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Abstract

A one-dimensional tile with overlaps is a standard finite word that carries
some more information that is used to say when the concatenation of two tiles
is legal. Known since the mid 70’s in the rich mathematical field of inverse
monoid theory, this model of tiles with the associated partial product have yet
not been much studied in theoretical computer science despite some implicit
appearances in studies of two-way automata in the 80’s.

In this paper, after giving an explicit description of McAlister monoid,
we define and study several classical classes of languages of tiles: from rec-
ognizable languages (REC) definable by morphism into finite monoids up to
languages definable in monadic second order logic (MSO).

We show that the class of MSO definable languages of tiles is both simple:
these languages are finite sums of Cartesian products of rational languages,
and robust: the class is closed under product, iterated product (star), inverse
and projection on context tiles. A equivalent notion of regular expression is
deduced from these results.

The much smaller class of REC recognizable languages of tiles is then
studied. We describe few examples and we prove that these languages are
tightly linked with covers of periodic bi-infinite words.

1 Introduction

1.1 Background
In this paper, we study languages of one-dimensional discrete overlapping tiles.
These tiles already appear in the 70’s as elements of McAlister’s monoid in the rich
mathematical field of inverse monoid theory (see 9.4. in [7]). In particular, though
sometimes implicitly, they are used for studying the structure of (zigzag) covers of
finite, infinite or bi-infinite words [1]. McAlister’s monoid also appears in studies
of the structure of tiling (in the usual sense with no overlaps) of the d-dimensional
Euclidian space IRd [6, 1].

In a field more closely related with computer science, overlapping tiles also appear
decades ago in study of two-way automata on words (they are called word bisections
in [11]). But there the underlying monoid structure is left at most implicit. Only
recently, it has been shown that one can relevantly defined two-way word automata
semantics by mapping partial runs to elements of McAslister’s Monoid [3].

Oddly enough to be mentioned, our interest in studying languages of positive tiles
came from application perspectives in computational music theory [5]. In particular,
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tiles and their continuous variants, can be used to describe advanced synchronization
mechanisms between musical patterns [2].

Our purpose here is to provide the computer science flavored basis for the sys-
tematic study of languages of tiles. In this paper, we especially focus our attention
on characterizing two classical classes of languages that are defined on tiles. The
class REC and the class MSO. It must be mentioned that the study of other inter-
mediate classes of languages such as the class of languages definable by means of
Kleene’s regular expressions, in connection with two-way automata, can be found
in a compagnon paper [3].

1.2 Outline
We first define the monoid of overlapping tiles and prove it isomorphic to the inverse
monoid of McAlister. Three classes of languages of tiles are then considered:

• the class REC of languages definable as pre-images of monoid morphisms into
finite monoids,

• the class REGC of languages definable by means of finite Kleene’s regular
expressions extended with some inverse and context projection operators,

• the class MSO of languages of tiles definable by means of formula of monadic
second order logic.

The largest class MSO is shown to be both simple: these languages are finite sums
of Cartesian products of rational languages of words (Theorem 4), and robust: this
class is closed under sum, product, star, inverse and context projection operators
(Theorem 5). As a consequence of robustness, we show that REGC ⊆MSO (corol-
lary 6). As a consequence of simplicity, we show that MSO ⊆ REGC (corollary 7).
.

The class REC is studied in the last part. Compared to the classMSO, it really
collapses. A simple example shows that it is strictly included intoMSO (Lemma 8).
Still a non trivial example of an onto morphism from the monoid of tiles to a finite
monoid is provided (Theorem 11). It illustrates the fact, generalized in Theorem 12,
that recognizable languages of tiles are necessarily sort of languages of covers of
finitely many bi-infinite words.
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1.3 Preliminaries
The free monoid. Given a finite alphabet A, A∗ denotes the free monoid generated
by A, 1 denotes the neutral element. The concatenation of two words u and v is
denoted by uv.

Prefix and suffix lattices. ≤p stands for the prefix order over A∗, ≤s for the
suffix order. ∨p (resp. ∨s) denotes the joint operator for the prefix (resp. suffix)
order: thus for all words u and v, u∨p v (resp. u∨s v) is the least word whose both
u and v are prefixes (resp. suffixes).

The extended monoid A∗+ {0} (with 0u = u0 = 0 for every word u), ordered by
≤p (extended with u ≤p 0 for every word u), is a lattice; in particular, u ∨p v = 0
whenever neither u is a prefix of v, nor v is a prefix of u. Symmetric properties hold
in the suffix lattice.

Syntactic inverses. Given A a disjoint copy of A, u 7→ u denotes the mapping
from (A+A)∗ to itself inductively defined by 1 = 1, for every letter a ∈ A, a is the
copy of a in A and a = a, for every word u ∈ (A + A)∗, au = u.a. The mapping
u 7→ u is involutive (u = u for every word u); it is an antimorphism of the free
monoid (A+ A)∗, i.e. for all words u and v ∈ (A+ A)∗, uv = v.u.

Free group. The free group FG(A) generated by A is the quotient of (A+ A)∗
by the least congruence ' such that, for every letter a ∈ A, aa ' 1 and aa ' 1.

2 The monoid of overlapping tiles
We give in this section a description of the monoid of overlapping tiles. It is shown
to be isomorphic to McAlister’s monoid [8].

2.1 Positive, negative and context tiles
A tile over the alphabet A is a triple of words u = (u1, u2, u3) ∈ A∗× (A∗+A

∗)×A∗
such that, if u2 ∈ A

∗, its inverse u2 is a suffix of u1 and a prefix of u3. When u2 ∈ A∗
we say that u is a positive tile. When u2 ∈ A

∗ we say that u is a negative tile. When
u2 = 1, i.e. when u is both positive and negative, we say that u is a context tile.

A positive tile u = (u1, u2, u3) is conveniently drawn as a (linear, unidirectional
and left to right) Munn’s birooted word tree [10]:

u1 u3u2

where the dangling input arrow (marking the beginning of the root) appears on the
left of the dangling output arrow (marking the end of the root). A negative tile of
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the form u = (u1u2, u2, u2u3) ∈ A∗×A∗×A∗ is also drawn as a birooted word tree
u1 u3u2

where the dangling input arrow appears on the right of the dangling output arrow.
A context tile of the form u = (u1, 1, u3) ∈ A∗ × 1× A∗ is then drawn as follows:

u1 u3

The domain of a tile u = (u1, u2, u3) is the reduced form of u1u2u3 (always a word
of A∗). Its root is the word u2.

Sets TA, T+
A , T−A and CA will respectively denote the set of tiles, the set of positive

tiles, the set of negative tiles and the set of context tiles over A.

2.2 A product of tiles
Intuitively, the sequential product of two tiles is their superposition in such a way
that the end of the root of the first tile coincides with the beginning of the root of
the second tile; the superposition requires pattern-matching conditions to the left
and to the right of the synchronization point. When both tiles are positive, this can
be drawn as follows:

u1 u3u2
v1 v3v2

sync

The product can be extended to arbitrary tiles, as illustrated by the following figure
(positive u and negative v):

u1 u3u2
v1 v3v2

sync

Formally, we extend the set TA with a zero tile to obtain T 0
A = TA + {0}. The

sequential product of two non-zero tiles u = (u1, u2, u3) and v = (v1, v2, v3) is defined
as

u.v = ((u1u2 ∨s v1)u2, u2v2, v2(u3 ∨p v2v3))

when both u1u2 ∨s v1 6= 0 and u3 ∨p v2v3 6= 0, and u.v = 0 otherwise, where, in this
formula, words in (A+A)∗ are implicitly considered as reduced elements of FG(A).
We also let u.0 = 0.u = 0 for every u ∈ T 0

A.
Remark. Let a, b, c and d ∈ A be distinct letters. Then (a, b, c).(b, c, d) = (a, bc, d)
whereas (a, b, c).(a, c, d) = 0. In the latter case, the left matching constraint is
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violated because a 6= b.
Set T 0

A equipped with the above sequential product is a monoid. But the proof
of that fact is postponed to the proof that it is even isomorphic to the monoid of
McAlister.

2.3 The inverse monoid of McAlister
McAlister’s monoid is defined as the quotient of the free inverse monoid FIM(A)
by the ideal ⊥ of non unidirectional and non linear tiles.

More precisely, following Munn’s result [10], elements of FIM(A) are seen as
birooted word trees, i.e. pairs (P, u) where P is a non empty finite and prefix-closed
subset of (reduced elements of) the free group FG(A) generated by A, with u ∈ P .
The product of two birooted trees (P, u) and (Q, v) is defined by (P, u).(Q, v) =
(P ∪ uQ, uv).

A birooted word tree (P, u) is said unidirectional when P ⊆ A∗ + A
∗, and lin-

ear when both P ∩ A∗ and P ∩ A∗ are totally ordered by the prefix order. It is
straightforward that the set ⊥ of non-unidirectional or non-linear birooted trees is
an ideal.

The monoid of McAlister is then defined as the Rees quotient FIM(A)/⊥, i.e.
the monoid obtained from FIM(A) by merging into a single zero all elements of ⊥.
In that monoid, given two linear and unidirectional birooted word trees (P, u) and
(Q, v), the product of these two tiles is defined to be (P ∪ uQ, uv) as in FIM(A)
when the resulting birooted tree is linear and unidirectional, and 0 otherwise.

Theorem 1 The set T 0
A equipped with the sequential product is a monoid isomorphic

to the monoid of McAlister.

Proof. (sketch of) For all non zero tile u = (u1, u2, u3) ∈ TA let tu = (Pu, u2) be the
resulting birooted tree defined by Pu = {x ∈ A∗ : x ≤p u1} ∪ {x ∈ A∗ : x ≤p u2u3}.

We observe that tu is a well-defined unidirectional and linear birooted tree. In-
deed, when u is a positive tile, we have u2 ≤ u2u3 hence u2 ∈ Pu. When u is a
negative tile, i.e. with u2 ∈ A

∗ we have both u1u2 and u2u3 ∈ A∗ and thus u2 ≤p u1
hence u2 ∈ Pu.

We conclude then by showing that the mapping ϕ : T 0
A → FIM(A)/⊥ defined

by ϕ(0) = 0 and for any non-zero tile u = (u1, u2, u3) ∈ TA, ϕ(u) = (Pu, u2) is an
isomorphism.

First, it is easy to check that it is a bijection. In fact, given a linear and unidirec-
tional tile (P, u) one check that ϕ−1((P, u)) is the tile (u1, u2, u3) defined by u2 = u,
u1 = ∨

s P ∩ A
∗ and u3 = u2

∨
p P ∩ A∗.
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It remains to show ϕ preserves products. For this, it is enough to check that
for any two non zero tiles u = (u1, u2, u3) and v = (v1, v2, v3) ∈ TA, one indeed has
tu.v = (Pu ∪ u2Pv, u2v2) which essentially follows from definitions. 2

Corollary 2 Monoid T 0
A is an inverse monoid with (pseudo) inverses given by 0−1 =

0 and for every non zero tile u = (u1, u2, u3) ∈ TA, u−1 = (u1u2, u2, u2u3).

Proof. (sketch of) For every u = (u1, u2, u3) ∈ TA, given tu = (Pu, u2), this amounts
to check that tu−1 = (tu)−1 = (u2Pu, u2) and thus this just amounts to check that
u2Pu = Pu−1 . 2

An immediate property worth being mentioned:

Lemma 3 The mapping u 7→ (1, u, 1) from A∗ to TA is a one-to-one morphism and
monoid T 0

A is finitely generated from image of letters of A and their inverses.

In other words, the free monoid A∗ can be seen as a submonoid of T 0
A. In the

remainder of the text we may use the same notation for words of A∗ and their
images in T 0

A.
One can also observe that positive (resp. negative) tiles extended with 0 form

a submonoid T+0
A (resp. T−0

A ) of T 0
A. However, this submonoid is not finitely gen-

erated. One need extra operators called canonical left and right context. For every
u = (u1, u2, u3) ∈ T+, let uL = u−1u = (u1u2, 1, u3), the canonical left context tile
associated to tile u and let uR = uu−1 = (u1, 1, u2u3), the canonical right context
tile associated to tile u. By construction uRu = uuL = u.

3 MSO-definable and regular languages of tiles
We consider in this section the class MSO of languages of tiles definable by means
of monadic second order formulae.

3.1 MSO definability
We need FO-models for positive tiles. For this, we use a typical encoding of words
into FO-structures that amounts to encode each letter a ∈ A as a relation between
elements of the domain. This way, there is no need of end markers and the empty
word is simply modeled by the structure with singleton domain and empty relations.
Then we raise models of words to models of tiles just by marking (as pictured in
birooted trees) entry and exit points.
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For instance, the triple u = (ba, aa, bb) is modeled as indicated by the following
picture

b a a a bb

where, as before, a dangling input arrow marks the entry point and a dangling
output arrow marks the exit point.

The model of a tile u is denoted by tu. The associated domain of its underlying
FO-structure is written dom(tu), the entry point in written in(tu) and the exit point
is written out(tu).

A language L ⊆ TA is MSO definable when there is a MSO formula of the form
ϕL(U, x, y) where U is a set variable and x and y are two FO-variables such that,
for all t ∈ TA, t ∈ L if and only if t |= ϕL(dom(t), in(t), out(t)).

3.2 A word congruence for languages of tiles
We aim at achieving a simple characterization of MSO definable language of tiles.
For this purpose, we first define a notion of congruence relation over A∗ which is
defined for all language of tiles. It occurs that this congruence is of finite index if
and only if the language of tile is definable in MSO.

Given a language L ⊆ TA on non zero tiles, we define the word congruence 'L

associated to L that tells when two words can be replaced one by the other in any
tile without altering membership in L.

Formally, 'L is the least relation over words such that, for all u0 and v0 ∈
A∗, u0 'L v0 when for all w0, w2, w3 and w4 ∈ A∗, if u = (w1u0w2, w3, w4) and
v = (w1v0w2, w3, w4), or if u = (w1, w2u0w3, w4) and v = (w1, w2v0w3, w4), or if
u = (w1, w2, w3u3w4) and v = (w0, w2, w3v3w4) then u ∈ L⇔ v ∈ L and u−1 ∈ L⇔
v−1 ∈ L.

Relation 'L is a congruence on words. For every for u ∈ A∗, let [u]L be the
equivalence class of u defined by [u]L = {v ∈ A∗ : u 'L v}.

Theorem 4 For every language L ⊆ TA of non zero tiles:

L = Σ(u1,u2,u3)∈L∩T +
A

[u1]L × [u2]L × [u3]L
+Σ(u1,u2,u3)−1∈L∩T −

A
([u1]L × [u2]L × [u3]L)−1

Moreover, L is definable in MSO if and only if relation 'L is of finite index.

Proof. The first statement is an immediate consequence of the definition of 'L.
Moreover, if 'L is of finite index, then this sum is finite, and any language of the
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form [w]L ⊆ A∗ with w ∈ A∗ is rational henceforth MSO definable. It follows that
L is thus definable in MSO.

Conversely, assume L is definable in MSO. Given L+ = L∩T+
A and L− = L∩T−A ,

we observe that both L+ and (L−)−1 ⊆ A∗×A∗×A∗ can be encoded into languages
of words M+ and M− ⊆ A∗LA

∗
CA
∗
R where AL, AC and AR are three disjoint copies

of the alphabet A for encoding the left, center and right elements of each tiles.
Now, since L is definable in MSO, so are L+ and L− and thus, their encoding

M+ and M− are also definable in MSO. By Büchi theorem, this means that they
are regular and thus their syntactic congruences 'M+ and 'M− are of finite index.
This implies that 'L is also of finite index. Indeed, for all word u and v ∈ A∗, we
have u 'L v if and only if uX 'M+ vX and uX 'M− vX for X being L, C or R and
with wX denoting the renaming of any word w ∈ A∗ in the copy alphabet AX . 2

3.3 Extended regular languages
For every langage L and M ⊆ TA, let L + M = L ∪M , L.M = {u.v ∈ TA : u ∈
L, v ∈ M,u.v 6= 0}, L∗ = ⋃

k≥0 L
k, L−1 = {u−1 ∈ TA : u ∈ L} and LC = {u ∈ TA :

u ∈ L ∩ CA} (called context projection).

Theorem 5 For every languages L and M ⊆ TA on non zero tiles, if L and M are
MSO definable then so are L+M , L.M , L∗, L−1 and LC.

Proof. Let ϕL(U, x, y) and ϕM(U, x, y) be two formulae defining respectively the
language of tiles L and M . We assume that these formulae also check that both x
and y belongs to U that, moreover, U is connected.

Case of L+M : take ψ(U, x, y) defined by ϕL(U, x, y) ∨ ϕM(U, x, y).
Case of L.M : take ψ(U, x, y) stating that there exist two sets X and Y such that

U = X ∪ Y and there is z such that both ϕL(X, x, z) and ϕM(Y, z, y) hold.
Case of L∗: in order to define ϕ(U, x, y), the main idea is to consider the reflexive

transitive closureR+(x, y) of the binary relationR(x1, x2) defined by ∃XϕL(X, x1, x2);
one must take care, however, that set U is completely covered by (sub)tiles’ domains;
this is equivalent to the fact, as domains necessarily overlap, that each extremity
(left most or right most element) of the domain U belongs to one of these sets X at
least. This is easily encoded by a disjunction of the three possible cases: extremi-
ties are reached in a single intermediate tile, left extremity is reached first or right
extremity is reached first.

Case of L−1: take ψ(U, x, y) defined by ϕL(U, y, x).
Case of LC : take ψ(U, x, y) defined by (x = y) ∧ ϕL(U, x, y). 2
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Let then REGC be the class of extended regular languages of tiles that is the
class of languages definable by means of finite sets of non zero tiles, sum, product,
iterated product (or star), inverse and context projection.

Since finite tile languages are indeed definable in MSO we can state the following
corollary of Theorem 5:

Corollary 6 Every extended regular languages of tiles is MSO definable.

Moreover, since for every regular languages L, M and R ⊆ A∗, one has L×C×R =
(L−1.L)C .M.(R.R−1)C where, on the right side, words are embedded into tiles as in
Lemma 3, we can also state immediate corollary of Theorem 4:

Corollary 7 Every MSO definable languages of tiles is extended regular.

In other words, REGC = MSO.
Observe that, in the above proof, we use the fact that for every languages L ⊆ A∗

of (embeddings of) words into tiles, (L.L−1)C = {uu−1 : u ∈ L} and (L−1.L)C =
{u−1u : u ∈ L}. This property is not true for arbitrary languages of TA.

4 Recognizable languages of tiles
In this section, we consider languages of tiles that are recognizable in the algebraic
sense. Although the theory of tiles can be seen as part of the theory of inverse
monoid, the results we obtain rather differ from the former studies of languages of
words recognized by finite inverse monoids [9] or free inverse monoid languages [12].
Morphisms from T 0

A (or even T+0
A ) to arbitrary monoids turns out to be even more

constraints than morphisms from A∗ to finite inverse monoids.

4.1 A non recognizable language of tiles
The next result, negative, tells us that rather simple (MSO definable) languages of
tiles are not recognizable.

Lemma 8 Language L = {(bam, an, 1) ∈ T 0
A : m,n ∈ IN} with a and b two distinct

letters, is not recognizable.

Proof. We prove that the syntactical congruence 'L (and not the word congruence
defined above) associated to L in T 0

A is of infinite index.
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For all m ∈ IN, let um be the tile um = (bam, 1, 1). It is an easy observation that
for all m and n ∈ IN, um 'L un if and only if m = n hence the claim. Indeed, for
all k ∈ IN let vk = (ak, 1, 1). We have for any given m ∈ IN, umvk ∈ L if and only
if k ≤ m. Now if for some m and n ∈ IN one has um 'L un then for all k ∈ IN,
umvk ∈ L if and only if unvk ∈ L. It follows that, for all k, k ≤ m if and only if
k ≤ n, hence m = n. 2

Since language L defined above is obviously MSO, we have:
Corollary 9 REC 6= MSO

4.2 A (non-trivial) recognizable language
Before studying in the next section recognizable languages in full generality, we
provide in this section a non trivial example of such a language. It illustrates the
main characteristic of all recognizable languages of tiles : a strong link with tiles’s
cover of periodic bi-infinite words.

Building such an example essentially amounts to provide a (onto) monoid mor-
phism from T 0

A onto some non-trivial finite (inverse) monoid M . Here, the main
idea is to type tiles, by means of a monoid morphism, according to their capacity
to cover the bi-infinite word ω(ab)(ab)ω with a and b two distinct letters.

In order to do so, let M = {0, 1, (a, 1, b), (b, 1, a), (b, a, b), (a, b, a)} with product
� defined as expected for 0 and 1 and defined according to the following product
table:

� (a, 1, b) (b, 1, a) (b, a, b) (a, b, a)
(a, 1, b) (a, 1, b) 0 0 (a, b, a)
(b, 1, a) 0 (b, 1, a) (b, a, b) 0
(b, a, b) (b, a, b) 0 0 (b, 1, a)
(a, b, a) 0 (a, b, a) (a, 1, b) 0

Lemma 10 Monoid (M,�) is an inverse monoid.
Proof. We easily check that product � is associative hence M is a monoid. Given
E(M) = {0, 1, (a, 1, b), (b, 1, a)} the set of idempotents of S, the commutation of
idempotents immediately follows from unique non trivial case (a, 1, b) � (b, 1, a) =
(b, 1, a) � (a, 1, b) = 0. Last, we check that (a, b, a) � (b, a, b) � (a, b, a) = (a, b, a)
and (b, a, b) � (a, b, a) � (b, a, b) = (b, a, b). It follows that (a, b, a)−1 = (b, a, b) and
(b, a, b)−1 = (a, b, a). All other element is idempotent and thus self-inverse. 2

The expected monoid morphism ϕ : T 0
A → M is then defined by ϕ(0) = 0,

ϕ(1) = 1 and for all (u, v, w) ∈ T 0
A such that uvw 6= 1, ϕ(u, v, w) = 0 when uvw is

not a factor of (ab)ω and, otherwise, when u is a positive tile:
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1. ϕ(u, v, w) = (a, 1, b) when |v| is even with a ≤s u,b ≤p v, a ≤s v or b ≤p w,

2. ϕ(u, v, w) = (b, 1, a) when |v| is even with b ≤s u,a ≤p v, b ≤s v or a ≤p w,

3. ϕ(u, v, w) = (b, a, b) when |v| is odd with a ≤p v,

4. ϕ(u, v, w) = (a, b, a) when |v| is odd with b ≤p v,

and ϕ(u, v, w) = (ϕ(uv, v, vw))−1 when (u, v, w) is a negative tile.

Theorem 11 The mapping ϕ : T 0
A →M is a onto morphism.

Proof. This follows from the fact that, for all u and v ∈ T 0
A, ϕ(u)�ϕ(v) = ϕ(uv) =

ϕ(ϕ(u)ϕ(v)). 2

Given LS = (ab)∗ + b(ab)∗, given LC = (ab)∗, given LP = (ab)∗ + (ab)∗a, this
theorem says, in particular, that the non trivial tile language LS × LC × LP − 1 is
recognizable since it equals ϕ−1((b, 1, a)).

4.3 More on recognizable languages of tiles
We conclude our study by showing that recognizable languages of tiles are essentially
generalization of the example described above: languages of REC are essentially
definable out of finitely many periodic bi-infinite words.

Let ϕ : T 0
A → M be a monoid morphism with finite M . Since we can always

restrict M to ϕ(T 0
A) and ϕ(0) is a zero in the submonoid ϕ(T 0

A), we assume, without
loss of generality, that M = ϕ(T 0

a ) with ϕ(0) = 0. Now, by complement, under-
standing the structure of languages of tiles recognizable by ϕ amounts to understand
the structure of languages of the form ϕ−1(s) for all non-zero element s ∈ S.

Moreover, we can restrict our attention to recognizable languages of positive
tiles. It can indeed by shown that ϕ(T 0

A) is necessarily an inverse monoid and, for
every s ∈M − 0, ϕ−1(s) = ϕ−1(s) ∩ T+

A + (ϕ−1(s−1) ∩ T+
A )−1.

In the theorem below, we even consider the more difficult case of a onto monoid
morphism ϕ : T+0

A → M from the submonoid of positive tiles to a finite monoid
M . However, in order to avoid undesirable effect due to the fact that, contrary to
T 0

A, T+0
A is not finitely generated, we assume that ϕ is safe in the sense, for every

u ∈ T+
A , if ϕ(u) 6= 0 then both ϕL(u) = ϕ(u−1u) 6= 0 and ϕR(u) = ϕ(uu−1) 6= 0.

One can check that an onto morphism from all tiles T 0
A to a monoid M is always

safe.

12



Theorem 12 Let ϕ : T+0
A → M be a safe monoid morphism. Let s ∈ M be a

non-zero element. Let Ls = ϕ−1(s). There is x ∈ A∗, y ∈ A+ and k ≥ 0 such that,
either Ls is finite with Ls ⊆ {u ∈ T+

A : v ≤ u} for some v ∈ T+
A or Ls is a co-finite

subset of one of the following set of non-zero tiles:

1. S(ω(xy))× x× P (w) for some finite w <p (yx)ω,

2. S(w)× x× P ((yx)ω) for some finite w <s
ω(xy),

3. S(ω(xy))× x× P ((xy)ω),

4. or S(ω(xy))× x(yx)k(yx)∗ × P ((yx)ω),

with, for all w ∈ A∗ + ωA, S(w) = {z ∈ A∗ : z <s w}, i.e. the set of strict suffix of
w, and for all w ∈ A∗ + Aω, P (w) = {z ∈ A∗ : z <p w}, i.e. the set of strict prefix
of w.

In all cases, tiles of Ls are compatible with the bi-infinite periodic word ω(xy)x(yx)ω.

Proof. The rest of this section is dedicated to the proof of this theorem. In order to
do so, we first prove several closure properties of Ls.

Lemma 13 For all u = (u1, u2, u3) ∈ Ls and v = (v1, v2, v3) ∈ Ls, (u1∨sv1, u2, u3) ∈
Ls and (u1, u2, u3 ∨p v3) ∈ Ls.

Proof. We know that (v1)Lv = v hence (v1)u ∈ Ls since ϕ((v1)Lv) = ϕL(v1)ϕ(v) =
ϕL(v1)ϕ(u) = ϕ((v1)Lu). Moreover, 0 /∈ Ls hence (v1)Lu = (u1 ∨s v1, u2, u3) with
u1 ∨S v1 6= 0. Symmetrical arguments prove the prefix case. 2

Lemma 14 For all u = (u1, u2, u3) and v = (v1, v2, v3) ∈ Ls such that |u2| ≤ |v2|,
either u2 = v2 or there exists x ∈ A∗, y ∈ A+ and k ≥ 0 such that u2 = x(yx)k,
v2 = x(yx)k+1. In that latter case, there is u′ ∈ Ls such that u′((xy)C)∗ ⊆ Ls.

Proof. Let u and v as above. We have (v2)Rv(v2)L = v hence, by a similar argument
as in Lemma 13, (v2)Ru(v2)L ∈ Ls. Since |u2 ≤ |v2| this means that u2 ≤p v2 and
u2 ≤s v2, i.e. roots of elements of Ls are totally by both prefix and suffix.

In the case u2 6= v2 this means v2 = wu2 = u2w
′ for w and w′ ∈ A+. Let then

k ≥ 0 be the greatest integer such that |wk| < |u2|.
When k = 0, this means w = u2y for some y ∈ A∗ and we take x = u2.

Otherwise, by a simple inductive argument over k, this means u2 = wkx for some
x ∈ A∗ with |x| < |w|. In that latter case, we have v2 = wk+1x = wkxw′. Since

13



|w′| = |w| it follows that w′ = yx for some y ∈ A+ and thus w = xy. In all cases,
u2 = x(yx)k and v2 = x(yx)k+1.

By applying Lemma 13, with v′1 = u1∨s v1, v′3 = u3∨p v3 and v′ = (v′1, v2, v
′
3), we

have v′ ∈ Ls. But we known that (v2v
′
3)Lv

′ = v′ hence we also have (v2v
′
3)Lu ∈ Ls.

By applying product definition, this means that u′ = (v′1, u2, yxv
′
3) ∈ Ls hence

v′ = u′(yx)C ∈ Ls hence, by an immediate pumping argument, u′((yx)C)∗ ⊆ Ls. 2

Lemma 14 already proves the finite case of Theorem 12. We assume now Ls is
infinite.

In the case a single root appears in elements of Ls, for all u = (u1, x, u3) ∈ Ls

we have (u1)Lu(u3)L = u hence, because s 6= 0, ϕL(u1) 6= 0 and ϕL(u3) 6= 0.
By safety assumption, this means that ϕC(u1) 6= 0 and ϕC(u3) 6= 0. Since M is

finite, while Ls is finite, this means that two distinct constraints have same images
by ϕC . Applying Lemma 14 this implies all domains of tiles of Ls are factors of the
same periodic bi-infinite word of the form ω(xy)x(yx)ω for some x and y ∈ A∗ with
xy 6= 0.

Depending on the case elements of Ls have infinitely many left constraints, right
constraints or both left and right constraints, we conclude by showing that for all
v1 ≤s

ω(xy) and v3 ≤p (yx)ω there is v ∈ Ls such that either (v1)Lv, v(v3)R or
(v1)Lv(v3)R ∈ Ls hence, given a given fixed u = (u1, x, u3) ∈ LS, either (v1)Lu,
u(v3)R or (v1)Lu(v3)R ∈ Ls. This proves the co-finiteness inclusion in case 1, 2 and
3 in Theorem 12.

In the case two distinct roots (hence infinitely many) appears in tiles of Ls.
Applying Lemma 14 there is x ∈ A∗, y ∈ A+ and k ≥ 0 with u = (u1, u2, xyu3) such
that u((xy)C)∗ ⊆ Ls. By choosing properly the initial u and v in Lemma 14, we may
assume that u2 = x(yx)k is the least root of elements of Ls and that y(yx)k+1 is the
second least. Then we claim that all roots of elements of Ls belongs to x(yx)k(yx)∗.

Indeed, let then (v1, v2, v3) ∈ Ls and let m ≥ 0 be the unique integer such
that v2 = x(yx)m+kx′ with x′ <p x hence x = x′y′ for some y′ ∈ A+. By an
argument similar with the argument in the proof of Lemma 14, we can show that
there is u′ = (v′1, x(yx)m+k, x′v′3) ∈ Ls with v′ = (v′1, v2, v

′
3) ∈ Ls henceforth with

v′ = u′x′C ∈ Ls. But this also means that ux′C = (u1, u2x
′, y′yu3) ∈ Ls which, by

minimality of u2xy as second least roots, forces x′ to be equal to 1. This shows the
inclusion stated in case 4 in Theorem 12.

Co-finiteness of the inclusion follows from the finiteness of M with arguments
similar to arguments for case 3 above. 2

In order to conclude, let us mention that, at least for languages of positive tiles,
a weakening of the notion of recognizability by means of premorphisms instead
of morphisms have been studied [4]. How such a more expressive notion can be
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relevantly applied to languages of arbitrary tiles is still an open problem.
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