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Abstract—A new joint channel-coding, modulation and space-
time coding scheme is proposed as a new multi-antenna Multi-
Input Multi-Output (MIMO) scheme called “Matrix Coded
Modulation” or “MCM”. The existing non-coherent schemes
such as the Differential Space-Time Modulation (DSTM) leads to
performance degradation compared to coherent systems in which
perfect channel state information (CSI) is assumed. Decoding in
the MCM schemes is performed iteratively, based on specified
detection criteria. This new scheme is also adapted for coherent
and non-coherent systems. The polynomial distribution of the
Euclidean distance based on the detection criteria depends on
the Hamming minimal distance of the channel-error correcting
code employed in the MCM scheme.

Keywords: MIMO systems, coherent, non-coherent, differential
space-time coding, channel coding, coded modulation, Euclidean
distance.

I. INTRODUCTION

Several techniques of data transmission over wireless

MIMO communication systems exist. In most practical sys-

tems, it has been assumed that perfect channel estimates

(CSI) are available at the receiver and coherent detection is

employed. In this case, pilot symbols are sent to estimate

the channel accurately. However, in some situations, it may

be costly or difficult to estimate this channel, especially in

a high-mobility environment. When CSI is not available at

either the transmitter or the receiver, non-coherent detection

is employed. In Single-Input Single-Output (SISO) systems,

Differential Phase Shift Keying (DPSK) can be applied. This

technique was extended to be suitable for non-coherent MIMO

schemes especially for Space-Time Block Codes (STBC) [7]

[9] or Space-Frequency Block Codes (SFBC) [18]. Non-

coherent detection was firstly proposed by Hochwald and

Marzetta in [13] [10] and uses unitary-space-time block codes.

More recently Hughes [12] has proposed differential transmit

diversity schemes for multiple antenna systems. For instance,

space-time differential modulation is used in the standard IEEE

IS-54 [4].

In some cases, differential schemes induce a loss of about

3dB compared to the coherent techniques [16] [17] [9]. The

main goal of this paper is to compare the new non-coherent

MCM scheme with existing differential scheme in order to par-

tially or totally recover this loss regarding to coherent schemes.

We propose the 2× 2 Alamouti differential scheme presented

in [11] concatenated with channel-error correcting code. In this

scheme, matrix ST is transmitted during 2 symbol-durations

Ts and is related to the previously transmitted matrix ST−1 by

the relation ST = ST−1VT . VT are unitary matrices verifying

VVH = VHV = I2, H is the hermitian operator “ transpose

and conjugate ” and I2 the 2 × 2 identity matrix. Many

differential detectors exist e.g. the Conventional Detector (CD)

and the Decision Feedback Differential Detection (DFDD)

[17]. The CD consists of finding the estimated information

matrix V̂T based on the received matrices YT and YT−1 such

as: V̂T = Arg max
(ṼT )

R⌉{Tr[Ṽ
H

T (YT−1)
HYT ]}. However, in all

the differential schemes, the fading is assumed to be constant

or quasi-static over a frame of L transmitted bits and vary

independently from one frame to another.

Based on a novel concept merging the error-correcting code

and the modulation in one function, we introduce in this paper,

a new MIMO coding scheme for any number of transmit and

receive antennas compatible with a coherent or a non-coherent

context. The outline of this paper is as follows: In section II,

we present the new MCM scheme in general form. In section

III, we introduce our 2 × 2 Matrix Coded Modulation(MCM)

scheme by presenting it with with the Hamming convolutional

code obtained by unwrapping the tail-biting trellis of the

Hamming H(n = 8, k = 4, dmin = 4) block code. In section

IV, we extend our MCM scheme with the systematic Golay

convolutional code obtained by unwrapping the tail-biting

trellis of the Golay G(n = 24, k = 12, dmin = 8) block code.

For each model, we compute the polynomial distribution of the

euclidian distance based on the appropriate detection criteria.

In section V, we present some results of simulations. Finally,

conclusions and perspectives are summarized in section VI.

II. MATRIX CODED MODULATION SYSTEM MODEL WITH

CHANNEL ERROR-CORRECTING CODE

In this paper we present a new MIMO scheme called ”Ma-

trix Coded Modulation or MCM” which consist of merging

channel-coding, modulation and space-time coding into one

function. Although we consider systems with Nt = 2 transmit

antennas and Nr = 2 receive antennas, we can generalize these

MCM schemes for any other Nt × Nr system. In Fig.1, we

show a general model of the MCM scheme. The encoded bits

are mapped directly into invertible Nt × T matrices without
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Fig. 1. MIMO-MCM2×2 system model

using the ordinary PSK modulation. The matrices of the

Weyl group Gw are considered in this paper [3]. The Weyl

group Gw [3] is very simply generated as a set of 12 cosets

(C0, C1, . . . , C11) each containing 16 invertible matrices. The

first coset C0 is defined as:

C0 =

{

α

[

1 0
0 ±1

]

, α

[

0 1
±1 0

] }

with α ∈ {+1,−1, +i,−i}. The 12 cosets of Gw are derived

from C0 as follows:

Ck = ak · C0 ∀ k = 0, 1, . . . , 11

where the matrices a0,a1, . . . ,a5 are respectively:

a0 =

[

1 0
0 1

]

, a1 =

[

1 0
0 i

]

, a2 = 1
√

2

[

1 1
1 −1

]

,

a3 = 1
√

2

[

1 1
i −i

]

, a4 = 1
√

2

[

1 i
1 −i

]

, a5 = 1
√

2

[

1 i
i i

]

.

and the matrices a6,a7, . . . ,a11 are given by:

ak+6 = ηak , with η = (1 + i)/
√

2 ∀k = 0, 1, . . . , 5.

When using the Weyl group matrices, the constellation of the

modulation (i.e. the possible complex values of the coeffi-

cients’ matrices) is {±1,±i, (±1± i)/
√

2, 0} which is noted

4-QAM ∪ 0. At time t, the symbol st
i of the matrix MT

is transmitted over the antenna i. In the MCM system, as the

dimensions of the matrices are Nt × T = 2 × 2, matrix MT

is transmitted in 2 symbol-durations Ts. The signal received

by antenna j is given by:

yt
j =

Nt
∑

i=1

ht
ijs

t
i + nt

j . (1)

where noises nt
j are modeled as independent samples of a

zero-mean complex circularly symmetric Gaussian random

variable with variance σ2. ht
ij is the complex path gain

between transmit antenna i and receive antenna j at time t.
These coefficients are modeled as independent samples of a

complex circularly symmetric Gaussian random variable with

zero mean and variance of 0.5 per dimension. The fading is

assumed to be constant over a temporal frame of length L×Ts

and varies from one frame to another. Writing in matrix form,

we obtain:

YT = HTMα + NT (2)

YT is the received matrix during 2 symbol-durations Ts on

the 2 antennas between instants T and (T + 2Ts). We assume

a uniform power allocation at the transmission in order to

maintain a constant radiated power on the average of a space-

time codeword duration.

The matrices of the Weyl group Gw are very useful to our

design. Firstly they are invertible and secondly they verify a

specific criteria called ”unique syndrome criteria” which vary

from one scheme to another depending on the error−correcting

code. In the matricial mapping block, the encoded bits are

mapped directly into matrices using the detection criteria

which is specific for each MCM scheme. This detection crite-

ria is detailed in the sections III and IV where MCM scheme

is used with the Hamming and Golay convolutional codes

respectively. To simplify our study, matrices are chosen from

the cosets C0 and C2. In fact, a preliminary study of the MCM

scheme was achieved using the small Hamming block code

H(8, 4, 4). In this particular model, the 4 useful information

bits are permuted with π0 : (0, 1, 2, 3) → (0, 1, 2, 3) and

then mapped into the coset C0. Similarly the 4 redundant bits

are permuted with π2 : (0, 1, 2, 3) → (0, 3, 2, 1) and then

mapped into the coset C2. The choice of the 2 permutations

(π0, π2) and the 2 cosets (C0, C2) is not arbitrary. It was

obtained by an exhaustive computing search. Indeed, having

16 possible codewords and 16 matrices in each coset, then for

any codeword (c0, c1, ..., c7) generated by the H(8, 4, 4), there

is a unique couple of matrices (Ma,Mb) ∈ C0 × C2 which

verifies the equation below :

Mα · M−1
a − Mβ ·M−1

b = 0 (3)

where (Mα,Mβ) ∈ C0×C2 are the transmitted matrices. The

Eq.3 has a unique solution:

(Ma,Mb) = (Mα,Mβ) ∈ Cp × Cq (4)

The 2×2 matrices Mα and Mβ are transmitted consecutively

on the 2 antennas during 4Ts. Signals arriving at the 2 receive

antennas undergo independent fading and can be expressed as

follows:

YT = HTMα + NT (5)

YT+1 = HT+1Mβ + NT+1 (6)

Assuming a constant block fading channel during 4Ts

(HT = HT+1), and with the unicity of solution in Eq.(3) the

implementation of the decoding algorithm consists of finding

the couple (M̂a, M̂b) solution of the following minimization:

(M̂a, M̂b) = Arg min
(Ma,Mb)

||YT M
−1
a − YT+1M

−1
b || (7)



where ||X||, the Hilbert norm, is equal to Trace(XX
H). With

the bijective relation between a codeword c and a couple

(Mα,Mβ) we can then provide the 8 “best” coded bits of

c and then the “best” 4 information bits. Computing the

polynomial distribution of the Euclidean distances based on

the detection criteria of Eq.7 we obtain:

DH(x) = 1 + 14x4 + x8. (8)

This polynomial distribution of the Euclidean distances also

represents that of the H(8, 4, 4) based on the Hamming

distance which is an important result. That is why it is

interesting to expand our study to adapt MCM schemes with

convolutional code with higher minimum Hamming distance

and using the same group of matrices. In the next 2 sections,

we will study the MCM scheme with the Hamming and Golay

convolutional code obtained by unwrapping the ’k-states’ tail-

biting trellies of the Hamming code(n = 8, k = 4, dmin = 4)
and the Golay code (n = 24, k = 12, dmin = 8) respectively.

III. MCM WITH THE HAMMING CONVOLUTIONAL CODE

We introduce below the 2 × 2-MCM scheme with

a small convolutional error-correcting code built by

unwrapping the 4-states “tail-biting” or circular trellis

of the Hamming code(n = 8, k = 4, dmin = 4).
Its small encoder is shown below in Fig.2.
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Fig. 2. Hamming convolutional 2-bits state encoder

Useful information bits are presented in sequence

(. . . , xt−1, xt, xt+1, . . .) and are encoded to produce

a sequence of redundant bits (. . . , rt−1, rt, rt+1, . . .).
In order to do the matricial mapping, information and

redundant bits are grouped by group of 4 bits such

as(xt, rt, xt+1, rt+1). Encoding and decoding algorithms

is done on a 4-state trellis whose branches are labeled

by 4 bits shown in Fig. 3. The pair of cosets (C0, C2)
and the permutations π0 : (0, 1, 2, 3) → (0, 1, 2, 3) and

π2 : (0, 1, 2, 3) → (0, 3, 2, 1) are used in the matricial

mapping block. Having 16 matrices in each coset and 16
possible combinations of 4 bits, each trellis section is a

complete bipartite graph. Each group of 4 bits on a branch

of the trellis has its proper corresponding matrix in the

appropriate coset. Matrices are selected alternatively in cosets

C0 and C2 and are then transmitted serially on the 2 antennas

(. . . ,MT−1,MT ,MT+1, . . .) ∈ . . . × C0 × C2 × C0 × . . ..
Fig. 4 explains the decoding algorithm of the Hamming MCM

(H-MCM) convolutional scheme. We use a variant of the

Viterbi algorithm [1] by modifying the metric computation
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Fig. 3. 4-state trellis of the convolutional Hamming code.

on each branch of the treillis such as:

γT (Mb)= min
(Ma,Mc)

{(λ‖YT−1Ma
−1 − 2YTMb

−1 + YT+1Mc
−1‖

+ µ‖YT − ĤTMb‖)} (9)

λ and µ are adaptive weights over iterations to merge the

minimization of the channel variations and the minimization of

the Euclidean distance between received and transmitted sig-

nals. When no CSI is available at the receivers, (λ, µ) = (1, 0).
Iterative decoding with an appropriate channel estimation

corresponds to (λ, µ) = (p, 1 − p) with 0 ≤ p ≤ 1. The

estimated values ĤT are the estimations of the channel matrix

associated with each branch of the trellis and they are given

by:

ĤT (M̂b) = (YT−1M̂a

−1
+ 2YTM̂b

−1
+ YT+1M̂c

−1
)/4
(10)

After evaluating the metrics of the branches γT (Mb), we com-

pute the metric states classically as in the Viterbi algorithm:

Γ(sT ) = min
Mb

(Γ(sT−1) + γT (Mb)) (11)

γT (Mb)

Mb

Γ(sT )

sT−1

Ma2

sT

Ma3

Ma0
Mc0

Mc2

Mc1Ma1

Mc3

Γ(sT−1)

Fig. 4. Schematic of computing label paths of the MCM Hamming
convolutional decoding algorithm

The polynomial distribution of the Euclidean distances

referring to the metric in Eq.11 is:

DHamming(X) = 1. + 2X12 + X20 (12)
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IV. MCM WITH GOLAY CONVOLUTIONAL CODE

In this section, we present a new encoder/decoder of the
MCM scheme with a new form of the Golay convolutional
code built by unwrapping the 16−states tail-biting trellises
of the Golay(24, 12, 8) block code first described in [14]
[15]. A Tanner graph of the code(40, 20, 8) based on the
construction detailed in [14] is showed in Fig.5. Each con-
straint (Ai, Bi, Ci) has 4 input bits (xi, xi+1, xi+2, xi+3) and
4 output bits (ri, ri+1, ri+2, ri+3).
From this code, we can derive a 16-states section trellis
built from an horizontal slice of constraints (Ai, Bi, Ci), each
section being connected to 4 bits of information and 4 bits of
redundancy [14]. The corresponding state encoder is shown in
Fig.6. This encoder transforms a 5 × 4 = 20 information bits
(Xt, Xt−1, Xt−2, Xt−3, Xt−4) sliding window into a sliding
window in systematic form of 4 information bits and 4 redun-
dant bits(Rt−2, Xt−2). Thereafter we give the transpose of the
generator matrix G

T which transforms the 20 information bits
(x0, x1, . . . , x19) into the 4 redundant bits (r8, r9, r10, r11) in
Fig.5.

G
T
=







1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1
0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 1
1 1 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0
1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1







This matrix G is the generator matrix of the Golay convo-

lutional encoder of Fig.6. In the Golay-MCM convolutional

scheme (G-MCM), each branch of trellis (Fig.7) is labeled by

a group of 8 coded bits (Rt−2, Xt−2) which correspond to

the transmission of 2 matrices (Ma, Mb) ∈ (C0 × C2). Using

the same decoding algorithm as the H-MCM we compute the

new branch metric as:

γT (Ma
T ,Mb

T ) = min
((Ma

T−1
,Mb

T−1
),(Ma

T+1
,Mb

T+1
))

λ(‖MT−1 − 2MT + MT+1‖)
+λ(‖PT−1‖ + ‖PT‖ + ‖PT+1‖)

+µ(‖Ya
T − Ĥ

a
TM

a
T ‖ + ‖Yb

T − Ĥ
b
TM

b
T ‖) (13)

where

MT = Y
a
T (Ma

T )−1 + Y
b
T (Mb

T )−1

PT = 2Ya
T (Ma

T )−1 − 2Yb
T (Mb

T )−1

D D DD
Xt Xt−1 Xt−2 Xt−3 Xt−4

(X − tXt−1Xt−2Xt−3Xt−4).G

Rt−2, Xt−2

MUX

Fig. 6. State machine of the systematic Golay convolutional encoder

Like the H-MCM scheme, λ and µ are adaptive weights

over iterations. Ĥ
a
T and Ĥ

b
T are the estimated values of the

channel matrix associated with each branch of the trellis and

they are given by:

Ĥ
a
T (M̂a

T ) = [Ya
T−1(M̂

a
T−1)

−1 + Y
b
T−1(M̂

b
T−1)

−1

+2Ya
T (M̂a

T )−1 + Y
a
T+1(M̂

a
T+1)

−1 + Y
b
T+1(M̂

b
T+1)

−1]/6 (14)

Similarly for Ĥ
b
T :

Ĥ
b
T (M̂b

T ) = [Ya
T−1(M̂

a
T−1)

−1 + Y
b
T−1(M̂

b
T−1)

−1

+2Yb
T (M̂b

T )−1 + Y
a
T+1(M̂

a
T+1)

−1 + Y
b
T+1(M̂

b
T+1)

−1]/6 (15)

The polynomial distribution of the Euclidean distances be-

tween coded sequence of signals based on the metric criteria

of Eq.13 is:

DGolay(X) = 1+2X52+2X56+2X68+X72+4X84+4X88

(16)

The minimal distance for G-MCM convolutional code is now

52 while it was 12 for the H-MCM convolutional code. This

will improve clearly the performance as we will see later in

the discussion of simulations results.
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Fig. 7. Schematic of computing label paths of the MCM Golay convolutional
decoding algorithm

V. SIMULATIONS AND RESULTS

Fig.8 shows simulation results in terms of

Bit Error Rate (BER) versus the Energy-per-Bit to Noise

ratio(Eb/N0) for different 2 × 2-MIMO schemes. We

assume a quasi-static block fading channel on a frame of

L = 128 message bits and varying independently from one

frame to another. H-MCM and G-MCM refers to Hamming

convolutional MCM and Golay convolutional MCM schemes

described in section III and IV respectively. We compare

the non-coherent MCM schemes with the 2 × 2differential



Alamouti concatenated with the same convolutional code and

in which the conventional detector (CD) described in section

I is the detection criteria.

When perfect CSI is assumed, we notice that the H-MCM

scheme induces a loss of about 0.5dB at BER = 10−3

compared to the Alamouti coherent scheme. However the G-

MCM scheme induces a coding gain of about 0.25dB at

BER = 10−3 compared to the 2 × 2 Alamouti since the

Golay convolutional has a higher constraint length. When

no channel information is available at receivers, the MCM

convolutional scheme doesn’t perform well on the first itera-

tion (λ, µ) = (1, 0) compared with the differential Alamouti

systems. The G-MCM scheme present a significant gain of

about 3dB at BER = 10−2 in comparison to H-MCM

scheme. This can be explained referring to Eq.16 and Eq. 13

in which we found that the minimal Euclidean distance of

the G-MCM scheme is 52 while it is 12 for the Hamming

convolutional scheme. When using channel estimates in a

second iteration (λ, µ) = (0.5, 0.5), performance of H-MCM

and G-MCM schemes are both improved especially at high

Eb/N0. Although we didn’t use pilot symbols for the channel

estimation, the performance of G-MCM scheme tends to the

differential Alamouti scheme. the 2 described MCM schemes

don’t reach the performance of differential Alamouti scheme

from the first iteration, it is clear that with more iterations and

with a better channel estimates, performance may be improved.
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Fig. 8. MCM with Hamming and Golay convolutional code, L=128

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have described a new MIMO coding

scheme called Matrix Coded Modulation “MCM”, merging

MIMO encoding and coded modulation in order to transmit

data over wireless communication channels without inserting

pilot symbols to estimate the channel. The application of this

MCM scheme would be very interesting especially when used

with an appropriate channel error-correcting code with a high

minimal Hamming distance. The relation between the minimal

Hamming distance of the channel error correcting code and the

minimal Euclidean distance referring to the detection criteria is

being under study. Also a study of the construction of matrices

is a future goal to optimize this new scheme in terms of

diversity and coding gain. The goal of this research is to gain

partially and asymptotically the performance degradation of

non-coherent existing schemes compared to coherent ones but

without any CSI at the receivers and assuming a slow varying

wireless channel.
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