on Γ∞ of functions
in W 1,p(Ω) to W 1,p(R2): for all v ∈ ℓ∞(W 1,p(Ω)), ℓ∞((Ev)|Ω) = v. This last property, which will
be crucial in the proof of Theorem 7, would not be guaranteed a priori by the lifting operator
of Jonsson and Wallin in the classical sense.
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An immediate consequence of this extension theorem is that, for p ∈ (1, p⋆), the Sobolev embed-
dings hold in Ω. Theorem 7 is sharp in the sense that whenever p > p⋆, Ω is not a W 1,p-extension
domain, in Remark 5 below. The case p = p⋆ is partially discussed in Remark 5.

Note that the question of extensions or traces naturally arises in boundary value or trans-
mission problems in domains with fractal boundaries. Boundary value problems posed in the
domains Ω displayed in Figure 1 were studied in [2], [3], [4] and [6], and numerical methods
were proposed to compute the solutions in subdomains of Ω. Such a geometry can be seen as a
bidimensional idealization of the bronchial tree, for example. The problems studied in the latter
papers aim at simulating the diffusion of medical sprays in human lungs.

The paper is organized as follows: the geometry of the studied domains is presented in Section
2. In Section 3, we briefly treat the less interesting sub-critical case when a < a⋆

θ and recall the
construction of the trace operator introduced in [6]. The theory proposed in [16] is reviewed in
Section 4, where we also recall the characterization of the trace space proved in [7] and the trace
theorems proved in [1]. The main results of the paper are Theorems 6 and 7 which are stated
in section 5 and proved in sections 6 and 7.
For the ease of the reader, the geometrical lemmas, which are crucial but technical, are proved
in the Appendix at the end of the paper.

2 The Geometry

In this section, we define the geometry of fractal self-similar sets Γ∞, and ramified domains Ω
whose boundary contains Γ∞, see for example Figure 1.

2.1 The similitudes f1 and f2 and the self-similar set Γ∞

2.1.1 Definitions and notations

Consider four real numbers a, α, β, θ such that 0 < a < 1/
√

2, α > 0, β > 0 and 0 < θ < π/2.
Let fi, i = 1, 2 be the two similitudes in R

2 given by

f1

(
x1

x2

)
=

(
−α
β

)
+ a

(
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

)
,

f2

(
x1

x2

)
=

(
α
β

)
+ a

(
x1 cos θ + x2 sin θ
−x1 sin θ + x2 cos θ

)
.

(1)

The two similitudes have the same dilation ratio a and opposite angles ±θ. One can obtain f2

by composing f1 with the symmetry with respect to the axis {x1 = 0}.
We denote by Γ∞ the self-similar set associated to the similitudes f1 and f2, i.e. the unique
compact subset of R

2 such that

Γ∞ = f1(Γ
∞) ∪ f2(Γ

∞).

Notations We denote by

• An the set containing all the 2n mappings from {1, . . . , n} to {1, 2} also called strings of
length n for n ≥ 1,

• A0 the set containing only one element called the empty string, that we agree to note ǫ,
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• A the set defined by A = ∪n≥0An containing the empty string and all the finite strings,

• A∞ = {1, 2}N\{0} the set of the sequences σ = (σ(i) )i=1,...,∞ with values σ(i) ∈ {1, 2}, i.e.
the set of all infinite strings.

We will use the following notations:

• if n,m are nonnegative integers and σ ∈ An, σ′ ∈ Am, define:

σσ′ = (σ(1), . . . , σ(n), σ′(1), . . . , σ′(m)) ∈ An+m, (2)

if m = ∞, we define similarly σσ′ ∈ A∞,

• for n > 0, σ ∈ An, and k ≥ 0, we define

σk = σσ . . . σ︸ ︷︷ ︸
k

∈ Ank, σ∞ = σσ . . . σ . . . ∈ A∞, (3)

• for σ, τ ∈ A, define:
σ|τ = {σ, τ} ⊂ A, (4)

• for σ ∈ A and X ⊂ A ∪A∞, define the set:

σX = {στ, τ ∈ X}, (5)

similarly, if X ⊂ A, define the set Xσ = {τσ, τ ∈ X},

• for X ⊂ A and k ∈ N, introduce the sets:

X k = {σ1 . . . σk, σ1, . . . , σk ∈ X}, X∞ = {σ1σ2 . . . ∈ A∞, ∀i, σi ∈ X}, X ⋆ =
⋃

k∈N

X k.

Example 1 The set (12|21)∞ is the set of infinite strings σ ∈ A∞ such that σ(2k) 6= σ(2k− 1)
for all positive integers k.
For n ≥ 0, the set (12|21)n(1|2|ǫ) is the set of strings σ ∈ A2n∪A2n+1 such that σ(2k) 6= σ(2k−1)
for all integers k ∈ [1, n].
The set (12|21)⋆(1|2|ǫ) is the set of strings σ ∈ A such that σ ∈ (12|21)n(1|2|ǫ) for some n ≥ 0.

We say that σ ∈ A is a prefix of τ ∈ A ∪ A∞ if τ = σσ′ for some σ′ ∈ A ∪ A∞. For σ ∈ An

(n ∈ N) and k ≤ n, we denote by σ↾k the only prefix of σ in Ak:

σ↾k = (σ(1), . . . , σ(k)) ∈ Ak. (6)

Similarly, we say that σ′ ∈ A ∪A∞ is a suffix of τ ∈ A ∪ A∞ if τ = σσ′ for some σ ∈ A.

For a positive integer n and σ ∈ An, we define the similitude fσ by

fσ = fσ(1) ◦ . . . ◦ fσ(n). (7)

We also agree that fǫ = Id. Similarly, if σ ∈ A∞, define

fσ = lim
n→∞

fσ(1) ◦ . . . ◦ fσ(n). (8)

For σ ∈ A∞, the point fσ(x) where x ∈ R
2 does not depend on x, and will be referred to as the

limit point of the string σ. It should be noted that the set of all limit points of strings in A is
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exactly Γ∞ (see for example [19]).

For σ ∈ A, let the subset Γ∞,σ of Γ∞ be defined by

Γ∞,σ = fσ(Γ∞). (9)

The definition of Γ∞ implies that for all n > 0, Γ∞ =
⋃

σ∈An
Γ∞,σ. We also define the set

Ξ∞ = f1(Γ
∞) ∩ f2(Γ

∞). (10)

The critical contraction ratio a⋆
θ The following theorem was stated by Mandelbrot et al.

in [21] (a complete proof is given in [10]):

Theorem 1 For any θ, 0 < θ < π/2, there exists a unique positive number a⋆
θ < 1/

√
2, (which

does not depend on (α, β) see [7]) such that

0 < a < a⋆
θ ⇒ Ξ∞ = ∅ ⇒ Γ∞ is totally disconnected,

a = a⋆
θ ⇒ Ξ∞ 6= ∅ ⇒ Γ∞ is connected, (from Th. 1.6.2 in [19]).

(11)

The critical parameter a⋆
θ is the unique positive root of the polynomial equation:

mθ−1∑

i=0

Xi+2 cos iθ =
1

2
, (12)

where
mθ is the smallest integer such that mθθ ≥ π/2. (13)

Remark 1 From (12), it can be seen that θ 7→ a⋆
θ is a continuous and increasing function from

(0, π/2) onto (1/2, 1/
√

2) and that limθ→0 a
⋆
θ = 1/2.

Example 2 We examine the cases θ = π/4 and θ = π/5 (see figure 1):

• mπ/4 = 2 and the critical parameter a⋆
π/4 is the unique positive solution of X3 +

√
2X2 −√

2/2 = 0, i.e. a⋆
π/4 ≃ 0.593465,

• mπ/5 = 3, and a⋆
π/5 ≃ 0.56658.

Hereafter, for a given θ, 0 < θ < π/2, we will write for brevity m instead of mθ and a⋆ instead
of a⋆

θ, and we will only consider a such that 0 < a ≤ a⋆.

2.1.2 Characterization of Ξ∞

We aim at characterizing Ξ∞ defined in (10). We already know that Ξ∞ 6= ∅ if and only if
a = a⋆. Let us denote by Λ the vertical axis: Λ = {x : x1 = 0} and by O the origin (0, 0). Since
f1(Γ

∞) = Γ∞ ∩ {x1 ≤ 0} and f2(Γ
∞) = Γ∞ ∩ {x1 ≥ 0}, we immediately see that Ξ∞ = Γ∞ ∩Λ.

It can be observed (see [10] for the proof) that the sequences σ ∈ A∞ such that the limit point
fσ(O) of σ lies on Λ and that σ(1) = 1 are characterized by the following property: for all n ≤ 1,
the truncated sequence σ↾n achieves the maximum of the abscissa of fη(O) over all η ∈ An such
that η(1) = 1.
Let us make out two cases, according to the value of m defined in (13):
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The case when mθ > π/2

Proposition 1 If mθ > π/2 and a = a⋆, then Ξ∞ contains the single point fσ(O), where

σ = 12m+1(12)∞ or σ = 21m+1(21)∞, (14)

see paragraph 2.1.1 and Example 1 for the notations.

Proof. For brevity, we skip the proof, which is available in [21, 10].

The case when mθ = π/2

Proposition 2 If mθ = π/2 and a = a⋆, then

Ξ∞ = {fσ(O), σ ∈ 12m+1(12|21)∞} = {fσ(O), σ ∈ 21m+1(12|21)∞} (15)

Proof. For brevity, we skip the proof, which is available in [10].

2.2 Ramified domains

2.2.1 The construction

Call P1 = (−1, 0) and P2 = (1, 0) and Γ0 the
line segment Γ0 = [P1P2]. We impose that
f2(P1), and f2(P2) have positive coordinates,
i.e. that

a cos θ < α and a sin θ < β. (16)

We also impose that the open domain Y 0 inside
the closed polygonal line joining the points P1,
P2, f2(P2), f2(P1), f1(P2), f1(P1), P1 in this
order must be convex and hexagonal except if
θ = 0. With (16), this is true if and only if

(α− 1) sin θ + β cos θ > 0. (17)

Γ0

Y 0

f1(Γ
0) f2(Γ

0)

P2P1

The first cell Y 0

Under assumptions (16) and (17), the domain Y 0 is contained in the half-plane x2 > 0 and
symmetric w.r.t. the vertical axis x1 = 0.
We introduce K0 = Y 0. It is possible to glue together K0, f1(K

0) and f2(K
0) and obtain a new

polygonal domain, also symmetric with respect to the axis {x1 = 0}. The assumptions (16) and
(17) imply that Y 0 ∩ f1(Y

0) = ∅ and Y 0 ∩ f2(Y
0) = ∅. We define the ramified open domain Ω

(see figure 1):

Ω = Interior

(
⋃

σ∈A

fσ(K0)

)
. (18)

Note that Ω is symmetric with respect to the axis x1 = 0.

For a given θ, with a⋆ defined as above, we shall make the following assumption on (α, β):
Assumption 1 For 0 < θ < π/2, the parameters α and β satisfy (17) and (16) for a = a⋆,
and are such that





i) for all a, 0 < a ≤ a⋆, the sets Y 0, fσ(Y 0), σ ∈ An, n > 0, are disjoint

ii) for all a, 0 < a < a⋆, f1(Ω) ∩ f2(Ω) = ∅
iii) for a = a⋆, f1(Ω) ∩ f2(Ω) 6= ∅.
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Remark 2 Assumption 1 implies that if a = a⋆, then f1(Ω) ∩ f2(Ω) = ∅.

The following theorem proved in [7] asserts that ∀θ, 0 < θ < π/2, there exists (α, β) satisfying
Assumption 1.

Theorem 2 If θ ∈ (0, π/2), then for all α > a⋆ cos θ, there exists β̄ > 0 such that β̄ > a⋆ sin θ
and (α− 1) sin θ + β̄ cos θ ≥ 0 and for all β ≥ β̄, (α, β) satisfies Assumption 1.

On figure 1, we have shown two examples where Assumption 1 is satisfied. In the left part, we
made the choice θ = π

5 , and in the right part, we chose θ = π
4 (see also example 2). Note the

difference between the two cases: in the former case mθθ = π/2 and the set Ξ∞ defined in (10)
is not countable whereas in the latter case, mθθ > π/2 and the set Ξ∞ is a singleton.

Ω

Γ∞

Ω

Γ∞

Figure 1: The ramified domain Ω for θ = π/5 and θ = π/4 when a = a⋆, α = 0.7, β = 1.5.

2.2.2 The Moran condition

The Moran condition (or open set condition), see [23, 19], is that there should exist a nonempty
bounded open subset ω of R

2 such that f1(ω) ∩ f2(ω) = ∅ and f1(ω) ∪ f2(ω) ⊂ ω. For a given
θ ∈ (0, π/2), let (α, β) satisfy Assumption 1; for 0 < a ≤ a⋆, the Moran condition is satisfied
with ω = Ω because

• f1(Ω) ∩ f2(Ω) = ∅, which stems from point ii) in Assumption 1 if a < a⋆, and from
Remark 2 if a = a⋆;

• by construction of Ω, we also have f1(Ω) ∪ f2(Ω) ⊂ Ω.

The Moran condition implies that the Hausdorff dimension of Γ∞ is

dimH(Γ∞) = d ≡ − log 2/ log a,

see [23, 19]. Note that if a > 1/2, then d > 1. For instance, if θ = π/4 and a = a⋆
π/4, then

dimH(Γ∞) ≃ 1.3284371. It can be shown that if 0 < θ < π/2, we have 0 < a ≤ a⋆ < 1/
√

2 and
thus d < 2.

It can also be seen that if mθ = π/2 and a = a⋆, then the Hausdorff dimension of Ξ∞ is d/2.
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2.2.3 The self-similar measure µ and the spaces W s,p(Γ∞)

To define traces on Γ∞, we recall the classical result on self-similar measures, see [11, 13] and
[19] page 26:

Theorem 3 There exists a unique Borel regular probability measure µ on Γ∞ such that for any
Borel set A ⊂ Γ∞,

µ(A) =
1

2
µ
(
f−1
1 (A)

)
+

1

2
µ
(
f−1
2 (A)

)
. (19)

The measure µ is called the self-similar measure defined in the self-similar triplet (Γ∞, f1, f2).
We define Lp(Γ∞), p ∈ [1,+∞) as the space of the measurable functions v on Γ∞ such that∫
Γ∞ |v|pdµ < ∞, endowed with the norm ‖v‖Lp(Γ∞) =

(∫
Γ∞ |v|pdµ

)1/q
. We also introduce

L∞(Γ∞), the space of essentially bounded functions with respect to the measure µ. A Hilbertian
basis of L2(Γ∞) can be constructed with e.g. Haar wavelets.

We also define the space W s,p(Γ∞) for s ∈ (0, 1) and p ∈ [1,∞) as the space of functions
v ∈ Lp(Γ∞) such that |v|W s,p(Γ∞) <∞, where

|v|W s,p(Γ∞) =

(∫

Γ∞

∫

Γ∞

|v(x) − v(y)|p

|x− y|d+ps
dµ(x)dµ(y)

) 1
p

,

endowed with the norm ‖v‖W s,p(Γ∞) = ‖v‖Lp(Γ∞) + |v|W s,p(Γ∞).

2.2.4 Additional notations

We define the sets Γσ = fσ(Γ0) and ΓN = ∪σ∈AN
Γσ. The one-dimensional Lebesgue measure of

Γσ for σ ∈ AN and of ΓN are

|Γσ| = aN |Γ0| and |ΓN | = (2a)N |Γ0|.

We also introduce the sets Ωσ = fσ(Ω) for all σ ∈ A.

We will sometimes use the notation . or & to indicate that there may arise constants in the
estimates, which are independent of the index n in Γn, or of the index σ in Γσ or Γ∞,σ. We may
also write A ≃ B if A . B and B . A.

3 The space W 1,p(Ω)

Hereafter, we take θ in [0, π/2) and suppose that the parameters (α, β) satisfy Assumption 1.

Basic facts For a real number p ≥ 1, let W 1,p(Ω) be the space of functions in Lp(Ω) with first
order partial derivatives in Lp(Ω). The space W 1,p(Ω) is a Banach space with the norm
(
‖u‖p

Lp(Ω) + ‖ ∂u
∂x1

‖p
Lp(Ω) + ‖ ∂u

∂x2
‖p

Lp(Ω)

) 1
p
, see for example [8], p 60. Elementary calculus shows

that ‖u‖W 1,p(Ω) ≡
(
‖u‖p

Lp(Ω)
+ ‖∇u‖p

Lp(Ω)

) 1
p

is an equivalent norm, with ‖∇u‖p
Lp(Ω)

≡
∫
Ω |∇u|p

and |∇u| =
√

| ∂u
∂x1

|2 + | ∂u
∂x2

|2.
The spaces W 1,p(Ω) as well as elliptic boundary value problems in Ω have been studied in [6],
with, in particular Poincaré inequalities and a Rellich compactness theorem. The same results
in a similar but different geometry were proved by Berger [9] with other methods.
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Extension result in the case a < a⋆ We first briefly discuss the less interesting case when
a < a⋆ and the ramified domain Ω is totally disconnected, see [12], Lemma 4.1 page 54. In this
case, as seen in paragraph 2.2.1, Ω is an (ε, δ)-domain, and Theorem 1 in [14] yields a continuous
extension operator from W 1,p(Ω) to W 1,p(R2) for every p ∈ (1,∞).

The case a = a⋆ We will focus on that case in the rest of the present paper. As was seen in
paragraph 2.2.1, the domain Ω is not an (ε, δ)-domain in this case, and the previous argument
does not hold. However, it will be proved in Theorem 7 that the same result is true when
1 < p < 2 for angles θ ∈ [0, π

2 ) such that mθ > π
2 , and when 1 < p < 2 − d

2 for angles such that

mθ = π
2 . It will also be seen (see Remark 5) that if p > 2 in the first case, and if p > 2 − d

2 in
the second case, the extension result cannot hold.

We construct a sequence (ℓn)n of approximations of the trace operator: consider the sequence
of linear operators ℓn : W 1,p(Ω) → Lp(Γ∞),

ℓn(v) =
∑

σ∈An

(
1

|Γσ|

∫

Γσ

v dx

)
1fσ(Γ∞), (20)

where |Γσ| is the one-dimensional Lebesgue measure of Γσ. The following result was proved in
[6].

Proposition 3 The sequence (ℓn)n converges in L(W 1,p(Ω), Lp(Γ∞)) to an operator that we
call ℓ∞.

In the following, we will sometimes note ℓ∞(u) instead of ℓ∞(u|Ω) for functions u ∈W 1,p(R2).

4 The spaces JLip(t, p, q; 0; Γ∞) for 0 < t < 1

In [16], A. Jonsson has introduced Haar wavelets of arbitrary order on self-similar fractal sets
and has used these wavelets for constructing a family of Lipschitz spaces. These function spaces
are named JLip(t, p, q;m;S), where S is the fractal set, t is a nonnegative real number, p, q are
two real numbers not smaller than 1 andm is an integer (m is the order of the Haar wavelets used
for constructing the space). Here J stands for jumps, since the considered functions may jump
at some points of S. If the fractal set S is totally disconnected, then these spaces coincide with
the Lipschitz spaces Lip(t, p, q;m;S) also introduced in [16]. The latter are a generalization of
the more classical spaces Lip(t, p, q;S) introduced in [17] since Lip(t, p, q; [t];S) = Lip(t, p, q;S).
Note that Lip(t, p, q; [t];S) = Bp,q

t (S), see[18]. We will focus on the case when S = Γ∞, m = 0
and p = q, since this is sufficient for what follows.

4.1 Definition of the spaces JLip(t, p, p; 0; Γ∞)

The definition of JLip(t, p, p; 0; Γ∞) for p ∈ [1,∞) presented below is adapted to the class of
fractal sets Γ∞ considered in the present paper. It was proved in [7] that this definition coincides
with the original and more general one that was proposed in [16].
Consider a real number t, 0 < t < 1. Following [16], it is possible to characterize JLip(t, p, p; 0; Γ∞)
by using expansions in the standard Haar wavelet basis on Γ∞. Consider the Haar mother
wavelet g0 on Γ∞,

g0 = 1f1(Γ∞) − 1f2(Γ∞), (21)
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and for n ∈ N, n > 0, σ ∈ An, let gσ be given by

gσ|Γ∞,σ = 2n/2g0 ◦ f−1
σ , and gσ |Γ∞\Γ∞,σ = 0. (22)

It is proved in [15] §5 that a function f ∈ Lp(Γ∞) can be expanded on the Haar basis as follows:

f = P0f +
∑

n≥0

∑

σ∈An

βσgσ, (23)

where P0f =
∫
Γ∞ fdµ. For any function f ∈ Lp(Γ∞), we define |f |JLip(t,p,p;0;Γ∞) by:

|f |JLip(t,p,p;0;Γ∞) =



∑

n≥0

2n pt
d 2n(p

2
−1)

∑

σ∈An

|βσ |p



1
p

, (24)

where the numbers βσ, σ ∈ A are the coefficients of f in the Haar wavelet basis expansion given
in (23).

Definition 1 A function f ∈ Lp
µ belongs to JLip(t, p, p; 0; Γ∞) if and only if the norm

‖f‖JLip(t,p,p;0;Γ∞) = |P0f | + |f |JLip(t,p,p;0;Γ∞) (25)

is finite.

Remark 3 An equivalent definition of JLip(t, p, p; 0; Γ∞) can be given using projection of f on
constants on Γ∞,σ, see [16, 7].

4.2 Characterization of the traces on Γ∞ of functions in W 1,p(Ω)

The following theorem was proved in [7].

Theorem 4 For a given θ, 0 ≤ θ < π/2, if (α, β) satisfies Assumption 1 and Ω is constructed
as in § 2.2.1 with 1/2 ≤ a ≤ a⋆, then for all p, 1 < p <∞,

ℓ∞
(
W 1,p(Ω)

)
= JLip(1 − 2−d

p , p, p; 0; Γ∞). (26)

4.3 JLip versus Besov spaces on Γ∞

Define p⋆
θ by:

p⋆
θ =

{
2 if θ 6∈ { π

2k , k > 0},
2 − d/2 if θ = π

2k , k > 0.
(27)

Note that p⋆
θ depends only on the dimension of the self-intersection of the fractal set Γ∞. The

following theorem has been proved in [1].

Theorem 5 • If a = a⋆ and 1 < p < p⋆
θ, then

JLip(1 − 2−d
p , p, p; 0; Γ∞) = W 1− 2−d

p
,p(Γ∞), (28)

• if a = a⋆ and p > p⋆
θ, then

JLip(1 − 2−d
p , p, p; 0; Γ∞) 6⊂ W

1− 2−d
p

,p
(Γ∞). (29)
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5 Extension results

In this section, we state and prove the two main extension results of this paper. The first
one (Theorem 6) states that when p ∈ (1, p⋆

θ), there exist liftings in W 1,p(R2) for functions in
JLip(1− 2−d

p , p, p; 0; Γ∞), that is the trace space of W 1,p(Ω) on Γ∞ (see (26)). The proof of this
result relies on the construction of liftings for the Haar wavelets on Γ∞, and on Theorem 4.

Remark 4 Using Theorem 5 above and the trace theorem proved by Jonsson and Wallin in [17]

stating that W
1− 2−d

p
,p
(Γ∞) = W 1,p(R2)|Γ∞ for p ∈ (1,∞), it can be proved that

JLip(1 − 2−d
p , p, p; 0; Γ∞) = W 1,p(R2)|Γ∞ , (30)

where we recall that the trace u|Γ∞ of a function u is meant in the classical sense (see [17]). It
should be noted that Theorem 6 below differs from the previous result in that the trace is meant
in the sense of ℓ∞, which will be of particular importance, especially in the proof of Theorem 7
below.
The method proposed in the proof of Theorem 7 uses the lifting of Theorem 6 and the self-similar
properties of the trace operator. Another choice could have been to work with the Whitney
extension operator of (30), but we then could not have exploited the self-similar properties of the
geometry as is done to prove Theorem 7.
In [5], Theorems 6 and 7 below are key ingredients in the proof that u|Γ∞ = ℓ∞(u) µ-almost
everywhere for all p > 1 and u ∈W 1,p(Ω).

The second result (Theorem 7) states that there exists a continuous extension operator from
W 1,p(Ω) to W 1,p(R2) when 1 < p < p⋆

θ. The proof consists in the construction of the extension
operator, with the help of the lifting introduced in Theorem 6.

Theorem 6 1. If θ 6∈ π
2N

and p ∈ (1, 2), then there exists a continuous linear lifting operator

E from JLip(1 − 2−d
p , p, p; 0; Γ∞) to W 1,p(R2) in the sense of ℓ∞, i.e.

∀v ∈ JLip(1 − 2−d
p , p, p; 0; Γ∞), ℓ∞((Ev)Ω) = v. (31)

2. If θ ∈ π
2N

and p ∈ (1, 2 − d
2), then the conclusion remains true.

We immediately deduce the following result for functions in W 1,p(Ω) with 1 < p < p⋆
θ.

Corollary 1 If p ∈ (1, p⋆
θ) and u ∈W 1,p(Ω), then the function ū = Eℓ∞(u) ∈W 1,p(R2) satisfies

ℓ∞(ū) = ℓ∞(u).

We will deduce the main extension result of this paper:

Theorem 7 1. If θ 6∈ π
2N

and p ∈ (1, 2), then there exists a continuous linear operator F
from W 1,p(Ω) to W 1,p(R2) such that, for all u ∈W 1,p(Ω), Fu|Ω = u.

2. If θ ∈ π
2N

and p ∈ (1, 2 − d
2), then the extension result remains true.

In other words, if p ∈ (1, p⋆
θ), then Ω has the W 1,p-extension property.

Remark 5 The extension result of Theorem 7 is sharp in the following sense. As was seen
in Remark 4, it is proved a posteriori in [5] that the trace operator ℓ∞ coincides with the
trace operator introduced by Jonsson and Wallin in [17] µ-almost everywhere. Therefore, if

11



Ω is a W 1,p-extension domain for some p > p⋆
θ, then, by the trace theorem in [17] (p.182),

ℓ∞(W 1,p(Ω)) = W 1− 2−d
p

,p(Γ∞), which contradicts (29).

In the case when θ 6∈ π
2N

, we have p⋆
θ = 2, and we can conclude that Ω does not have the W 1,p⋆

θ-
extension property: if it did, then Koskela’s theorem in [20] (Theorem B) would imply that Ω
has the W 1,p-extension property for all p > p⋆

θ. The case θ ∈ π
2N

is open.

6 Proof of Theorem 6

6.1 Proof of point 1 in Theorem 6

Recall that in this case, θ 6∈ { π
2k , k > 0}, and mθ > π

2 , where m was introduced in (13).

We start by lifting the Haar wavelets on Γ∞ into functions in W 1,p(R2), 1 < p < ∞. This will
yield a natural lifting for functions in JLip(1 − 2−d

p , p, p; 0; Γ∞), defined as the lifting of their
expansion in the Haar wavelets basis.

6.1.1 Lifting of the Haar wavelets

In this section, we define liftings ḡσ of the Haar wavelets gσ, σ ∈ A, such that ḡσ ∈ W 1,p(R2)
for all p ∈ (1,∞), and the pairwise intersections of the sets supp ∇ḡσ (σ ∈ A) are contained
in some cones centered at the points fη(A) (η ∈ A), where A is the single point contained in
f1(Γ

∞) ∩ f2(Γ
∞).

More precisely, define C to be the vertical cone centered at A with angle ϕ0 < min(mθ −
π/2, π/2− (m− 1)θ) small enough so that C does not intersect f1(Ω) or f2(Ω). We impose that
the liftings ḡσ, σ ∈ A should satisfy the following condition: if σ 6= τ , then

supp ∇ḡσ ∩ supp ∇ḡτ ⊂
⋃

η∈A

fη(C). (32)

Proposition 5 below will imply in particular that this condition is verified.

We proceed in three steps: we successively lift the constants, the mother Haar wavelet, and the
other Haar wavelets.

Lifting of the constants We will introduce a lifting χ of the constant function 1 on Γ∞ that
will allow to define liftings for the Haar wavelets by self-similarity.

The proof of Lemma 3 in [1] (see especially Figure 3 in [1]) can be easily modified to obtain the
existence of a constant c > 0 such that for all σ ∈ An (n > 0) with σ 6∈ B,

d(fσ(Ω), C) > can, (33)

where
B = {σ ∈ A, σ is a prefix of 12m+1(12)∞ or 21m+1(21)∞}, (34)

see paragraph 2.1.1 for the notations. Recall that the elements of B are those strings σ ∈ A
such that d(fσ(Ω),Λ) = 0 where Λ is the axis given by {x1 = 0} (cf. Proposition 1).

Define H to be the horizontal line tangent to the upper part of Γ∞. Write δ = d(C ∩H,Ω), note
that δ > 0.

We consider a smooth compactly supported function χ on R
2 such that χ = 1 on a neighborhood
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of the closure of the ramified domain Ω, and such that χ is symmetric with respect to the axis
Λ. Write d1 = d(Ω, supp ∇χ) and d2 = sup{d(x,Ω), x ∈ supp χ}. We impose that

d2 < δ (35)

d2 < c (36)

d1 > ad2, (37)

see Figure 2.

d1

δ

d2 H

supp∇χ
C

Figure 2: The function χ

The condition (37) will play an important role in the proof that (32) is fulfilled. Conditions (36)
and (35) will help dealing with the pairwise intersections of the sets supp ∇ḡσ within the cones.

Lifting of the Haar mother wavelet We introduce the polar coordinates (r, ϕ) centered at
the point A such that the vertical half-line starting from A and pointing up is given by {ϕ = 0}.
Define the function ψ as follows: if (r, ϕ) ∈ R

⋆
+ × (−π, π],

ψ(r, ϕ) =





1
2

(
1 + ϕ

ϕ0

)
if |ϕ| ≤ ϕ0,

1 if ϕ0 < ϕ < π − ϕ0,
1
2

(
1 + π−ϕ

ϕ0

)
if π − |ϕ| ≤ ϕ0,

0 if − π + ϕ0 < ϕ < −ϕ0.

(38)

Note that the cone C is the support of ∇ψ.

Define the lifting ḡ0 of the Haar mother wavelet by:

ḡ0 = ψ · (χ ◦ f−1
1 ) − (1 − ψ) · (χ ◦ f−1

2 ). (39)

Note that ḡ0 ∈W 1,p(R2) if and only if p < 2.
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Lifting of the Haar wavelets We use the function ḡ0 and the self-similarity to define the
liftings of the other Haar wavelets. We first define the natural lifting g̃σ of gσ, for σ ∈ An by

g̃σ = 2
n
2 ḡ0 ◦ fσ

−1.

Note that the functions g̃σ , σ ∈ A do not satisfy condition (32) (take for example σ = 1 and
τ = 2). Hence, we will define cut-off functions whose gradients are supported in the cones fτ (C).

Take σ ∈ A\{ǫ}, we define for any prefix τ ∈ Ak of σ such that τ 6= σ,

γσ
τ = 1σ(k+1)=1ψ ◦ fτ

−1 + 1σ(k+1)=2(1 − ψ) ◦ fτ
−1. (40)

Note that the function γσ
τ is 1 on one connected component of R

2\fτ (C), and 0 on the other.
This definition is based on the observation that for all prefix τ ∈ Ak of σ such that τ 6= σ,
Ωσ ⊂ fτ ({x1 < 0}) if σ(k + 1) = 1, and Ωσ ⊂ fτ ({x1 > 0}) if σ(k + 1) = 2.

For σ ∈ A, we introduce the set M(σ) of all those prefixes τ ∈ A of σ such that fτ (A) ∈ Γ∞,σ.
It is easily checked that

M(σ) = {τ ∈ A, σ = τσ′, σ′ ∈ B}, (41)

where B is defined in (34). If τ ∈ M(σ)\{σ}, then the function g̃σ needs to be multiplied by
the cut-off function γσ

τ .

Remark 6 1. If σ ∈ B, then ǫ ∈ M(σ).

2. For all n > 0 and σ ∈ An, one has σ, σ↾n−1 ∈ M(σ), since the empty string and the string
(σ(n)) belong to B.

We can now define the cut off lifting ḡσ of the Haar wavelet gσ, σ ∈ An:

ḡσ =




∏

τ∈M(σ), τ 6=σ

γσ
τ


 g̃σ . (42)

Example We present an example where θ = π
3 (hence m = 2), and σ = 12312. Therefore,

M(σ) = {ǫ, 123, 1231, 12312}.
The gray area in Figure 3 shows the support of ∇ḡσ. We have only represented the domain Ωσ,
which corresponds to the small area in dark gray in Figure 2.
In what follows, we will need a uniform bound on the cardinal of M(σ), σ ∈ A :

Lemma 1 For all σ ∈ A,
#M(σ) ≤ 4. (43)

Proof. Take n > 0 and σ ∈ An. If n ≤ 2, then the result is clear. Suppose n > 2, we first note
that σ↾n−1, σ ∈ M(σ) by point 2 in Remark 6. Let us look for elements of M(σ) distinct from
σ↾n−1 and σ.
First assume that σ(n) = σ(n− 1), suppose for example σ(n) = 2. Then, any suffix σ′ of σ such
that σ′ ∈ B is of the form 12k with k ≤ m + 1. If there were two of them, then one of them
would be a suffix of the other, which is impossible. Therefore, in this case, #M(σ) ≤ 3.
If σ(n) 6= σ(n − 1), then (σ(n − 1), σ(n)) ∈ B, which implies that σ↾n−2 ∈ M(σ). Let us look
for a string σ′ ∈ M(σ) such that σ′ ∈ Ak with k > 2. Suppose for example σ(n) = 2. Then σ′

must be of the form 12m+1(12)l or 21m+1(21)l2, for some l > 0. As for the previous case, were
there two such strings, one of them would be a suffix of the other, which is impossible. Hence,
in this case, #M(σ) ≤ 4.
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C

C1231

C12312

C123

Figure 3: The support of ∇ḡσ (represented by the gray area) for θ = π
3 and σ = 12m+112 = 12312.

In this case, M(σ) = {ǫ, 123, 1231, 12312}.

Proposition 4 For σ ∈ An and p < 2,

‖∇ḡσ‖p
Lp(R2)

≃ 2n( p
2
+ 2−p

d ) (44)

Proof. First, we note that ‖2n
2 ∇(ḡ0 ◦ f−1

σ )‖p

Lp(R2) = 2
np
2 an(2−p)‖|∇ḡ0‖p

Lp(R2)
≃ 2n( p

2
+ 2−p

d ).

The other terms to consider are of the form ‖2n
2 ḡ0 ◦ f−1

σ · ∇(ψ ◦ f−1
τ )‖p

Lp(R2), where τ ∈ M(σ)\{σ}.
One has

‖2n
2 ḡ0 ◦ f−1

σ · ∇(ψ ◦ f−1
τ )‖p

Lp(R2) ≤ 2
np
2 ‖∇(ψ ◦ f−1

τ )‖p
Lp(fσ(supp ḡ0))

= 2
np
2 ak(2−p)‖∇ψ‖p

Lp(fσ′ (supp ḡ0))
,

(45)

where σ = τσ′, τ ∈ Ak and σ′ ∈ B (see (41)). Denote R = Diam supp ḡ0, note that
Diam fσ′(supp ḡ0) = an−kR. Since σ′ ∈ B, one has A ∈ fσ′(supp ḡ0). Switching to polar
coordinates centered at the point A, we get

‖∇ψ‖p
Lp(fσ′ (supp ḡ0)) .

∫

Φ

∫ an−kR

0

1

rp
r dr dϕ ≃

∫ an−kR

0

dr

rp−1
≃ a(2−p)(n−k),

where Φ = (−ϕ0, ϕ0)∪ (π−ϕ0, π+ϕ0). Together with (45), this achieves the proof since ad = 2.

15



From Proposition 4, we deduce that ḡσ ∈W 1,p(R2) for p < 2.

6.1.2 Geometrical results

The following geometrical results will be crucial in the proof of Theorem 6. The proofs of these
results rely on simple but technical geometrical arguments and have been postponed to the
Appendix for the ease of the reader.

We introduce the truncated cones S = C ∩ supp ḡ0 and Sτ = fτ (S) for τ ∈ A. Define S =⋃
τ∈A S

τ to be the union of these truncated cones. We also define F = supp ∇ḡ0\S, and
F τ = fτ (F ) for τ ∈ A.

Remark 7 Condition (35) implies by a simple geometric argument that S lies in the convex
hull of the ramified domain Ω.

Note that, for σ ∈ A,

supp ∇ḡσ ⊂ F σ ∪




⋃

τ∈M(σ)

Sτ


 . (46)

Proposition 5 below states a stronger version of condition (32).

Proposition 5 If σ, τ ∈ A and σ 6= τ , then

(supp ∇ḡσ\S ) ∩ (supp ∇ḡτ\S ) = ∅. (47)

Proposition 6 below somehow justifies the definition of the cut-off functions γσ
τ .

Proposition 6 If σ ∈ A and τ ∈ M(σ)\{σ}, then

ḡσ = 2
n
2 ḡ0 ◦ fσ

−1γσ
τ on Sτ . (48)

Propositions 7 and 8 below describe the case when, for a given τ ∈ A, ∇(ḡ0 ◦ fσ
−1) or ∇ḡσ are

not identically zero on Sτ .

Proposition 7 There exists a constant C > 0 such that for all τ ∈ A and x ∈ Sτ ,

#{σ ∈ A, τ ∈ M(σ), ∇(ḡ0 ◦ f−1
σ )(x) 6= 0} ≤ C.

Proposition 8 If σ, τ ∈ A and τ 6∈ M(σ), then ∇ḡσ ≡ 0 on Sτ .

In particular, if ∇ḡσ 6≡ 0 on Sτ , then τ is a prefix of σ.

6.1.3 Proof of point 1 in Theorem 6

We start by stating a lemma that will prove useful in the proof of Theorem 6.

Lemma 2 (discrete Hardy inequality, [17], page 121, Lemma 3) If p ≥ 1, for any γ >
0 and a ∈ (0, 1), there exists a constant C such that, for any sequence of positive real numbers
(ck)k∈N

,

∑

n∈N

aγn



∑

k≤n

ck




p

≤ C
∑

n∈N

aγncn
p. (49)
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Proof of point 1. We first suppose 〈v〉Γ∞ =
∫
Γ∞ v dµ = 0. The function v ∈ JLip(1 −

2−d
p , p, p, 0; Γ∞) then reads v =

∑
n

∑
σ∈An

βσgσ where the βσ are the coefficients of v in the

Haar wavelet basis of Γ∞. We introduce the lifting Ev of v defined on R
2 by:

Ev =
∑

n∈N

∑

σ∈An

βσ ḡσ. (50)

Recall that S is the union of all the truncated cones Sτ , τ ∈ A. By Proposition 5,

‖∇(Ev)‖p
Lp(R2\S )

=

∫

R2\S

∣∣∣∣∣
∑

n∈N

∑

σ∈An

βσ∇ḡσ(x)

∣∣∣∣∣

p

dx =
∑

n∈N

∑

σ∈An

|βσ |p
∫

supp ḡσ\S
|∇ḡσ(x)|p dx

.
∑

n∈N

2
n

“
p
2
+ p

d
− 2

p

” ∑

σ∈An

|βσ|p

= ‖v‖p

JLip(1− 2−d
p

,p,p,0;Γ∞)
.

On the other hand,

‖∇(Ev)‖p
Lp(S ) =

∫

S

∣∣∣∣∣
∑

n∈N

∑

σ∈An

βσ∇ḡσ(x)

∣∣∣∣∣

p

dx =
∑

τ∈A

∫

Sτ

∣∣∣∣∣
∑

n∈N

∑

σ∈An

βσ∇ḡσ(x)

∣∣∣∣∣

p

dx.

Take k ∈ N and τ ∈ Ak. By Proposition 8, if σ ∈ An (n ∈ N) is such that ∇ḡσ 6≡ 0 in Sτ , then
τ ∈ M(σ). Therefore, by Proposition 6, γσ

τ ′ ≡ 1 in Sτ for any τ ′ ∈ M(σ)\{σ}, which implies
that ḡσ coincides with 2

n
2 ḡ0 ◦ f−1

σ γσ
τ in Sτ . Therefore,

∫

Sτ

∣∣∣∣∣
∑

n∈N

∑

σ∈An

βσ∇ḡσ(x)

∣∣∣∣∣

p

dx =

∫

Sτ

∣∣∣∣∣∣

∑

n∈N

∑

σ∈An, τ∈M(σ)

2
n
2 βσ∇

(
(ḡ0 ◦ f−1

σ ).γσ
τ

)
(x)

∣∣∣∣∣∣

p

dx

. Iτ
1 + Iτ

2 ,

where

Iτ
1 =

∫

Sτ

∣∣∣∣∣∣

∑

n∈N

∑

σ∈An, τ∈M(σ)

2
n
2 βσ∇(ḡ0 ◦ f−1

σ )(x)

∣∣∣∣∣∣

p

dx

Iτ
2 =

∫

Sτ

∣∣∣∣∣∣

∑

n∈N

∑

σ∈An, τ∈M(σ)

2
n
2 βσ ḡ0 ◦ f−1

σ (x)∇γσ
τ (x)

∣∣∣∣∣∣

p

dx.

(51)

Let us first consider Iτ
1 . By Proposition 7, one has:

Iτ
1 ≤ Cp−1

∑

n∈N

∑

σ∈An
τ∈M(σ)

2
np
2 |βσ |p

∫

Sτ

|∇(ḡ0 ◦ f−1
σ )(x)|p dx

≤ Cp−1
∑

n∈N

2
np
2 a(2−p)n

∑

σ∈An

|βσ|p
∫

Sτ

|∇ḡ0(x)|p dx,
(52)

where C is the constant in Proposition 7. Therefore,
∑

τ∈A

Iτ
1 .

∑

n∈N

2
np
2 a(2−p)n

∑

σ∈An

|βσ |p
∑

τ∈A

∫

Sτ

|∇ḡ0(x)|p dx

≤
∑

n∈N

2
np
2 a(2−p)n

∑

σ∈An

|βσ |p
∫

R2

|∇ḡ0(x)|p dx

. ‖v‖p

JLip(1− 2−d
p

,p,p,0;Γ∞)
.

(53)
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We are left with dealing with Iτ
2 . Denote Φ = (−ϕ0, ϕ0)∪ (π−ϕ0, π+ϕ0). We resort to a polar

change of variables centered at the point fτ (A) such that the vertical half-line starting from the
point fτ (A) and pointing up is given by {ϕ = 0}:

Iτ
2 .

∫ ∞

0

∫

Φ

∣∣∣∣∣∣

∑

n∈N

∑

σ∈An, τ∈M(σ)

2
n
2 βσ ḡ0 ◦ f−1

σ (reiϕ)

∣∣∣∣∣∣

p

r1−p dϕ dr, (54)

since for r > 0 and ϕ ∈ Φ, |∇γσ
τ (reiϕ)| . 1

r .

Define R = Diam supp ḡ0. If τ ∈ M(σ), then fτ (A) ∈ Ωσ ⊂ supp ḡ0 ◦ f−1
σ , by the definition

of M(σ) in (41). Therefore, if supp ḡ0 ◦ f−1
σ ∩ C(fτ (A), r) 6= ∅ where C(fτ (A), r) is the circle

centered at fτ (A) with radius r, then r ≤ anR, i.e. n ≤ Nr where Nr = log r/R
log a . Hence

Iτ
2 .

∫ akR

0

∫

Φ

∣∣∣∣∣∣

[Nr ]∑

n=k

∑

σ∈An, τ∈M(σ)

2
n
2 βσ ḡ0 ◦ f−1

σ (reiϕ)

∣∣∣∣∣∣

p

r1−p dϕ dr

.

∫ akR

0




[Nr]∑

n=k

∑

σ∈An
τ∈M(σ)

2
n
2 |βσ|




p

r1−p dr.

Recall that if τ ∈ M(σ), then σ is of the form τσ′ with σ′ ∈ B. Consequently,

Iτ
2 .

∫ akR

0




[Nk
r ]∑

n=0

∑

σ′∈B

2
n+k

2 |βτσ′ |




p

r1−p dr,

where Nk
r = Nr − k = log(r/(akR))

log a . Therefore, the change of variable ρ = Nk
r yields:

Iτ
2 .

∫ ∞

0
a(ρ+k)(2−p)




[ρ]∑

n=0

∑

σ′∈B

2
n+k

2 |βτσ′ |




p

dρ

≤
∞∑

m=0

a(m+k)(2−p)

(
m∑

n=0

∑

σ′∈B

2
n+k

2 |βτσ′ |
)p

,

since ρ 7→ a(ρ+k)(2−p)

(∑[ρ]
n=0

∑
σ′∈B

2
n
2 |βτσ′ |

)
is increasing. Then, by the Hardy inequality of

Lemma 2,

Iτ
2 .

∞∑

m=0

a(m+k)(2−p)2
(m+k)p

2

∑

σ′∈B

|βτσ′ |p =

∞∑

m=k

am(2−p)2
mp
2

∑

σ∈Am
τ∈M(σ)

|βσ|p. (55)

Therefore, we obtain:

∑

τ∈A

Iτ
2 .

∑

k∈N

∑

τ∈Ak

∞∑

m=k

am(2−p)2
mp
2

∑

σ∈Am
τ∈M(σ)

|βσ |p

=
∑

m∈N

am(2−p)2
mp
2

∑

σ∈Am

m∑

k=0

∑

τ∈Ak
τ∈M(σ)

|βσ|p

.
∑

m∈N

am(2−p)2
mp
2

∑

σ∈Am

|βσ |p,

(56)
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since #M(σ) ≤ 4 by Lemma 1, which shows that
∑

τ∈A
Iτ
2 . ‖v‖p

JLip(1− 2−d
p

,p,p,0;Γ∞)
.

Finally, if 〈v〉Γ∞ 6= 0, then we get the desired result by taking Ev = 〈v〉Γ∞χ+ E(v − 〈v〉Γ∞).

6.2 Proof of point 2 in Theorem 6

We will proceed in the same manner as we did in the proof of point 1 in Theorem 6. The
extensions of the Haar wavelets will differ since the set Ξ∞ = f1(Γ

∞) ∩ f2(Γ
∞) is now infinite.

6.2.1 Lifting of the Haar wavelets

Define κ1 = d(conv(Ω11),H), where we recall that H is the line tangent to the upper part of
Γ∞ (see Figure 2). It has been proved in [1] that κ1 > 0. It has also been seen in [1] that there
exists a constant κ2 such that for all σ 6∈ B such that 12m+1, 21m+1 are not prefix of σ,

d(conv(Ωσ),Λ) > κ2. (57)

Let A be the limit point of the string 12m+1(12)∞ and B the limit point of 12m+1(21)∞, see
figure 4. The points A and B are respectively the upper and lower ends of the set Ξ∞. Take
ϕ0 > 0 such that:

1. ϕ0 < θ,

2. ϕ0 is small enough so that the vertical open half-cones Cu centered at A and Cl centered
at B with common angle ϕ0, as in figure 4, do not intersect f1(Ω) or f2(Ω),

3. ϕ0 < min(κ1/2R,κ2/2R), where R = Diam Ω.

Condition 3 will be useful in the proof of the geometrical results below.
We introduce the points M1 = f12m+112(21)∞(O) and M2 = f12m+121(12)∞(O). Call D the
diamond-shaped intersection of the vertical open half-cones with respective vertices M1 and
M2 and with common angle ϕ0, as in figure 4. Call M3 and M4 the other two vertices of D, see
figure 4.
Call D0 = f−1

12m+1(D) and Dη = fη(D
0) for η ∈ A. Note that D = D12m+1

. Similarly, we define

Mη
i = fη(f

−1
12m+1(Mi)) for i = 1, 2 and η ∈ B+; note that Mη

1 and Mη
2 are vertices of the diamond

Dη. Write B+ = 12m+1(12|21)⋆, we also introduce the sets D =
⋃

η∈B+ Dη and

C = Cu ∪ Cl ∪ D. (58)

The set C corresponds to the gray area in the right part of Figure 4, and will play the part of
the set C defined in paragraph 6.1.1 for the proof of point 1.

In view of Proposition 2, introduce the set B ⊂ A such that σ ∈ B if and only if one of the two
following conditions is satisfied:

(i) σ is a prefix of 12m or 21m,

(ii) σ ∈ (12m+1|21m+1)(12|21)⋆(1|2|ε), (59)

where the notations have been defined in paragraph 2.1.1, see also Example 1. The following
result is analogous to (33) in the proof of point 1. The proof is postponed to the Appendix for
the ease of the reader.

Lemma 3 There exists a constant c > 0 such that for any σ ∈ An (n ∈ N) such that σ 6∈ B,

d(Ωσ , C) > can, (60)
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As in paragraph 6.1.1, we introduce a smooth compactly supported function χ on R
2 such that

χ = 1 on a neighborhood of the closure of the ramified domain Ω, χ is symmetric with respect
to the axis Λ, and χ satisfies the following condition that replaces condition (35):

d2 < d(C ∩D0,Ω), (61)

where d2 = sup{d(x,Ω), x ∈ supp χ}, along with conditions (36) and (37) with the same
notations.

We consider a function ψ on R
2 valued in [0, 1] such that ψ ≡ 1 on {x1 ≤ 0}\C, ψ ≡ 0 on

{x1 > 0}\(Cu ∪ Cl), ψ is continuous on C\{A,B}, and ψ is constant on the lines through the
point A in Cu and on the lines through the point B in Cl.

Take p ∈ (1, 2 − d
2). Consider a function ζ ∈ W 1,p(D) valued in [0, 1] such that ζ|[M1M3) =

ζ|[M3M2) = 1, and ζ|[M2M4) = ζ|[M4M1) = 0 (such a function can be found since p < 2). See
figure 4 where we have only represented the part of the ramified domain around Ξ∞.

Γ12512

Γ12521 Γ21512

Γ21521

Λ

A

B

M1

M2

D M4M3 Ψ = 1 Ψ = 0

Cl

Cu

D

D12m+112

D12m+121

Figure 4: The functions ζ and Ψ in the case θ = π
8 (m = 4). Left: construction of the function

ζ, in the gray area lies the support of ζ. Right: the gray area corresponds to the support of ∇Ψ.

For η ∈ B+, define ζη = ζ ◦ f12m+1 ◦ f−1
η ∈W 1,p(Dη). We introduce the function

Ψ : x = (x1, x2) ∈ R
2 7→





ζη(x) if x ∈ Dη, η ∈ B+,

ψ(x) if x ∈ Cu ∪ Cl,

1 if x1 ≤ 0 and x 6∈ C,

0 if x1 > 0 and x 6∈ C,

(62)
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see Figure 4. This definition is unambiguous since the sets Dη are pairwise disjoint. Function
Ψ will play the part of function ψ in paragraph 6.1.1. Note that Ψ is continuous on R

2\Ξ∞.
We start by defining the lifting of the Haar mother wavelet:

ḡ0 = (χ ◦ f−1
1 )Ψ − (χ ◦ f−1

2 )(1 − Ψ). (63)

One has:

∑

η∈B+

∫

Dη

|∇ζη|p ≃
∑

n∈N

∑

η∈An∩B+

an(2−p)

∫

R2

|∇ζ|p

.
∑

n∈N

2
n
2 an(2−p)‖∇ζ‖p

Lp(R2)
,

since #An ∩B+ . 2
n
2 . Since 2na2n(2−p) = 2

n
“
1+ 2(p−2)

d

”

and p < 2− d
2 , the latter sum converges,

and Ψ ∈ W 1,p
loc . Since the function Ψ is continuous on R

2\Ξ∞, so is ḡ0, which implies that
ḡ0 ∈W 1,p(R2).

Take n > 0 and σ ∈ An. For any prefix τ ∈ Ak (0 ≤ k < n) of σ, we define the cut-off function

γσ
τ = (1σ(k+1)=1Ψ + 1σ(k+1)=2(1 − Ψ)) ◦ f−1

τ , (64)

as we did in paragraph 6.1.1. For every σ ∈ A, we introduce the set

M(σ) = {τ ∈ A, σ = τσ′, σ′ ∈ B}, (65)

as in paragraph 6.1.1, where B was defined in (59). Note that Lemma 1 is still true in that case.
We can now define liftings ḡσ for the Haar wavelets: if n > 0 and σ ∈ An, introduce

ḡσ =
∏

τ∈M(σ), τ 6=σ

γσ
τ · 2n

2 ḡ0 ◦ f−1
σ . (66)

As in (44), there is a constant C such that for all σ ∈ A,

∫

R2

|∇ḡσ|p ≤ C 2n( 1
2
+ p−2

d )
∫

R2

|∇ḡ0|p. (67)

As in paragraph 6.1.1, we introduce the sets S = C ∩ supp ḡ0, C
τ = fτ (C) and Sτ = fτ (S) for

τ ∈ A, S =
⋃

τ∈A S
τ . We also write Su = Cu ∩ supp ḡ0, Sl = Cl ∩ supp ḡ0 and Sτ

u = fτ (Su),
Sτ

l = fτ (Sl) for τ ∈ A. Finally, we define F = supp ∇ḡ0\S, and F τ = fτ (F ) for τ ∈ A.

Remark 8 Condition (61) implies by a simple geometric argument that S ∩D0 = ∅.

6.2.2 Geometrical results

We state some geometrical results that will be useful for the proof of point 2. As in paragraph
6.1.2, we postpone the proof of these results to the Appendix.

Propositions 5, 6 and 7 remain true in this case. Proposition 8 still holds in the following sense:

Proposition 9 If σ, τ ∈ A and τ 6∈ M(σ), then ∇ḡσ ≡ 0 on Sτ
u ∪ Sτ

l .

Proposition 10 Take τ ∈ A and η ∈ B+. If σ ∈ A is not a prefix of τη12(21)∞ or τη21(12)∞,
then ∇ḡσ ≡ 0 on fτ (D

η).
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6.2.3 Proof of point 2 in Theorem 6

The proof that ‖∇(Ev)‖p
Lp(R2\S )

. ‖v‖p

JLip(1− 2−d
p

,p,p;0;Γ∞)
is the same as in the proof of point 1.

We are left with dealing with ‖∇(Ev)‖p
Lp(S ). Write

‖∇(Ev)‖p
Lp(S ) .

∑

τ∈A

Iτ
1 + Iτ

2 , (68)

where Iτ
1 and Iτ

2 are as in (51). Since Proposition 7 still holds, we can deal with
∑

τ∈A I
τ
1 as in

the proof of point 1.
Since Sτ = Sτ

u ∪Sτ
l ∪fτ (D), the integration on Sτ in Iτ

2 can be decomposed into integrals on Sτ
u,

Sτ
l and fτ (D). The first two integrals can be be dealt with exactly as in the proof of point 1,

since Proposition 9 holds. We refer to the last one as Jτ
2 . For η ∈ B+, call Bη = {σ ∈ A, σ is a

prefix of η12(21)∞ or η12(21)∞}. By Proposition 10, ∇ḡσ ≡ 0 on fτ (D
η) if σ 6∈ τBη. Therefore,

Jτ
2 =

∑

η∈B+

∫

fτ (Dη)

∣∣∣∣∣∣

∑

n∈N

∑

σ∈An∩τBη

2
n
2 βσ ḡ0 ◦ f−1

σ (x)∇γσ
τ (x)

∣∣∣∣∣∣

p

dx. (69)

We split the integral over fτ (D
η) into two integrals over portions of cones with respective vertices

fτ (M
η
1 ) and fτ (M

η
2 ). As in (54), we express them in polar coordinates centered respectively at

fτ (M
η
1 ) and fτ (M

η
2 ). Call ℓ the length of the sides of the diamond D0. The length of the sides

of fτ (D
η) is ak+lℓ ≤ ak+lR, and we may take r ≤ ak+lR in the integrals.

As in the proof of point 1, we note that if τ ∈ M(σ) and supp ḡ0 ◦ f−1
σ ∩ C(fτ (M

τ
i ), r) 6= ∅,

i = 1, 2, then n ≤ Nr where Nr = log(r/R)
log a . Therefore,

∥∥∥∥∥∥

∑

n∈N

∑

σ∈An∩τBη

2
n
2 βσ ḡ0 ◦ f−1

σ · ∇γσ
τ

∥∥∥∥∥∥

p

Lp(fτ (Dη))

.

∫ ak+lR

0




[Nr]∑

n=k

∑

σ∈An∩τBη

2
n
2 |βσ |




p

r1−p dr

=

∫ ak+lR

0




[Nr]−k∑

n=0

∑

σ′∈An∩Bη

2
n+k

2 |βτσ′ |




p

r1−p dr

.

∞∑

m=0

a(m+k+l)(2−p)




m∑

n=0

∑

σ′∈An∩Bη

2
n+k

2 |βτσ′ |




p

. al(2−p)
∞∑

m=k

am(2−p)2
mp
2

∑

σ∈An∩τBη

|βσ |p,

where we have proceeded exactly as in the proof of point 1, using the Hardy inequality of Lemma
2. Hence,

Jτ
2 .

∞∑

l=0

∑

η∈Al∩B+

al(2−p)
∞∑

m=k

am(2−p)2
mp
2

∑

σ∈An∩τBη

|βσ |p

.

∞∑

l=0

al(2−p)2
l
2

∞∑

m=k

am(2−p)2
mp
2

∑

σ∈An
τ∈M(σ)

|βσ|p,

22



since #Al ∩B+ . 2
l
2 and #An ∩ τBη = 2. Therefore, since al(2−p)2

l
2 = al(2− d

2
−p) and p < 2− d

2 ,

Jτ
2 .

∞∑

m=k

am(2−p)2
mp
2

∑

σ∈An
τ∈M(σ)

|βσ |p. (70)

We show that
∑

τ∈A
Jτ

2 . ‖v‖JLip(1− 2−d
p

,p,p;0;Γ∞) exactly as in the proof of point 1 (see (56)).

7 Proof of Theorem 7

Take θ ∈ (0, π
2 ), and p ∈ (1, p⋆

θ). We will construct a sequence of continuous linear operators
Fn : W 1,p(Ω) →W 1,p(R2) such that for all u ∈W 1,p(Ω),

Fnu|Zn = u|Zn , (71)

where Zn =
⋃{Y σ, σ ∈ Ak, k ≤ n}. This implies that ℓn(Fnu) = ℓn(u).

It will be proved in Proposition 12 that the sequence (Fn)n converges in L(W 1,p(Ω),W 1,p(R2)) to
a continuous linear operator F , which will yield Theorem 7 since Fu|Ω = u for all u ∈W 1,p(Ω).
An immediate consequence is that ℓ∞(Fu) = ℓ∞(u).

First, we introduce an extension operator from W 1,p(Ω) to W 1,p(Ω̂), where Ω̂ is a larger domain
defined below and presented in Figure 5.

The domain Ω̂ Take ε < 2 and write P ′
1 = (−1 − ε, 0), and P ′

2 = (1 + ε, 0). Define Ŷ 0 to
be the open domain inside the closed polygonal line joining the points P ′

1, P
′
2, f2(P

′
2), f2(P

′
1),

f1(P
′
2), f1(P

′
1), P

′
1 in this order. Let K̂0 be the closure of Ŷ 0. We define the wider ramified

domain Ω̂ to be:

Ω̂ = Interior

(
K̂0 ∪

(
⋃

σ∈A

fσ(K̂0)

))
, (72)

see figure 5. We can suppose ε > 0 is small enough so that f2(P
′
1) and f2(P

′
2) have positive

coordinates, the domain Ŷ 0 is convex, and Assumption 1 is satisfied.

We introduce the open domains Ŷ σ = fσ(Ŷ 0) for σ ∈ A, along with their closure K̂σ. We also
write Ω̂σ = fσ(Ω̂) for σ ∈ A, and Ω̂n =

⋃
σ∈An

Ω̂σ.

We introduce the open domain Y 0
1 inside the polygonal line joining the points P ′

1, P1, f1(P1),
f1(P

′
1), P

′
1, its symmetric Y 0

2 with respect to the vertical axis Λ, and the open domain Y 0
3 inside

the polygonal line joining the points f1(P2), f2(P1), f2(P
′
1), f1(P

′
2), f1(P2). For σ ∈ A and

i = 1, 2, 3, write Y σ
i = fσ(Y 0

i ).

Proposition 11 There exists a continuous extension operator G from W 1,p(Ω) to W 1,p(Ω̂).

Proof. We start by defining a mapping ξ1 in polar coordinates (r, ϕ) centered at the intersection
M1 of the axes (P1P2) and (f1(P1)f1(P2)) (see figure 6) and such that the half line [M1P1) is
given by ϕ = 0. Write (x1, 0) the euclidean coordinates of M1. For every ϕ ∈ [0, θ], define rϕ to
be the unique r > 0 such that the point (x1 + r cosϕ, r sinϕ) belongs to the segment [P1f1(P1)].
Now define ξ1 : Y 0

1 → Y 0 by:

ξ1(x) =

(
x1 + r′ cosϕ
r′ sinϕ

)
, (73)
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Y 0

P2

f2(P
′
2)

f2(P
′
1)f1(P

′
2)

f1(P1) f2(P2)

f1(P
′
1)

f1(P2) f2(P1)

P ′
1 P1 P ′

2

Y 0
1

Y 0
3

Y 0
2

Figure 5: Left: First cells Y 0 and Ŷ 0 of the ramified domains. Right: The ramified domains Ω
and Ω̂.

where x = (x1 + r cosϕ, r sinϕ) with ϕ ∈ [0, θ], and r′ = 2rϕ − r. We define ξ2 : Y 0
2 → Y 0 as

the symmetric of ξ1 with respect to the axis Λ.
Similarly, we define the mapping ξ3 in polar coordinates (r, ϕ) centered at the intersection M3

of the axes f1(P1)f1(P2) and f2(P1)f2(P2) (see figure 6) and such that the half line [M3O) is
given by ϕ = 0. Write (0, y3) the euclidean coordinates of M3. For every ϕ ∈ [θ − π

2 ,
π
2 − θ],

define rϕ to be the unique r > 0 such that the point (r cosϕ, y3 +r sinϕ) belongs to the segment
[f1(P

′
2)f2(P

′
1)]. Now define ξ3 : Y 0

3 → Y 0 by:

ξ3(x) =

(
r′ cosϕ

y3 + r′ sinϕ

)
, (74)

where x = (r cosϕ, yB + r sinϕ), and r′ = 2rϕ − r.

Y 0
1

M1

ϕ

x

ψ1(x)

P1P ′
1

f1(P
′
1)

f1(P1)

Y 0

M3

f2(P1)

f2(P
′
1)

f1(P2)

f1(P
′
2)

Y 0

Y 0
3

x

ψ3(x)

Figure 6: Left: Construction of the mapping ξ1 : Y 0
1 → Y 0. Right: Construction of the mapping

ξ3 : Y 0
3 → Y 0.

We now define the mappings ξσ
i : Y σ

i → Y σ for σ ∈ A and i = 1, 2, 3 by ξσ
i = fσ ◦ ξi ◦ fσ

−1.

Remark 9 It is important to note that the functions ξσ
i , σ ∈ A, i = 1, 2 respect the self-

similarity of the domain, in the sense that for each i ∈ {1, 2} and σ ∈ An (n > 0), ξσ
i = ξ

σ↾n−1

j

on fσ([PiP
′
i ]), where j is the unique integer in {1, 2, 3} such that fσ([PiP

′
i ]) ⊂ Y σ

i ∩ Y σ↾n−1

j .

We define the operator G : W 1,p(Ω) → W 1,p(Ω̂) by putting Gu = u on Ω, and Gu = u ◦ ξσ
i on

Y σ
i for σ ∈ A and i = 1, 2, 3.
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Note that for all σ ∈ A and i ∈ {1, 2, 3},
∫

Y σ
i

|∇Gu|p ≤ C

∫

Y σ

|∇u|p, (75)

where the constant C is independent of i and σ. We deduce from Remark 9 that Gu ∈W 1,p
loc (Ω̂),

which implies that Gu ∈W 1,p(Ω̂), and we deduce from (75) that G is continuous.

The extension operators Fn Let us now construct the sequence (Fn)n. Introduce a con-

tinuous function χ ∈ W 1,∞(Ŷ 0) valued in [0, 1] such that χ = 1 on Y 0, the trace of χ on the
segments [P ′

1f1(P
′
1)], [P ′

2f2(P
′
2)] and [f1(P

′
2)f2(P

′
1)] is 0, and

χ ◦ f1
−1 = χ on f1([P

′
1P

′
2]),

χ ◦ f2
−1 = χ on f2([P

′
1P

′
2]).

(76)

Condition (76) implies that a certain self-similar property is satisfied by χ. Such a function χ
can be constructed in a similar manner as in the proof of Proposition 11.

Introduce a function η ∈ C0(K̂0) with values in [0, 1] such that η = 1 on Γ̂0 = [P ′
1P

′
2], and η = 0

on f1(Γ̂
0) ∪ f2(Γ̂

0).

For every n > 0, we define a function ρn on R
2 by:

ρn =

n∑

k=0

∑

σ∈Ak

χ ◦ fσ
−11 bKσ +

∑

σ∈An+1

χη ◦ fσ
−11 bKσ . (77)

Note that ρn is continuous on R
2.

Introduce the linear operators Fn on W 1,p(Ω) defined by:

Fnu = ρnGu+ (1 − ρn)Eℓ∞(u), ∀u ∈W 1,p(Ω). (78)

Condition (76) implies that for all u ∈W 1,p(Ω), Fnu ∈W 1,p
loc (R2), and therefore Fnu ∈W 1,p(R2).

Moreover, note that since G, E and ℓ∞ are continuous, so are the operators Fn.

Proposition 12 The sequence (Fn)n∈N converges pointwise to a continuous operator F ∈
L(W 1,p(Ω),W 1,p(R2)) such that (Fu)|Ω = u for all u ∈W 1,p(Ω).

The proof of Proposition 12 will use the following Poincaré-Wirtinger inequality.

Lemma 4 If u ∈W 1,p(Ω), there exists a constant C > 0 such that:

∫

bY 0

|Gu(x) − 〈u〉Γ0 |p dx ≤ C

∫

bY 0

|∇Gu(x)|p dx. (79)

We will also use the following result that is very similar to Theorem 11 in [7].

Proposition 13 For all real number κ satisfying (2a2)
p−1

< κ < 1, there exists a constant
C > 0 such that for all u ∈W 1,p(Ω),

‖ℓ∞(u) − 〈u〉Γ0‖p
Lp(Γ∞) ≤ C

∑

i∈N

κi
∑

τ∈Ai

‖∇u‖p
Lp(Y τ ). (80)
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Proof. See [7].

Proof of Proposition 12. Take u ∈ W 1,p(Ω). Let us prove that (Fnu)n∈N is a Cauchy
sequence in W 1,p(R2). Take n,m ∈ N with n < m. We denote û = Gu and ū = Eℓ∞(u). First,
we note that

∫

R2

|Fmu−Fnu|p =

m+1∑

k=n+1

∫

bY k

|Fmu−Fnu|p

=

m+1∑

k=n+1

∫

bY k

|(ρn − ρm)(û− ū)|p

≤
∫

bΩn

|û− ū|p −→
n→∞

0,

(81)

since û− ū|bΩ ∈ Lp(Ω̂). On the other hand,

∫

R2

|∇Fmu−∇Fnu|p =

m+1∑

k=n+1

∑

σ∈Ak

∫

bY σ

|∇Fmu−∇Fnu|p. (82)

Take k ∈ N such that n ≤ k ≤ m and σ ∈ Ak. One has:
∫

bY σ

|∇Fmu−∇Fnu|p =

∫

bY σ

|∇((ρm − ρn)(û− ū))|p

≤ C

(∫

bY σ

|∇(û− ū)|p + a−kq

∫

bY σ

|û− ū|p
)
,

where C is a constant independent of σ, since ρm − ρn = χ ◦ fσ
−1 if k > n, and ρm − ρn =

χ ◦ fσ
−1 − χη ◦ fσ

−1 if k = n. Therefore,
∫

R2

|∇Fmu−∇Fnu|p

.

m+1∑

k=n+1

∑

σ∈Ak

∫

bY σ

|∇(û− ū)|p +

m+1∑

k=n+1

∑

σ∈Ak

a−kq

∫

bY σ

|û− ū|p.
(83)

To deal with the first term of the right hand side in (83), we note that:

m∑

k=n

∑

σ∈Ak

∫

bY σ

|∇(û− ū)|p = ‖∇(û− ū)‖p

Lp(bΩn)
−→
n→∞

0. (84)

Therefore, we are left with considering the second term. For σ ∈ Ak, one has:

m+1∑

k=n+1

∑

σ∈Ak

a−pk

∫

bY σ

|û− ū|p . S1 + S2,

where S1 =

m+1∑

k=n+1

∑

σ∈Ak

a−pk

∫

bY σ

|û− 〈u〉Γσ |p and S2 =

m+1∑

k=n+1

∑

σ∈Ak

a−pk

∫

bY σ

|ū− 〈u〉Γσ |p.

By Lemma 4, one has:

S1 ≤ C
m+1∑

k=n+1

∑

σ∈Ak

a(2−p)k

∫

bY σ

|∇û|p .

∫

bΩn

|∇û|p −→
n→∞

0. (85)
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We are left with considering S2. Since for all τ ∈ An with n > k, ḡτ |bY σ ≡ 0,

∫

bY σ

|ū− 〈u〉Γσ |p =

∫

bY σ

|P0ℓ
∞(u) +

∑

i≤k

∑

τ∈Ai

βτ ḡτ − 〈u〉Γσ |
p

≤ c

(
a2k|P0ℓ

∞(u ◦ fσ) − 〈u〉Γσ |p +

∫

bY σ

|βσ ḡσ|p
)
,

(86)

where c is a positive constant independent of k and σ, since P0ℓ
∞(u) +

∑
i<k

∑
τ∈Ai

βτ ḡτ =
P0ℓ

∞(u ◦ fσ) on Y σ. This last result can be easily seen by writing the expansions of ℓ∞(u ◦ fσ)
and ℓ∞(u) in the Haar wavelets basis of Γ∞, and observing that ℓ∞(u ◦ fσ) = ℓ∞(u) ◦ fσ. This
yields that on Γ∞,σ,

P0ℓ
∞(u) +

∑

i<k

∑

τ∈Ai

βτgτ = P0ℓ
∞(u ◦ fσ). (87)

If i < k and τ ∈ Ai, then ḡτ is constant on fτ (fj(Ω)), j = 1, 2, therefore ḡτ is constant on Y σ

and ḡτ (Y
σ) = gτ (Γ∞,σ), hence the equality.

Therefore, one has:
∫

bY σ

|ū− 〈u〉Γσ |p ≤ c′a2k

(∫

Γ∞

|ℓ∞(u ◦ fσ) − 〈u ◦ fσ〉Γ0 |p dµ+ 2
kp
2 |βσ|p

)
, (88)

where c′ is a positive constant independent of k and σ. By Proposition 13, for all κ ∈](2a2)
p−1

, 1[,
∫

Γ∞

|ℓ∞(u ◦ fσ) − 〈u ◦ fσ〉Γ0 |p dµ ≤ C
∑

i≥0

κi
∑

τ∈Ai

∫

Y τ

|∇(u ◦ fσ)|p

= C a(p−2)k
∑

i≥0

κi
∑

τ∈Ai

∫

Y στ

|∇u|p

= C a(p−2)k
∑

i≥k

κi−k
∑

τ∈Ai, τ↾k=σ

∫

Y τ

|∇u|p.

(89)

Therefore,

m+1∑

k=n+1

∑

σ∈Ak

a(2−p)k

∫

Γ∞

|ℓ∞(u ◦ fσ) − 〈u ◦ fσ〉Γ0 |p dµ .

m+1∑

k=n+1

∑

σ∈Ak

∑

i≥k

κi−k
∑

τ∈Ai, τ↾k=σ

∫

Y τ

|∇u|p

=
∑

i≥n+1

∑

τ∈Ai

min(i,m+1)∑

k=n+1

κi−k

∫

Y τ

|∇u|p

.
∑

i≥n

∑

τ∈Ai

∫

Y τ

|∇u|p =

∫

Ωn

|∇u|p.

Then, (88) yields:

S2 .

∫

Ωn

|∇u|p +
∑

k≥n

∑

σ∈Ak

a(2−p)k2
kp
2 |βσ|p −→

n→∞
0. (90)

Indeed, since ℓ∞(u) ∈ JLip(1 − 2−d
p , p, p, 0; Γ∞),

∑
k 2

kp
2
∑

σ∈Ak
a(2−p)k|βσ|p < ∞. This proves

that the sequence (Fnu)n has a limit in W 1,p(R2). We define Fu to be the latter limit; F
obviously defines a linear operator from W 1,p(Ω) to W 1,p(R2).

Therefore, Banach Steinhaus Theorem insures that F is continuous. The fact that (Fu)|Ω = u
is a direct consequence of (71).
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A Proof of the geometrical results

In this section, we prove the geometrical results stated in paragraphs 6.1.2 and 6.2.2.

A.1 Proof of the geometrical results from paragraph 6.1.2

We start by stating and proving several geometrical lemmas.

Lemma 5 One has:

d(Ω\Y 0, F ) ≥ ad1,

sup{d(x,Ω\Y 0), x ∈ supp ḡ0} ≤ ad2,

where d1 and d2 were defined in paragraph 6.1.1.

Proof.

• Since the function χ is symmetric with respect to the axis Λ, so is F . Therefore, since
f1(Ω) = Ω\Y 0 ∩ {x1 ≤ 0}, we have d(Ω\Y 0, F ) = d(f1(Ω), F ∩ {x1 ≤ 0}). Note
that F ∩ {x1 ≤ 0} ⊂ f1(supp ∇χ). This implies that d(f1(Ω), F ∩ {x1 ≤ 0}) ≥
d(f1(Ω), f1(supp ∇χ) = ad1, hence the result.

• Take x = (x1, x2) ∈ supp ḡ0. If x1 ≤ 0, then by symmetry d(x,Ω\Y 0) = d(x, f1(Ω)) ≤
sup{d(x, f1(Ω)), x ∈ f1(supp χ)} = ad2 since supp ḡ0 ∩ {(x1, x2) ∈ R

2, x1 ≤ 0} ⊂
f1(supp χ). Similarly, if x1 ≥ 0, then d(x,Ω\Y 0) ≤ ad2. The result follows.

Lemma 6 If σ 6∈ B, then
supp ḡ0 ◦ f−1

σ ∩ C = ∅, (91)

where B was defined in (34).

Proof. If x ∈ C, then d(x,Ωσ\Y σ) ≥ d(C,Ωσ) > can since σ 6∈ B, by (33). Lemma 5 and an
argument of self-similarity imply that sup{d(x,Ωσ\Y σ), x ∈ supp ḡ0 ◦ f−1

σ } ≤ an+1d2 < can, by
condition (36). Therefore x 6∈ supp ḡ0 ◦ f−1

σ .

Lemma 7 If σ ∈ A\{ǫ} and σ(1) = 1 (resp. σ(1) = 2), then

supp ḡσ\S ⊂ {(x1, x2) ∈ R
2, x1 < 0} (92)

(resp. supp ḡσ\S ⊂ {(x1, x2) ∈ R
2, x1 > 0}).

Proof. Suppose for example σ(1) = 1. If σ 6∈ B, then by Lemma 6, supp ḡσ ∩C = ∅. Therefore,
supp ḡσ lies in the left-hand connected component of R

2\C, and supp ḡσ ⊂ {(x1, x2) ∈ R
2, x1 <

0}, hence the result.
If σ ∈ B, then, by the definition of ḡσ , ψ is a factor of ḡσ, which implies that supp ḡσ\C ⊂
{(x1, x2) ∈ R

2, x1 > 0}. Since supp ḡσ ⊂ supp ḡ0, one has supp ḡσ\S = supp ḡσ\C, hence the
result.

Lemma 8 If σ, τ ∈ A and σ is a prefix of τ , then

F σ ∩ supp ḡτ = ∅. (93)
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Proof. Suppose σ ∈ An and τ ∈ Ak. Note that d(Ωτ\Y τ , F σ) ≥ d(Ωσ\Y σ, F σ) ≥ an+1d1 and
sup{d(y,Ωτ\Y τ ), y ∈ supp ḡτ} ≤ ak+1d2 by lemma 5. Since n < k, (37) yields:

d(Ωτ\Y τ , F σ) > sup{d(y,Ωτ\Y τ ), y ∈ supp ḡτ}.

Therefore, if x ∈ supp ḡτ , then d(x,Ωτ\Y τ ) < d(Ωτ\Y τ , F σ) and x 6∈ F σ.

Lemma 9 If n > 0 and σ ∈ An, then, for every k < n,

supp ḡσ ⊂ fσ↾k
(supp ḡσ′), (94)

where σ = σ↾kσ
′.

Proof. Take τ ′ ∈ Ai, i ≥ 0 such that τ ′ ∈ M(σ′) and τ ′ 6= σ′. Therefore, σ↾kτ
′ is a prefix of σ.

We observe that:

γσ′

τ ′ ◦ f−1
σ↾k

= (1σ′(i+1)=1ψ + 1σ′(i+1)=2(1 − ψ)) ◦ f−1
σ↾kτ ′

= (1σ(k+i+1)=1ψ + 1σ(k+i+1)=2(1 − ψ)) ◦ f−1
σ↾kτ ′

= γσ
σ↾kτ ′ .

Note that for any such τ ′, σ↾kτ
′ ∈ M(σ) and σ↾kτ

′ 6= σ. Therefore, since (ḡ0 ◦ f−1
σ′ ) ◦ f−1

σ↾k
=

ḡ0 ◦ fσ
−1,

|ḡσ′ ◦ f−1
σ↾k

| = 2
n−k

2 |ḡ0 ◦ f−1
σ |

∏

τ ′∈M(σ′), τ ′ 6=σ′

γσ
σ↾kτ ′

≥ 2
n−k

2 |ḡ0 ◦ f−1
σ |

∏

τ∈M(σ), τ 6=σ

γσ
τ

= 2
−k
2 |ḡσ|,

since for any prefix τ ∈ A of σ, γσ
τ ≤ 1, which implies the result.

Lemma 10 If σ, τ ∈ A and σ 6= τ , then Sσ ∩ Sτ = ∅.

Proof. Let us first examine the case when τ = ǫ. Suppose for example σ(1) = 1. The set Ωσ

lies in the convex set D defined by {x1 < 0}\C. Therefore, its convex hull conv(Ωσ) also lies in
D. Since, by Remark 7, Sσ ⊂ conv(Ωσ), Sσ lies in D, and Sσ ∩C = ∅, hence the result.
Let us consider the general case. First suppose that τ is a prefix of σ: write σ = τσ′, where
σ′ ∈ A. Then, Sσ ∩ Sτ = fτ (S

σ′ ∩ S) = ∅ by the previous point.
If none of the strings σ, τ is a prefix of the other, there is a string η ∈ A such that σ = ησ′ and
τ = ητ ′ with σ′(1) 6= τ ′(1). Since, by Lemma 7, Sσ′

and Sτ ′

lie in opposite sides of the axis Λ
(given by {x1 = 0}), Sσ′ ∩ Sτ ′

= ∅. Therefore, Sσ ∩ Sτ = fη(S
σ′ ∩ Sτ ′

) = ∅.

Remark 10 In particular, if σ ∈ A and σ(1) = 1 (resp. σ(1) = 2), then Sσ ⊂ {(x1, x2) ∈
R

2, x1 < 0} (resp. Sσ ⊂ {(x1, x2) ∈ R
2, x1 > 0}).

Proof of Proposition 5. If one of the strings σ, τ is a prefix of the other, then F σ ∩ F τ = ∅
by Lemma 8. Since supp ∇ḡσ\S ⊂ F σ and supp ∇ḡτ\S ⊂ F τ by (46), (supp ∇ḡσ\S ) ∩
(supp ∇ḡτ\S ) = ∅.
Now suppose none of the sequences σ, τ is a prefix of the other, i.e. there exists an integer k
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such that σ↾k = τ↾k and σ(k + 1) 6= τ(k + 1). Then we can write σ = σ↾kσ
′ and τ = τ↾kτ

′

for some σ′, τ ′ ∈ A. By Lemma 7, (supp ḡσ′\S) ∩ (supp ḡτ ′\S) = ∅, hence the result since
supp ḡσ ⊂ fσ↾k

(supp ḡσ′) and supp ḡτ ⊂ fσ↾k
(supp ḡτ ′) by Lemma 9.

Proof of Proposition 6. By the definition of ḡσ (see (42)), it is enough to show that if
τ ′ ∈ M(σ)\{σ, τ}, then γσ

τ ′ ≡ 1 on Sτ ∩ supp ḡσ.

Take τ ′ ∈ M(σ)\{σ, τ}. Let us first prove that (Sτ∩supp ḡσ)∩Cτ ′

= ∅. Note that Sτ∩supp ḡσ ⊂
fσ(supp ḡ0) ⊂ fτ ′(supp ḡ0), since τ ′ is a prefix of σ. Therefore, (Sτ ∩ supp ḡσ) ∩ Cτ ′ ⊂
fτ ′(supp ḡ0) ∩ Cτ ′

= Sτ ′

. The results follows since Sτ ∩ Sτ ′

= ∅ by Lemma 10. Since ∇γσ
τ ′ ≡ 0

outside the cone Cτ ′

, γσ
τ ′ is constant (and takes the value 0 or 1) on Sτ ∩ supp ḡσ .

Suppose τ ′ ∈ Ak (k ≥ 0), and σ(k + 1) = 1. This implies that Ωσ ⊂ fτ ′({x1 > 0}).
Since τ ′ ∈ M(σ), one has fτ (A) ∈ Ωσ by the definition of M(σ) (see (41)). Consequently,
fτ (A) ∈ fτ ′({x1 < 0}\C), since fτ ′(A) 6= fτ (A). Therefore, the connected set Sτ ∩ supp ḡσ lies
in the connected component fτ ′({x1 < 0}\C) of R

2\Cτ by the above result, and Sτ ∩ supp ḡσ ⊂
fτ ′({x1 < 0})\Cτ ′

. Since by definition γσ
τ ′ ≡ 1 on fτ ′({x1 < 0})\Cτ ′

, we get the desired result.
The case σ(k + 1) = 2 is similar.

Proof of Proposition 7. Write M = {σ ∈ A, τ ∈ M(σ), ∇(ḡ0 ◦ f−1
σ )(x) 6= 0}. We first note

that if σ ∈ M and σ 6= τ , then supp ∇(ḡ0 ◦ f−1
σ ) ∩ Sτ = F σ ∩ Sτ since Sσ ∩ Sτ = ∅ by Lemma

10 (see (46)).

If σ, σ′ ∈ M , write σ = τη and σ′ = τη′ where η, η′ ∈ B. Suppose that η, η′ are prefixes of
12m+1(12)∞ and distinct from ǫ. Therefore, one of the two strings η, η′ is a prefix of the other.
Assume for example that η′ is a prefix of η. Consequently, σ′ is a prefix of σ, and Lemma 8
implies that σ = σ′, since x ∈ F σ′ ∩F σ ⊂ F σ′ ∩ supp (ḡ0 ◦ f−1

σ ). Therefore, there is at most one
string σ ∈ M\{τ} such that σ is a prefix of 12m+1(12)∞. Similarly, there is at most one string
σ ∈M\{τ} such that σ is a prefix of 21m+1(21)∞. Since τ ∈M , there are at most three strings
in M .

Proof of Proposition 8. For n, k ∈ N, take σ ∈ An and τ ∈ Ak.

1. First, we prove that if n < k, then ∇ḡσ ≡ 0 on Sτ .
If η ∈ M(σ) and η ∈ Am, then m ≤ n < k, and η 6= τ , which implies by Lemma 10 that
Sτ ∩ Sη = ∅. Therefore, by (46), supp ∇ḡσ ∩ Sτ ⊂ F σ. If σ is a prefix of τ , then Lemma
8 implies that supp ∇ḡσ ∩ Sτ = ∅ since Sτ ⊂ supp ḡτ .
If σ is not a prefix of τ , then there exists m < n such that σ = σ↾mσ

′, τ = σ↾mτ
′ with

σ′, τ ′ ∈ A\{0} and σ′(1) 6= τ ′(1). Remark 10 and Lemma 7 imply that supp ḡσ′\S and
Sτ ′

lie in opposite sides of the axis Λ. Since S ∩ Sτ ′

= ∅ by Lemma 8, supp ḡσ′ ∩ Sτ ′

= ∅.
Therefore, supp ∇ḡσ ∩ Sτ = ∅, since supp ḡσ ⊂ fσ↾k

(supp ḡσ′) by Lemma 9.

2. Second, we prove that if n ≥ k and τ 6∈ M(σ), then ḡσ ≡ 0 on Sτ . This will achieve the
proof of Proposition 8.
Suppose τ 6∈ M(σ). If τ is not a prefix of σ, then the same argument as above applies. If
τ is a prefix of σ, write σ = τσ′. Since τ 6∈ M(σ), σ′ 6∈ B and supp ḡσ′ ∩ S = 0 by Lemma
6. Lemma 9 yields the result as above.

A.2 Proof of the geometrical results from paragraph 6.2

We start by giving a proof of Lemma 3. We introduce the following notations: call D0 =
f−1
12m+1(D), C0

u = f−1
12m+1(Cu), C0

l = f−1
12m+1(Cl), and C0 = f−1

12m+1(C) = D0 ∪ C0
u ∪ C0

l .
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Proof of Lemma 3. First, we prove that d(Ω11, C0) > 0. Note that sup{d(x,H), x ∈ D0} =
ℓ sinϕ0 where ℓ is the length of the sides of the diamond D0. Since d(Ω11,H) ≥ κ1, condition
3 in §6.2.1 implies that d(Ω11,H) > Rϕ0 ≥ ℓ sinϕ0. Therefore, d(Ω11,D0) > d(Ω11,H) −
sup{d(x,H), x ∈ D0} > ℓ sinϕ0. Since d(Ω11, C0

u ∪ C0
l ) > 0, we deduce the result.

Take σ ∈ An\B, suppose for example that σ(1) = 1. Suppose 12m+1 is a prefix of σ. Therefore,
σ can be written σ↾kσ

′ with σ↾k ∈ 12m+1(12|21)⋆ and σ′(1) = σ′(2). Suppose for example that
σ′(1) = 1. Hence, Ωσ ⊂ Ωσ↾k11, and d(Ωσ, fσ↾k(C

0)) ≥ d(Ωσ↾k11, fσ↾k(C
0)) = akd(Ω11, C0).

Since C ⊂ fσ↾k
(C0), the result is proved in this case.

Suppose 12m+1 is not a prefix of σ. We know that in this case, d(Ωσ,Λ) > κ2 > 2Rϕ0 by (57)
and condition 3 in §6.2.1. Since sup{d(x,Λ), x ∈ D} = am+2ℓ sinϕ0 < Rϕ0, we deduce as above
that d(Ωσ ,D) > κ2 −Rϕ0 > 0. It is easily seen that for every τ 6∈ B, d(Ωτ , Cu ∪ Cl) > 0. Since

Ωσ ⊂ ⋃
m

k=0 Ω12k1, there exists a constant c0 independent of σ such that d(Ωσ, Cu ∪ Cl, ) > c0,
which concludes the proof.

It is straightforward to check that, with the notations introduced in paragraph 6.2.1 and (60),
Lemmas 5, 6, 7, 8 and 9 still hold in this case. We start by stating a preliminary lemma.

Lemma 11 If η 6∈ B and η(1) = 1 (resp. η(1) = 2), then Dη ⊂ {x1 < 0} (resp. Dη ⊂ {x1 >
0}).
Proof. Take η ∈ An\B and suppose η(1) = 1. Let us first show that d(conv(Ωη),Λ) > anRϕ0.
First suppose that 12m+1 is not a prefix of η, then (57) and condition 3 in §6.2.1 imply that
d(conv(Ωη),Λ) > κ2 > Rϕ0.
If 12m+1 is a prefix of η, then η = η↾kη

′ with η↾k ∈ 12m+1(12|21)⋆ and η′(1) = η′(2). For
example, suppose η′(1) = 1. Since conv(Ωη) ⊂ fη↾k

(conv(Ω11)), we deduce that d(conv(Ωη),Λ) ≥
d(fη↾k

(conv(Ω11),Λ) = akd(conv(Ω11),H) > akRϕ0 by condition 3 in §6.2.1.
Observe that d(Dη ,Λ) ≥ d(conv(Ωη),Λ)−sup{d(x, conv(Ωη)), x ∈ Dη} > anRϕ0−anℓ sinϕ0 ≥ 0
by the last point, hence the result.

We now give the proof that Lemma 10 also remains true:

Proof. We first suppose that τ = ǫ. The proof that Sσ ∩ S0
u = Sσ ∩ S0

l = ∅ is the same as in
Lemma 10.
We are left with checking that Sσ ∩ D = ∅. Take η ∈ B+. If η is not a prefix of σ, then we
can write η = η↾kη

′ and σ = η↾kσ
′ with k ≥ 0 and σ′(1) 6= η′(1). Suppose for example that

σ(1) = 1. Then Sσ′ ⊂ conv(Ωσ′

) ⊂ {x1 > 0}. On the other hand, by Lemma 11, since η′(1) = 2,
Dη′ ⊂ {x1 > 0}, and Sσ ∩Dη = ∅.
If η = σ, then Sσ ∩Dη = ∅ by Remark 8 and by self-similarity.
If σ = ησ′ with σ′ ∈ A\{ǫ}, then Sσ ⊂ conv(Ωσ) ⊂ conv(Ωησ′(1)). Since conv(f1(Ω)) ∩ D0 =
conv(f2(Ω))∩D0 = ∅, we deduce by self-similarity that conv(Ωησ′(1))∩Dη = ∅, and Sσ∩Dη = ∅.
In the case when τ 6= ǫ, we conclude in the same way as in Lemma 10.

Therefore, it is easily checked that Propositions 5, 6 and 7 hold.

Proof of Proposition 10. Take σ ∈ A such that σ is not a prefix of τη12(21)∞ or τη21(12)∞.
In the first place, suppose τ = ǫ. We first note that if σ 6∈ B, then Lemma 6 yields the result.
In the following, we assume that σ ∈ B.
We first examine the case when η is not a prefix of σ. By symmetry, we can assume that
σ(1) = η(1) = 1. There exists an integer k > 0 such that η = η↾kη

′, σ = η↾kσ
′ and η′(1) 6= σ′(1).

Suppose for example σ′(1) = 1. Since σ ∈ B, σ′ 6∈ B, and Lemma 6 implies that supp ∇ḡσ′ ⊂
{x1 < 0}. Since η′ 6∈ B and η′(1) = 2, the set Dη′

lies in {x1 > 0} by Lemma 11, which implies
that supp ∇ḡσ′ ∩Dη′

= ∅. We conclude with Lemma 9.
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In the case when η is a prefix of σ, the hypothesis we made on σ and η imply that σ has a prefix
of the form η12(21)l1 or η21(12)l2 with l ≥ 0. Suppose for example that the former is true, and
write σ = η12(21)lσ′. Therefore, since σ′ 6∈ B, Lemma 6 implies that supp ∇ḡσ lies above the
horizontal axis fη12(21)l(Λ) (recall that Λ is the axis given by {x1 = 0}). On the other hand, the

limit point of η12(21)∞ lies below this axis. Since this point is the highest vertex of the set Dη,
the result follows.

Let us now examine the case when τ 6= ǫ. If σ = τσ′ with σ′ ∈ A, then σ′ is not a prefix of
η12(12)∞ or η21(21)∞, and supp ∇ḡσ′∩Dη = ∅ by what precedes, we conclude with Lemma 9. If
σ = τ↾kσ

′ and τ = τ↾kτ
′ with k ≥ 0 and σ′(1) 6= τ ′(1) (for example σ′(1) = 1), then supp ∇ḡσ′ ⊂

{x1 < 0} ∪ S0. On the other hand, fτ ′(Dη) ⊂ Sτ ′

, which implies that fτ ′(Dη) ∩ supp ∇ḡσ′ = ∅.
We can conclude with Lemma 9.
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