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Abstract—This paper proposes a new space-time coding
scheme for non-coherent MIMO systems. In this scheme, called
Matrix Coded Modulation (MCM), a joint channel error-
correcting code and space-time code is considered. Coherent
systems are those for which Channel State Information (CSI)
is available at the transmitters and/or at the receivers, and
their performance strongly depend on the channel estimation.
Generally, this CSI estimation requires the insertion of pilot-
symbols in the transmitted frame which implies a spectral
efficiency loss of the global system. The existing non-coherent
MIMO systems like Differential Space Time Modulation (DSTM)
suffer not only from the degradation of performance compared
to coherent systems, but also from many constraints on the
channel and the use of memory at reception. In the proposed
MCM scheme, decoding can be achieved with or without CSI
at the receiving antennas. Moreover, a low-complexity decoding
algorithm is described and compared to the existing differential
schemes. Keywords: MIMO systems, coherent, non-coherent,
differential coding, error-correcting code.

I. INTRODUCTION

In the last few years, many techniques of data transmission

for wireless Multiple-Input Multiple-Output (MIMO)

communication systems have been proposed. Depending on

the availability of channel state information at receivers,

wireless communication systems can be divided into two

categories, coherent and non-coherent. Coherent space-time

coding schemes assume a partial or perfect knowledge of

CSI at transmitters and/or receivers [7] [10]. This assumption

is reasonable when the channel changes slowly compared

to the symbol rate, since the transmitter sends training

symbols or pilot-frequencies which enable the receiver to

estimate the channel accurately. This implies a spectral

efficiency loss increasing with the number of antennas. A

second disadvantage concerns the performance degradation

on fast fading channels due to impaired channel estimation.

However, in some situations, we may want to forego channel

estimation in order to reduce the cost and complexity of

encoding/decoding algorithms at the transmitter/receiver

antennas.

When CSI is not available at either the transmitter or at the

receiver, several transmission techniques have been proposed.

For a Single-Input Single-Output system (SISO), Differential

Phase Shift Keying (DPSK) can be applied. To the best of

our knowledge, the non-coherent MIMO existing schemes

are suitable for Space-Time Block Codes (STBC) [7] [10]

or Space-Frequency Block Codes (SFBC) [19]. They can

be considered as an extension of the differential techniques

used for SISO schemes. Hochwald and Marzetta [14] [11]

were the firsts to propose the use of unitary space-time

block codes for non-coherent schemes. Hughes in [13] has

proposed differential transmit diversity schemes for multiple

antenna systems. In some cases, differential STBC techniques,

even with an error-correcting code, induce a loss of about

3dB compared to the coherent systems [17] [18] [10] with

the same error-correcting codes. Most of these proposed

Differential STBC are combined with an outer channel error-

correcting code in order to improve performance. Decoding

can be achieved iteratively on trellis when using a outer

convolutional code [16]. On the other hand, the Space-Time

Trellis Code (STTC), initially proposed by Tarokh in [8] are

considered as an extension of the trellis coded modulation

for SISO systems and are dedicated only to coherent detection.

The aim of this paper is to propose a new space-time

scheme in which channel error-correcting code and space-time

code are combined together and dedicated to non-coherent

detection. The remaining parts of this paper are organized

as follows: In section II, we remind the Alamouti Differ-

ential MIMO scheme. In section III, we introduce the new

non-coherent scheme that we call ”Matrix Coded Modula-

tion (MCM)” and where space-time code and channel error-

correcting code are merged together. In section IV, we present

two use cases of MCM. In the first one, we consider the

extended Hamming block code H(n = 8, k = 4, dmin = 4)
as a the channel error-correcting code while in the second

one, we consider the Hamming convolutional code obtained

by unwrapping the tail-biting trellis of the H(n = 8, k =
4, dmin = 4) block code. In section V, we present simulation

results, then we compare the MCM scheme and the differ-

ential Alamouti 2 × 2 scheme in terms of performance and

complexity. Section VI concludes the paper.

II. DIFFERENTIAL ALAMOUTI SCHEME

Many MIMO Differential schemes exist in the literature and

some of them are used, for instance, in the standard IEEE IS-
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Fig. 1. MIMO-MCM2×2 system model.

54 [4]. In this section, we remind some necessary preliminaries

about the classical differential Alamouti STBC proposed in

[12]. We Assume a system consisting of two transmit antennas

and one receive antenna. Having the pair of symbols (s1, s2)
belonging to a M−PSK modulation, the first step consists of

computing the differential symbols (A, B) in the orthogonal

base v1 = (d1, d2) and v2 = (−d∗2, d
∗
1) as follows:

A = s1d
∗
1 + s2d

∗
2 and B = −s1d2 + s2d1.

The differential space-time encoding can be written as:

[s2t+1, s2t+2] = A[s2t−1, s2t] + B[−s∗2t, s
∗
2t−1]

By merging the space-time block encoding and the differential

encoding we can write:

ST =

[

s2t+1 −s∗2t+2

s2t+2 s∗2t+1

]

=

[

s2t−1 −s∗2t

s2t s∗2t−1

] [

A −B∗

B A∗

]

= ST−1VT (1)

where ST is the transmitted matrice over the two antennas

during 2 symbol-durations Ts, VT is unitary matrice verifying

VVH = VHV = I2, H is the hermitian operator “ transpose

and conjugate ” and I2 the 2×2 identity matrix. At time t, the

symbol st
i of the matrix ST is transmitted over the antenna i.

The signal received by antenna j is given by:

yt
j =

Nt=2
∑

i=1

ht
ijs

t
i + nt

j . (2)

where noises nt
j are modeled as independent samples of a

zero-mean complex circularly symmetric Gaussian random

variable with variance σ2, ht
ij is the complex path gain

between transmit antenna i and receive antenna j at time t.
These coefficients are modeled as independent samples of a

complex circularly symmetric Gaussian random variable with

zero mean and variance of 0.5 per dimension. The fading is

assumed to be constant over a frame of length L message bits

and varies from one frame to another. Information matrices ST

are transmitted over a wireless communication channel and the

received matrix YT is given by:

YT = HTST + NT (3)

where HT is the Nt × Nr channel matrix and NT is Nr × 1
the noise matrix.

From Eq.(1), and for HT = HT−1, we express the received

matrix YT at time T in function of the previous received

matrix YT−1:

YT = YT−1VT + (NT − NT−1VT ) (4)

A Conventional Detector (CD) can be used to estimate the

useful transmitted information matrix V̂T .

V̂T = Arg max
(ṼT )

R⌉{Tr[Ṽ
H

T (YT−1)
HYT ]} (5)

Many other differential detectors can be used like the Decision

Feedback Differential Detection (DFDD) [18] but in all these

differential schemes the main constraint is to consider a quasi-

static channel over a frame of L transmitted matrices.

III. MCM SYSTEM MODEL

In this section, we introduce the general principle of the

MCM technique dedicated to non-coherent systems. Informa-

tion bits are encoded with a channel error-correcting code and

then divided into streams to be mapped directly into matrices

of complex symbols without the use of classical mapping from

binary into m-ary (m being the number of bits per symbol).

In Fig.1, we give an example of an MCM scheme dedicated

to a 2 × 2 non-coherent MIMO system. Information bits,

x0−3, two streams of coded bits c0−3 and c4−7. These two

streams are interleaved with (πp, πq) and mapped directly into

a pair of invertible matrices (Mα,Mβ) of size Nt × T each

to be consecutively transmitted over the Nt antennas. These

invertible matrices should be chosen from a multiplicative

group G such that:

(Mα,Mβ) ∈ (Cp, Cq) where (Cp, Cq) are two different cosets

of G.

The choice of (πp, πq) and (Cp, Cq) is not arbitrary. In fact,

the considered choice should introduce a relation between the

consecutively transmitted matrices Mα and Mβ that depends

on the employed group G and the channel-error correcting

code. This new approach based on a joint space-time coding

and channel coding will be detailed through examples in

section IV. The simple detection algorithm is based on the

relationship between the pair of matrices (Mα,Mβ) and can

be performed without any channel information. The fading is



assumed to be constant over a frame of length L information

bits. At the receiver, detection is achieved without any channel

estimates and is based on the relation between the consecu-

tively transmitted matrices.

IV. MCM WITH BLOCK AND CONVOLUTIONAL CHANNEL

ERROR-CORRECTING CODE

An advantage of the MCM scheme is its ability to be

adapted for both block or convolutional codes. In this section,

we illustrate the MCM scheme by presenting it in 2 models

with the Hamming block and convolutional code. Although

this MCM scheme can be generalized for any systems of

Nt × Nr antennas, we present these 2 models of the MCM

scheme for 2 × 2 systems.

A. MCM with a Hamming block code

This simplified MCM model consists of Nt = 2 transmit

antennas and Nr = 2 receive antennas, with a small error-

correcting block code: the systematic Hamming H(8, 4, 4) of

rate r = k/n = 1/2 where n = 8 is the codeword length and

dmin = 4 its minimum Hamming distance. A block of k = 4
bits x = (x0, x1, x2, x3) are encoded with a H(8, 4, 4). Each

codeword c = (c0, c1, ...c7) is generated as c = x · G where

G is equal to:

G =









1 0 0 0 1 1 1 0
0 1 0 0 0 1 1 1
0 0 1 0 1 0 1 1
0 0 0 1 1 1 0 1









The encoded bits (c0, c1, ...c7) are mapped directly into a

pair of Nt×T matrices (Mα,Mβ). These matrices are chosen

from the multiplicative group Gw of Weyl [3] which is very

simply generated as the set of 12 cosets (C0, C1, . . . , C11) each

containing 16 invertible matrices. The first coset C0 is defined

as:

C0 =

{

α

[

1 0
0 ±1

]

, α

[

0 1
±1 0

] }

with α ∈ {+1,−1, +i,−i}. The 12 cosets of Gw are derived

from C0 as follows:

Ck = ak · C0 ∀ k = 0, 1, . . . , 11

where the matrices a0,a1, . . . ,a5 are respectively:

a0 =

[

1 0
0 1

]

, a1 =

[

1 0
0 i

]

, a2 = 1√
2

[

1 1
1 −1

]

,

a3 = 1√
2

[

1 1
i −i

]

, a4 = 1√
2

[

1 i
1 −i

]

, a5 = 1√
2

[

1 i
i i

]

.

and the matrices a6,a7, . . . ,a11 are given by: ak+6 =
ηak , with η = (1 + i)/

√
2 ∀k = 0, 1, . . . , 5.

At time t the symbol st
i of the matrix Ma is transmitted over

the antenna i. In our example of the MCM system, as the

dimensions of the matrices are Nt ×T = 2× 2, matrix Ma is

transmitted in 2 symbol-durations Ts. Writing in matrix form,

we obtain:

YT = HTMα + NT (6)

YT is the received matrix during 2 symbol-durations Ts on

the 2 antennas between instants T and (T + 2Ts). We assume

a uniform power allocation at the transmission in order to

maintain a constant radiated power on the average of a space-

time codeword duration. The extended Hamming H(8, 4, 4)
block code is systematic. The 4 useful information bits are

permuted with π0 and then mapped into the coset Cp. Similarly

the 4 redundant bits are permuted with π2 and then mapped

into the coset Cq. Having 16 possible codewords and 16
matrices in each coset, then for any codeword (c0, c1, ..., c7)
generated by the H(8, 4, 4), there is a unique couple of

matrices (Ma,Mb) ∈ Cp × Cq which verifies the equation

below :

Mα · M−1
a − Mβ ·M−1

b = 0 (7)

where (Mα,Mβ) ∈ Cp×Cq are the transmitted matrices. The

Eq.7 has a unique solution:

(Ma,Mb) = (Mα,Mβ) ∈ Cp × Cq (8)

The choice of the 2 interleavers (π0, π2) and the 2
cosets (Cp, Cq) is not arbitrary. One of the possible

solutions verifying Eq.(7) is the two cosets (C0, C2) and

the two permutations π0 : (0, 1, 2, 3) → (0, 1, 2, 3) and

π2 : (0, 1, 2, 3) → (0, 3, 2, 1). It was obtained by an

exhaustive computing search. In this case, the constellation

of the modulation (i.e. the possible complex values of the

coefficients’ matrices) is {±1,±i, (±1 ± i)/
√

2 ∪ 0}
which is noted 4-QAM ∪ 0. Taking the eight coded

bits c = (c0, c1, · · · , c7) and given the two cosets

(C0, C2) and the pair of interleavers (π0, π2), the

MCM encoder selects the pair of matrices (Mα,Mβ)
among the pair of cosets(C0, C2) according to a specific

mapping rule. For the codeword 00011101 we compute

(i1 = 20 × 0 + 21 × 0 × 22 × 0 + 23 × 1 = 8 ) and

(i2 = 20 × 1 + 23 × 1 + 22 × 0 + 21 × 1 = 11 )
then the pair of matrices assigned to this codeword will be:

Mi1 = Mα =

[

0 1
1 0

]

and Mi2 = Mβ = 1√
2

[

1 −1
−1 −1

]

The 2 × 2 matrices Mα and Mβ are transmitted consec-

utively on the 2 antennas during 4Ts. Signals arriving at the

2 receive antennas undergo independent fading and can be

expressed as follows:

YT = HTMα + NT (9)

YT+1 = HT+1Mβ + NT+1 (10)

Assuming a constant block fading channel during 4Ts

(HT = HT+1), and with the unicity of solution in Eq.(7) the

implementation of the decoding algorithm consists of finding

the couple (M̂a, M̂b) solution of the following minimization:

(M̂a, M̂b) = Arg min
(Ma,Mb)

||YT M
−1
a − YT+1M

−1
b || (11)

where ||X||, the Hilbert norm, is equal to Trace(XX
H). With

the bijective relation between a codeword c and a couple

(Mα,Mβ) we can then provide the 8 “best” coded bits

of c and then the “best” 4 information bits. The H(8, 4, 4)



has a weak error-correction capability. We note that our new

construction with the matrices of the Weyl group is not similar

with to a space-time code with linear dispersion code (LD)

[15]. The LD codes are based on the optimisation of matrices

in order to maximise the capacity and diversity gains whereas

our new construction is based on a novel detection criteria

based on invertibility of the employed matrices.

B. MCM with a Hamming convolutional code

a-Emission

We introduce below an example of a2 × 2 -MCM with

a very small convolutional error-correcting code built by

unwrapping the 4-states “tail-biting” or circular trellis

of the Hamming code (n = 8, k = 4, dmin = 4).
This small convolutional code is shown in Fig. 2.

xt -
D D

-
xt

u

-

xt−1

u

-

xt−2

u

6
⊕ - rt

Fig. 2. Hamming convolutional 2-bits state encoder

The future goal of our research is to extend the

MCM scheme to be adapted with Turbo codes [5]

which have two simple component trellis. The convo-

lutional MCM scheme uses the same structure as our

MCM block scheme with the same group of matrices

Gw used in Example 1. The main difference being that

the useful information bits are now presented in se-

quence (. . . , xt−1, xt, xt+1, . . .) and are encoded to pro-

duce a sequence of redundant bits (. . . , rt−1, rt, rt+1, . . .).
In order to do the matricial mapping, information and

redundant bits are grouped by paquets of 4 bits such

as(xt, rt, xt+1, rt+1). Encoding and decoding algorithms are

done on a 4-state trellis with branches labeled by 4 bits as

shown in Fig. 3. Similarly, we choose the pair of cosets

(C0, C2) and the permutations π0 : (0, 1, 2, 3) → (0, 1, 2, 3)
and π2 : (0, 1, 2, 3) → (0, 3, 2, 1). Having 16 matrices in

each coset and 16 possible combinations of 4 bits,

each trellis section is a complete bipartite graph. Each

group of 4 bits on a branch of the trellis has its

proper corresponding matrix in the appropriate coset. Ma-

trices are selected alternatively in cosets C0 and C2 and

then they are transmitted serially on the 2 antennas

(. . . ,MT−1,MT ,MT+1, . . .) ∈ . . . × C0 × C2 × C0 × . . ..

b-Reception

Fig. 4 explains the decoding algorithm of the MCM convolu-

tional scheme. We use a variant of the Viterbi algorithm [1]

by modifying the metric computation on each branch of the

treillis such as:

γT (Mb)= min
(Ma,Mc)

{(λ‖YT−1Ma
−1 − 2YTMb

−1 + YT+1Mc
−1‖

+ µ‖YT − Ĥ
′

TMb‖)} (12)
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Fig. 3. 4-state trellis of the convolutional Hamming code.

λ and µ are adaptive weights over iterations to merge the min-

imization of the channel variations and the minimization of the

euclidean distance between received and transmitted signals.

When no CSI is available at the receivers, (λ, µ) = (1, 0).
Iterative decoding with an appropriate channel estimation

corresponds to (λ, µ) = (p, 1 − p) with 0 ≤ p ≤ 1. The

estimated values Ĥ
′

t are the estimations of the channel matrix

associated with each branch of the trellis and they are given

by:

Ĥ
′

T (M̂b) = (YT−1M̂a

−1
+ 2YTM̂b

−1
+ YT+1M̂c

−1
)/5
(13)

After evaluating the metrics of the branches γT (Mb), we com-

pute the metric states classically as in the Viterbi algorithm:

Γ(sT ) = min
Mb

(Γ(sT−1) + γT (Mb)) (14)

γT (Mb)

Mb

Γ(sT )

sT−1

Ma2

sT

Ma3

Ma0
Mc0

Mc2

Mc1Ma1

Mc3

Γ(sT−1)

Fig. 4. Schematic of computing label paths of the MCM convolutional
decoding algorithm

V. SIMULATIONS AND RESULTS

In this section, we present some simulation results in

terms of Bit Error Rate (BER) versus the Energy-per-Bit to

Noise ratio (Eb/N0) for different 2× 2-MIMO schemes. We

assume a block fading channel quasi-static on a frame of

L message bits and varying independently from one frame

to another. Fig.5 represents the performance results for the

differential Alamouti scheme concatenated with the Hamming



block code H(8, 4, 4) compared to our MCM scheme with

the same error-correcting code as proposed in section IV-A.

As a reference, we compare the non-coherent scheme with the

coherent Alamouti 2×2 scheme with the same Hamming block

code. The differential Alamouti scheme induce a loss about

4 dB at BER = 10−3 compared to the coherent Alamouti

scheme with the same error-correcting code. We remind that

our goal is to find new non-coherent scheme where the loss and

the detection complexity between coherent and non-coherent

scheme can be reduced.
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Fig. 5. MCM with Hamming (8, 4, 4) error-correcting code, L=128

At first glance, we can see that the performance of

the MCM scheme is far from that of the differential

Alamouti scheme. Nevertheless, computing the number of

operations (additions and multiplications) respectively needed

to decode the MCM schemes and the differential Alamouti

schemes gives the advantage for the first one (see Table I) in

terms of complexity. To simplify our study we use the 2 × 2
scheme with the Hamming (8, 4, 4) code but we can also

generalize it for other convolutional codes. Table I shows that

the MCM scheme is 8 times less complex than the differential

scheme. The loss of diversity gain between the Alamouti

scheme and the MCM scheme is due to the construction of

the invertible matrices of the Weyl group.

TABLE I
COMPLEXITY TABLES

nb of additions nb of multiplications

Differential Alamouti 1536 1536

MCM block scheme 128 192

The polynomial distribution of the Euclidean distances

based on the detection criteria of Eq.11 when using the

matrices of the Weyl group and the permutations given in

example 1 of section IV is given by:

DHblock(x) = 1 + 14x4 + x8 (15)

This polynomial distribution of the Euclidean distances also

represents that of the H(8, 4, 4) based on the Hamming

distance which is an important result.

Fig.6 shows the improvement of performance results for

the differential Alamouti scheme concatenated with a con-

volutional code compared to our MCM scheme described in

section IV-B always for L = 128. An advantage of the MCM

scheme is its ability to combine the space-time encoder with

a convolutional channel encoder and so to use an iterative

receiver.

The theoretical calculation of the polynomial distribution of

the Euclidean distances referring to the metric in Eq.14 gives

the follows :

DHconv(x) = 1 + 2x12 + x20 (16)

The minimal Hamming distance was 4 in Eq.15 for the MCM

block scheme while it is 12 in Eq.16 which is also a promising

result especially if we use another convolutional channel error-

correcting code suitable for the MCM scheme.

The MCM convolutional scheme with the Hamming convolu-

tional code does not perform well on the first iteration (λ, µ) =
(1, 0). But the second iteration with (λ, µ) = (0.5, 0.5)
improves the performance and an important gain of about 6dB
at BER = 10−3 appears. The most important gain compared

to the differential scheme is given by the third iteration with

(λ, µ) = (0, 1). We can see that the MCM convolutional

scheme is better than the differential Alamouti scheme with a

gain of 0.7dB at BER = 10−3. Also, the non-coherent MCM

scheme tends to its lower bound with perfect knowledge of CSI

with a loss of about 2dB at BER = 10−3 only. However,

the differential Alamouti scheme introduces a loss of about

4dB at BER = 10−3 compared to its lower bound which is

the coherent Alamouti scheme. We also notice that the MCM

scheme in the coherent case induces a loss of about 0.5dB at

BER = 10−3 compared to the Alamouti coherent scheme.

These results show the forcefulness of the MCM iterative

scheme in both coherent and non-coherent context. Currently,

we are working on generalizing the MCM scheme with the

Golay convolutional code with its unwrapped minimal tail-

biting trellis. Its construction is being under study. Using an

appropriate sets of cosets, permutations and another group of

invertible matrices will clearly improve the performance.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have described a new MIMO coding

scheme called Matrix Coded Modulation “MCM”, for trans-

mitting data over wireless communication channels with very

low decoding complexity for non-coherent systems. This new
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scheme presents a novel concept based on a joint channel-

coding, modulation and space-time coding which is different

from that of the classical schemes where the channel error-

correcting code and the STBC are serially concatenated. The

MCM scheme seems to be an attractive competitor of the

Alamouti scheme especially when it will be used with a good

error-correcting code and appropriate cosets and permutations.

In non-coherent context, the performance of this scheme is not

far from the existing ones such as the differential Alamouti

scheme, but the complexity of the proposed scheme is largely

reduced. Also a theoretical study of the MCM schemes based

on the calculation of the polynomial distribution of the de-

tection criteria was achieved. This calcultaion give promising

results allowing . The application of this MCM scheme would

be very interesting especially when used with an efficient

channel error-correcting code with a higher minimum Ham-

ming distance dmin like the Golay convolutional code [9]

or a Turbo code [5]. This new scheme can be generalized

for any convolutional code and any higher order modulations

and it seems that it may outperform the existing differential

schemes. The main goal of this research is to gain partially and

asymptotically the performance degradation of non-coherent

schemes compared to coherent ones but without any CSI at

the receivers and assuming a slow varying wireless channel.
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