
HAL Id: hal-00659202
https://hal.science/hal-00659202v3

Submitted on 10 Apr 2012 (v3), last revised 11 Jul 2012 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On languages of one-dimensional overlapping tiles
David Janin

To cite this version:

David Janin. On languages of one-dimensional overlapping tiles. 2012. �hal-00659202v3�

https://hal.science/hal-00659202v3
https://hal.archives-ouvertes.fr

LaBRI, CNRS UMR 5800
Laboratoire Bordelais de Recherche en Informatique

Rapport de recherche RR-1457-12

On languages of one-dimensional overlapping tiles

April 10, 2012

David Janin,
LaBRI, IPB, Université de Bordeaux

Abstract
A one-dimensional tile with overlaps is a standard finite word that

carries some more information that is used to say when the concatenation
of two tiles is legal. Known since the mid 70’s [11] in the rich mathematical
field of inverse monoid theory, this model of tiles with the associated
partial product have yet not been much studied in theoretical computer
science despite some implicit appearances in studies of two-way automata
in the 80’s [17, 3].

We aim in this paper at initializing such a systematic computer science
flavored theoretical study. For that purpose, after describing the richness
of the underlying algebraic structure, we define and study several classical
classes of languages of tiles: from recognizable languages definable by
morphism into finite monoids up to languages definable in monadic second
order logic (MSO).

We show that recognizable languages of tiles are tightly linked with
covers of periodic bi-infinite words. We also show that the class of MSO
definable languages of tiles is both simple: these languages are finite sums
of Cartesian products of rational languages, and robust: the class is closed
under product, iterated product (star) and shifts (two tiles specific oper-
ators). An equivalent notion of regular expression is then provided.

Introduction
In this paper, we study languages of one-dimensional discrete overlapping tiles.

These tiles already appear in the 70’s as elements of McAlister monoid [11] in
the rich mathematical field of inverse monoid theory [10]. In particular, though
sometimes implicitly, they are used for studying the structure of (zigzag) covers
of finite, infinite or bi-infinite words [12, 1]. They also appear in studies of the
structure of tiling (in the usual sense with no overlaps) of the d-dimensional
Euclidian space IRd [8, 1].

Following the cover point of view, overlapping tiles can be defined as triples
of finite words of the form (u, v, w) where v defines what part is primarily covered
by the tile while u and w define left and right matching constraints that tell
more where such a tile can be used.

For instance, covering the bi-infinite words ω(ab).(ab)ω = · · · abababab · · ·
allowed tiles are all and nothing but tiles of the form (u, v, w) such that the
word uvw is a factor of the bi-infinite word ω(ab).(ab)ω, i.e. uvw ∈ a(ba)∗ +
(ba)∗ + (ab)∗ + b(ab)∗.

In such a tile (u, v, w), the word v, called the root of the tile, must be a
factor of the word to be covered, and, both u and w, respectively called the left
and right matching constraints of that tile, must also match the left and right
neighborhood of the factor covered by word v.

In such a cover, two neighbor tiles can then be seen as a single larger tile: the
concatenation product of the two tiles. Although a little hard to understand
at first sight, the product of two tiles is just defined as the concatenation of
their roots, the resulting left and right matching constraints being checked and
defined accordingly.

2

For instance, given two tiles x = (a, b, ab) and y = (bab, ab, a) we have
xy = (ba, bab, a).

a b a b

b a bab a

x =

y =
xy = b a bab a

In this example, the resulting left constraint ba of xy is actually inherited from
the left constraint bab of y by canceling from the right, the root b of tile x.
With the same tiles, the product yx is undefined. This is because, in particular,
the root b of x does not match the right constraint a of y. This fact is conve-
niently modeled by taking yx = 0 where 0 is an extra additional tile seen as the
undefined tile.

The resulting algebraic structure is a monoid: the monoid of positive tiles.
We aim in this paper to study this monoid and its associated language theory.

Main results
We first describe the rich though basic properties of the monoid of positive tiles.
Two extra operators, the left and right shifts of positive tiles, are added and
studied. This addition is the price to pay for obtaining a finitely generated
algebraic structure.

Completing the monoid of positive tiles with negative tiles, we show that the
monoid of positive tiles is a submonoid of McAlister inverse monoid [11] (see
Theorem 7). Left and right shift operators are shown to be definable by means
of inverses.

Three classes of languages of positive tiles are then considered : the class
REC of languages definable as inverse images of (safe) monoid morphisms into
finite monoids, the class RATS of languages definable by means of finite rational
expressions extended with left and right shifts, and the classMSO of languages
of tiles definable by means of a formulae of monadic second order logic.

The class REC, strictly included into MSO, is shown to be tightly linked
with covers of periodic bi-infinite words (see Theorem 21). On the opposite
side, the largest class MSO is shown to be both robust: RATS ⊆ MSO (see
Theorem 13) and simple: these languages are finite sums of Cartesian products
of rational languages of words (see Theorem 12). The reverse inclusion MSO ⊆
RATS follows from that latter fact.

Altogether, we prove that REC ⊂ RATS = MSO.

Related works
The monoid of positive and negative tiles, defined and studied in this paper, has
already been considered in the 70’s in inverse monoid theory as the monoid of
McAlister. In [10], Lawson proposes a alternative presentation of that monoid
in Chapter 9.4. As far we know, our presentation by means of triples of words,
more symmetric, is original. The proof of equivalence with McAlister monoid,

3

directly via Munn’s birooted Trees [15], puts the emphasis on the fact that non
zero tiles coincide with unidirectional and linear birooted trees.

In the 80’s, tiles also implicitly appear in the work of Pécuchet on two-way
automata [17]. Tiles are just partial runs of two-way automata (pairs of sections
in author’s terminology). A connection with inverse or regular monoid is made,
but the connection with McAlister monoid itself is at best left implicit. Still
related with two-way automata, Birget approach in the late 80’s [3] also makes
use of algebraic structures that sounds like monoid of tiles : an approach that has
been used till recently [9]. We believe that a careful study of two-way automata
in relationship with McAlister monoid could leads to interested development.
But such a study still need to be done.

Last, we must say that in a companion paper [7], we investigate a rem-
edy to the collapse of algebraic recognizability by means weakening the notion
of monoid morphism to the notion of McAlister’s and Reilly’s prehomomor-
phism [10]. There, we essentially achieve to obtain an algebraic characterization
of MSO definable languages of tiles. This study also led to a generalization of
the monoid of positive tiles, in the border of inverse monoid theory, that have
been studied independently [6].

Oddly enough, our interest in studying languages of positive tiles came from
application perspectives in computational music theory. The purpose of the
present paper is however and by no means to defend such a point of view.
This would require, to be convincing, many more than few lines. We refer the
interested reader to [5]1.

Some notations
Given a finite alphabet A, let A∗ be the free monoid generated by A with neutral
element denoted by 1 and let Aω (resp. ωA) be the set of right infinite words
(resp. left infinite words) on the alphabet A. The concatenation of two words
u and v is denoted by u.v or even simply uv.

For all non empty finite word u ∈ A∗, we denote by uω ∈ Aω (resp. ωu ∈ ωA)
the right (resp. left) infinite words obtained by an infinite right (resp. left)
repetition of the word u. In particular, we use the notation ωuuω for the bi-
infinite word (with no origin) defined by the bi-infinite repetition of word u.

Let ≤p stands for the prefix order over A∗ + Aω. For all word x and y,
if x ≤p y, let x−1(y) stands for the unique word such that x.x−1(y) = y.
Symmetrically, let ≤s stands for the suffix order over A∗ + ωA. For all word x
and y, if x ≤s y, let (y)x−1 stands for the unique word such that (y)x−1.x = y.

Let also ∨p and ∧p denote the joint and meet operators for the prefix order
and ∨s and ∧s denote the joint and meet operators for the suffix order. For all
word u and v, u ∧p v (resp. u ∧s v) is the greatest common prefix (resp. suffix)
of the words u and v. Symmetrically, u∨p v (resp. u∨s v) is the least word such
that both u and v are prefix (resp. suffix) of that word.

1this research report is, unfortunately for most readers, in french; be sure we aim to report
soon on that topic in english

4

The free monoid A∗ extended with 0 is a bi-lattice. In particular, since
0.u = u.0 = v.0 = 0.v = 0, one has u ∨p v = 0 (resp. u ∨s v = 0) whenever
neither u is prefix (resp. suffix) of v nor v is prefix (resp. suffix) of u.

Given Ā a disjoint copy of A, we write also u 7→ ū for the mapping from
(A + Ā)∗ to itself inductively defined by 1̄ = 1, for all letter a ∈ A, ā is the
copy of a in Ā, ¯̄a = a and, for all word u ∈ (A + Ā)∗, au = ū.ā. The mapping
u 7→ ū is an antimorphism, i.e. for all word u and v ∈ (A + Ā)∗, uv = v̄.ū and
an involution, i.e. for all word u ∈ (A+ Ā)∗, ¯̄u = u.

Last, the free group FG(A) generated by A is defined to be (A + Ā)∗ quo-
tiented by the least congruence over (A + Ā)∗ such that, for all letter a ∈ A,
aā = 1 and āa = 1. For all w ∈ (A+ Ā)∗ there is a unique reduced word red(w)
equivalent to w, such that there is no occurrence of aā nor āa in red(w). In
the remainder of the text, we shall identify elements of FG(A) to their reduced.
With that assumption, for all u and v in A∗, if u ≤p v then u−1(v) = ūv and if
u ≤s v then (v)u−1 = vū.

1 Monoid of positive tiles
A positive (or left to right) tile over the alphabet A is define to be a triple of
words u = (u1, u2, u3) ∈ A∗ × A∗ × A∗. In such a tile u = (u1, u2, u3), word u1
is called the left constraint, word u2 is called the root and word u3 is called the
right constraint of tile u. The word u1u2u3 is called the domain of tile u.

Tile u = (u1, u2, u3) is conveniently drawn as a (linear, unidirectional and
left to right) Munn’s birooted word tree [15]:

u1 u3u2

where a dangling input arrow marks the beginning of the root and a dangling
output arrow marks the end of the root.

The sequential product of two non-zero tiles u = (u1, u2, u3) and v =
(v1, v2, v3) is intuitively defined as the tile (if it exists) resulting of the su-
perposition of the two tiles positioned in such a way that the end of the root of
the first tile coincides with the beginning of the root of the second tile, with a
pattern-matching condition, to the left and to the right of that synchronization
point, that ensures that superposed letters are equal.

u1 u3u2
v1 v3v2

sync

The root of the resulting product tile is then defined as the concatenation of
the roots of the components of the product.

Formally, for any two positive tiles u = (u1, u2, u3) and v = (v1, v2, v3), the
product of u and v is defined by

u.v = ((u1.u2 ∨s v1)u−1
2 , u2v2, v

−1
2 (u3 ∨p v2v3))

5

when the left matching constraint u1.u2 ∨s v1 6= 0, i.e. u1u2 and v1 are suffix
one of the other, and the right matching constraint u3 ∨p v2v3 6= 0, i.e. u3 and
v2v3 are prefix one of the other, are both satisfied.

We complete the set of positive tiles by an extra tile, denoted by 0, called the
undefined tile. The partial product of tiles is then completed as follows: for all
non zero tile u and v, u.v = 0 when the matching constraints are not satisfied,
and, for all tile u, by u.0 = 0.u = 0.

Remark. Let a, b, c and d ∈ A be four distinct letters. Then (a, b, c).(b, c, d) =
(a, bc, d) while (a, b, c).(a, c, d) = 0. In the latter case, the left matching con-
straint is violated because a 6= b.

Theorem 1 The set TA = A∗×A∗×A∗+0 equipped with the sequential product
of tiles is a monoid with neutral element 1 = (1, 1, 1) and absorbing element 0.

Proof. The fact that 1 is neutral is immediate. Associativity of the sequential
product follows from the fact that the domain of a non-zero product always
contains the domains of its components. 2

2 Shifts, context elements and natural order
In the concatenation product of tiles, roots are concatenated and thus behave
like usual finite words. On the contrary, in a product, both left and right
constraints decrease. It follows that while arbitrary tile’s roots can be generated,
via tiles product, from (canonical tiles built from) letters of A, this is not true
for tile’s constraints. In other words, monoid TA is not finitely generated.

The left and right shift operators, defined below, give a solution for gener-
ating arbitrary tiles from (canonical images of) words of A∗. They also induce
a notion of context elements that leads us to define an analogous of Namboori-
pad’s natural order [16] on regular monoids.

2.1 Left and right shifts
For all tile non zero u ∈ TA we define the left shift σL(u) of tile u to be the tile
σL(u) = (u1u2, 1, u3) when u = (u1, u2, u3), i.e. σL(u) is the tile obtained from
u by shifting the root of u to the left.

u1 u3u2

Symmetrically, for all non zero tile u ∈ TA we define the right shift σR(u)
of tile u to be the tile 0 when u = 0 or the tile σR(u) = (u1, 1, u2u3) when
u = (u1, u2, u3), i.e. σR(u) is the tile obtained from u by shifting the root of u
to the right.

u1 u3u2

6

Left and right shifts operators are extended to 0 by taking σL(0) = σR(0) = 0.
For all word u ∈ A∗, let uC be the tile defined by uC = (1, u, 1): tile uC is

called the root image of word u. Let also uL be the tile uL = (u, 1, 1) = σL(uC)
and let uR be the tile uR = (1, 1, u) = σR(uC).

Theorem 2 The monoid of positive tiles TA is finitely generated from 0, 1, root
images of letters of A, product and left and right shift operators.

Proof. The mapping u 7→ uC from A∗ to TA is one to one monoid morphism. It
follows that root images of letters generate, by product, root images of arbitrary
words. We conclude with the fact that, for all u, v and w ∈ A∗, (u, v, w) =
uLvCwR = σL(uC)vCσR(wC). 2

2.2 Context elements
Images of elements of TA by left and right shifts are called context tiles or context
elements. The set of context tiles is denoted by CA. It is an easy observation
that both left and right shift operators define projections from TA into CA, i.e.
for all u ∈ CA, σL(u) = σR(u) = u.

Context elements themselves have many more properties that are stated in
the next lemma:

Lemma 3 Context elements form a submonoid CA of TA. They are commuting
idempotents, i.e. for all u ∈ CA, uu = u and for all u and v ∈ CA, uv = vu.
Moreover, for all u ∈ TA, σR(u)u = uσL(u) = u, i.e. left and right shifts of u
are right and left local units of u.

Proof. This proof presents no difficulties. It is essentially a matter of under-
standing product of tiles. 2

2.3 Natural order
The following definition extends to the monoid of positive tiles Nambooripad’s
natural order in inverse or regular monoids [16].

We say that a tile (u1, u2, u3) is smaller than a tile (v1, v2, v3), which we write
(u1, u2, u3) ≤ (v1, v2, v3), when v1 ≤s u1, v2 = u2 and v3 ≤p u3. We extend this
relation with 0 ≤ u for all tile u ∈ TA. One can easily check that this relation
is an order. Some of its main properties are described in the following three
lemmas.

Lemma 4 (The submonoid of root images) Maximal elements of TA un-
der the natural order are the root images of words of A∗.

Proof. Root images are obviously maximal elements and, by definition of the
product of tiles, the product of two root images is a root image. 2

Lemma 5 (The meet semi-lattice of contexts) For all context tiles u and
v ∈ CA, u ≤ v if and only if uv = u, and, moreover, u ∧ v = uv.

7

Proof. Elements of CA are commuting idempotent elements hence it is a
classical result that CA is a meet semi-lattice with respect to the order relation
defined by x � y when xy = x. In that case, x ∧ y = xy. Then we easily check
that this order � and the natural order ≤ coincide. 2

Lemma 6 (Natural order and shift operators) For all tiles u and v ∈ TA,
u ≤ v if and only if u = σR(u).v if and only if u = v.σL(u).

Proof. The proof arguments are essentially the same as with inverse monoid
(see [10] p21, Lemma 6) with σL(u) behaving like u−1u and σR(u) behaving like
uu−1. 2

Remark. Such a notion of monoid, that behaves like inverse monoids without
being truly inverse monoids, is further developed in [7] and [6].

3 Inverse completion
It occurs that the monoid TA of positive tiles can be embedded in a larger
(inverse) monoidMA known as McAlister monoid [11]. This is achieved via
completing the monoid of positive tiles by negative tiles.

3.1 Negative tiles and generalized product
A negative (or right to left) tile over the alphabet A is define to be a triple of
word of the form v = (u1u2, ū2, u2u3) ∈ A∗× Ā∗×A∗ with u1, u2 and u3 ∈ A∗.
Such a tile is conveniently drawn as a Munn’s birooted word tree

u1 u3u2

The set of positive and negative tiles extended with 0 is denoted by MA.
For any two non zero tiles u = (u1, u2, u3) and v = (v1, v2, v3) ∈ MA, the

sequential product of u and v is defined by

uv = ((u1u2 ∨s v1).ū2, u2v2, v̄2(u3 ∨s v2v3))

when both u1u2 ∨s v1 6= 0 and u3 ∨s v2v3 6= 0, and uv = 0 otherwise. In this
definition, word (and inverse word) products are now defined in the free group
FG(A) where, in particular, for all u ∈ A∗, uū = ūu = 1

Theorem 7 The set MA equipped with the generalized sequential product is a
monoid with neutral element 1 and absorbing element 0. The set TA ⊆ MA of
positive tiles is a submonoid of MA.

Proof. Observe first that the generalized product is well defined. For all u and
v as above, we indeed have (u1u2∨s v1).ū2 ∈ A∗, v̄2(u3∨s v2v3) ∈ A∗. Moreover,
when u2v2 ∈ Ā∗ (with elements of the free group FG(A) always reduced), we
also have u2v2 = v̄2.ū2 ≤s (u1u2 ∨s v1).ū2 and u2v2 = v̄2.ū2 ≤p v̄2(u3 ∨s v2v3).

8

Obviously, 1 = (1, 1, 1) is a neutral element, and, as for positive tiles, asso-
ciativity follows from the fact that the domain of the product uv contains the
domain of u and the domain of v.

Monoid TA is a submonoid of monoid MA since, when both u and v are
positive tiles, the definition of the product in MA just equals the definition of
the product in TA since, for all x and y ∈ A∗, when non zero, x−1(y) = x̄y and
(x)y−1 = xȳ. 2

Left and right shift operators are extended to all elements of MA : for all
u = (u1, u2, u3), σL(u) = (u1u2, 1, u3) and σR(u) = (u1, 1, u2, u3). Observe that
non zero context elements, of the form (u1, 1, u3), are exactly those elements
that are both positive and negative tiles.

3.2 Inverses and shifts
In the picture above of the negative tile v = (u1u2, ū2, u2u3), it seems that tile
v is obtained from tile u = (u1, u2, u3) just by swapping the input and output
arrows. This observation justifies the following definition.

For all non-zero tile u = (u1, u3, u3) ∈MA, let u−1 ∈MA be the tile u−1, the
(pseudo) inverse of tile u, defined by u−1 = (u1u2, ū2, u2u3) and let 0−1 = 0.

Lemma 8 For all u ∈ MA, (u−1)−1 = u, σR(u) = uu−1, σL(u) = u−1u and
uu−1u = u.

Proof. The case of 0 is obvious. Let u = (u1, u2, u3) and u−1 = (u1u2, ū2, u2u3).
By definition of the (generalized) product, uu−1 = ((u1u2∨su1u2)ū2, u2ū2, u2(u3∨p

ū2u2u3)) hence, after simplification, uu−1 = (u1, 1, u2u3) = σR(u). Now, by
definition again, uσR(u) = (u1, u2.1, ū2(u2u3 ∨p u2u3)) hence uσR(u) = u. By
symmetrical arguments, we prove that u−1u = σL(u). The last statement fol-
lows from these facts. 2

In other words, left and right shifts, that may look like adhoc operators over
positive tiles, find a rather strong justification within the monoid of arbitrary
tiles.

Theorem 9 Monoid MA is an inverse monoid.

Proof. By Lemma 8, any tile u ∈ MA has a pseudo inverse u−1 hence MA

is regular. Commutation idempotent elements commute and this follows from
Lemma 5 since idempotents of MA are just context tiles hence MA is inverse.
2

3.3 McAlister monoid
McAlister monoid [14] is the quotient of the free inverse monoid FIM(A) by
the ideal ⊥ of non unidirectional and non linear tiles.

More precisely, following Munn’s result [15], elements of FIM(A) are seen
as birooted word trees, i.e. pairs (P, u) where P is a non empty finite and prefix-
closed subset of (reduced elements of) the free group FG(A) generated by A,

9

with u ∈ P . The product of two birooted trees (P, u) and (Q, v) is defined by
(P, u).(Q, v) = (P ∪ uQ, uv).

A birooted word tree (P, u) is said unidirectional when P ⊆ A∗ + Ā∗, and
linear when both P ∩ A∗ and P ∩ Ā∗ are totally ordered by the prefix order.
It is straightforward that the set ⊥ of non-unidirectional or non-linear birooted
trees is an ideal.

The monoid of McAlister is then defined as the Rees quotient FIM(A)/⊥.
In that monoid, given two linear and unidirectional birooted word trees (P, u)
and (Q, v), the product of these two tiles is defined to be (P ∪ uQ, uv) as in
FIM(A) when the resulting birooted tree is linear and unidirectional, and ⊥
(from now on written 0) otherwise.

Theorem 10 The monoid MA is isomorphic to the monoid of McAlister.

Proof. (sketch of) For all non zero tile u = (u1, u2, u3) ∈MA let tu = (Pu, u2)
be the resulting birooted tree defined by Pu = {x ∈ Ā∗ : x ≤p ū1} ∪ {x ∈ A∗ :
x ≤p u2u3}.

We observe that tu is a well-defined unidirectional and linear birooted tree.
Indeed, when u is a positive tile, we have u2 ≤ u2u3 hence u2 ∈ Pu. When u is
a negative tile, i.e. with u2 ∈ Ā∗ we have both u1u2 and u2u3 ∈ A∗ and thus
u2 ≤p ū1 hence u2 ∈ Pu.

We conclude then by showing that the mapping ϕ : MA → FIM(A)/⊥
defined by ϕ(0) = 0 and for any non-zero tile u = (u1, u2, u3) ∈ MA, ϕ(u) =
(Pu, u2) is an isomorphism.

First, it is easy to check that it is a bijection. In fact, given a linear and
unidirectional tile (P, u) one check that ϕ−1((P, u)) is the tile (u1, u2, u3) defined
by u2 = u, u1 =

∨
s P ∩ Ā∗ and u3 = ū2

∨
p P ∩A∗.

It remains to show that it is indeed monoid morphism. For this, it is enough
to check that for any two non zero tiles u = (u1, u2, u3) and v = (v1, v2, v3) ∈
MA, one indeed has tu.v = (Pu ∪ u2Pv, u2v2) which is straightforward. 2

Since McAlister is an inverse monoid, this gives another proof that MA is
inverse. For more details, we refer the interested reader to the book of Lawson
on inverse monoids [10] where (yet another presentation of) McAlister monoid
is given in chapter 9.4.

4 MSO-definable languages of tiles
We consider in this section the class MSO of languages of tiles definable by
means of monadic second order formulae.

4.1 MSO definability
We need FO-models for positive tiles. For this, we use a typical encoding of
words into FO-structures that amounts to encode each letter a ∈ A as a relation
between elements of the domain. This way, there is no need of end markers and

10

the empty word is simply modeled by the structure with singleton domains and
empty relations. We raise models of words to models of tiles just by marking
(as for birooted trees) entry and exit points.

For instance, the triple u = (ba, aa, bb) is modeled as indicated by the fol-
lowing picture

b a a a bb

where, as before, a dangling input arrow marks the entry point and a dangling
output arrow marks the exit point.

The model of a tile u is denoted by tu. The associated domain of its under-
lying FO-structure is written dom(tu), the entry point in written in(tu) and the
exit point is written out(tu).

A language L ⊆ TA is MSO definable when there is a MSO formula of the
form ϕL(U, x, y) where U is a set variable and x and y are two FO-variables
such that, for all t ∈ TA, t ∈ L if and only if t |= ϕL(dom(t), in(t), out(t)).

4.2 A word congruence for languages of tiles
We aim at achieving a simple characterization of MSO definable language of
positive tiles. For this purpose, we first define a notion of congruence relation
over A∗ which is defined for all language of tiles. It occurs that this congruence
is of finite index if and only if the language of tile is definable in MSO.

Given a language L ⊆ TA − 0, we define then the word congruence 'L

associated to L as the least relation over words such that, for all u and v ∈
A∗, u 'L v when for all w1, w2 and w3 ∈ A∗, the following equivalences
hold: (w1uw2, w3, w4) ∈ L ⇔ (w1vw2, w3, w4) ∈ L, (w1, w2uw3, w4) ∈ L ⇔
(w1, w2vw3, w4) ∈ L, and (w1, w2, w3uw4) ∈ L⇔ (w1, w2, w3vw4) ∈ L.

Theorem 11 Let L ⊆ TA− 0, L is MSO-definable if and only if relation 'L is
of finite index.

Proof. Let L ⊆ TA − 0 be a language of tiles. The fact that this relation is a
congruence is immediate from its definition. Now, L = Σ(u,v,w)∈L[u]L × [v]L ×
[w]L. Indeed, this means that whenever (u, v, w) ∈ L for some u, v and w ∈ A∗
then if u 'L u′, v 'L v′ and w 'L w′ for some u′, v′ and w′ ∈ A∗, we also
have (u′, v′, w′) ∈ L. This property just follows from the definition of the word
congruence 'L.

Moreover, if 'L is of finite index, any language of the form [w] ⊆ A∗ with
w ∈ A∗ is rational henceforth MSO definable, and the above sum is actually
finite, henceforth there exists an MSO formula ϕ(U, x, y) over tiles that defines
L.

Conversely, we observe that language L ⊆ TA can be encoded into a language
of words M ⊆ A∗PA∗RA∗S where AP , AR and AS are three disjoint copies of the
alphabet A for encoding left constraints, roots and right constraints of tiles.

11

If L is MSO definable then, clearly, so is M . Thus, by Büchi theorem, this
means that M is also rational hence M is recognizable and thus its syntactic
congruence 'M is of finite index hence so is 'L. Indeed, for all word u and
v ∈ A∗, we have u 'L v if and only if uX 'M vX for X being P , R or S and
with wX denoting the renaming of any word w ∈ A∗ in the copy alphabet AX .
2

5 Rational languages of tiles
The class RATS of languages of positive tiles is defined as the class of languages
definable by means of finite sets of positive tiles, sum, product, iterated product
(or star) and left and right shifts.

5.1 Rational expressions for MSO definable languages
A reformulation of Theorem 11 shows that all MSO definable language of tiles
is rational in the above sense. More precisely:

Theorem 12 A language of non-zero positive tiles L ⊆ TA−0 is MSO definable
if and only if there are finitely many rational langages Pi, Ri and Si ⊆ A∗ with
i ∈ I such that L = Σi∈I(Pi)L(Ri)C(Si)L. In particular MSO ⊆ RATS.

Proof. Let L ⊆ TA − 0. By definition of 'L, we have already seen that
L =

∑
(u,v,w)∈L[u]L × [v]L × [w]L. By Theorem 11, we know that 'L is of

finite index if and only if L is MSO definable. It follows, that for all u ∈ A∗,
language Lu = {1}× [u]L×{1} belongs to the class RATS since the submonoid
of maximal elements of TA is isomorphic to A∗ (see Lemma 4). But then, the
above equality can be restated as L =

∑
(u,v,w)∈L σL(Lu)LvσR(Lv) hence, since

this sum is finite whenever L is MSO definable, L is in the class RATS . 2

5.2 MSO definability of rational languages
We aim here at proving that RATS ⊆MSO. As finite sets of non-zero tiles are
obviously definable in MSO, it suffices to prove adequate closure properties of
the class of MSO definable languages of tiles.

Theorem 13 For all L and M ⊆ TA − 0, if L and M are MSO definable then
so is L+M , L.M , L∗, σL(M) and σR(M). In particular, RATS ⊆MSO.

Proof. Let ϕL(U, x, y) and ϕM (U, x, y) be two formulae defining respectively
the language of tiles L and M . We assume that these formulae also check that
both x and y belongs to U with x before y (following the order induced by the
relations) and that U is connected.

Case of L+M : take ψ(U, x, y) = ϕL(U, x, y) ∨ ϕM (U, x, y).
Case of L.M : take ψ(U, x, y) stating that there exist two sets X and Y such

that U = X ∪Y and there is z such that both ϕL(X,x, z) and ϕM (Y, z, y) hold.

12

Case of L∗ : in order to define ϕ(U, x, y), the main idea is to consider the
reflexive transitive closure R+(x, y) of the binary relation R(x1, x2) defined by
∃XϕL(X,x1, x2); one must take care, however, that set U is completely covered
by (sub)tiles’ domains; this is equivalent to the fact, as domains necessarily
overlap, that each extremity (left most or right most element) of the domain U
belongs to one of these sets X at least. This is easily encoded by a disjunction
of the three possible cases: extremities are reached in a single intermediate tile,
left extremity is reached first or right extremity is reached first.

Case of σR(M) (resp. σL(M)) : take ψ(U, x, y) stating that x = y and there
is some z such that ϕM (U, x, z) (resp. ϕM (U, z, y)). 2

With both Theorem 13 and Theorem 12 we have:

Corollary 14 RATS = MSO

Remark. All these results extend to languages of tiles possibly containing
the undefined tile 0 by any adhoc definable encoding of tile 0 into a structure
distinct from all other encodings of non zero tiles.

Remark. As in classical language theory, let left and right residuals of lan-
guages of tiles, i.e. U−1(W) = {v ∈ TA : ∃u ∈ U, uv ∈W} and (W)V −1 = {u ∈
TA : ∃v ∈ V, uv ∈ W}. It can be shown that these operators are still definable
in MSO. However, characterizing the expressive power of the resulting class of
rational languages of tiles RATR, with residuals instead of shifts, remains an
intriguing open problem.

6 Recognizable languages of tiles
In this section, we consider languages of arbitrary or positives tiles that are
recognizable in the algebraic sense. Although the theory of tiles can be seen as
part of the theory of inverse monoid, the results we obtain rather differ from the
former studies of languages of words recognized by finite inverse monoids [13]
or free inverse monoid languages [18]. Morphisms from TA to arbitrary monoids
turns out to be even more constraints than morphisms from A∗ to finite inverse
monoids.

6.1 Safely recognizable languages
Following the standard definition, we say that a language L ⊆ TA (resp. L ⊆
MA) is a recognizable language of positive tiles (resp. arbitrary tiles) when
there is a (surjective) monoid morphism ϕ : TA → S (resp. ϕ : MA → S), with
S a finite monoid such that L = ϕ−1(ϕ(L)).

The syntactic congruence 'L over A∗ associated to language L is defined,
for all u and v ∈ TA (resp. u and v ∈ MA), by u 'L v when for all x and
y ∈ TA, xuy ∈ L⇔ xvy ∈ L. As well known, language L is recognizable if and
only if its syntactic congruence is of finite index.

13

But this is not enough for developing a language theory of positive tiles.
Indeed, the following lemma tells us that for achieving an adequate notion of
recognizable languages of tiles, we need to restrict this definition.

Lemma 15 Let w ∈ Aω be an arbitrary infinite word on the alphabet A. The
language of positive tiles Lw = {(1, 1, v) ∈ TA : 1 <p v <p w} is recognizable. In
particular, even if w is not computable, so is Lw while it remains recognizable.

Proof. Let S = {0, 1, s} be the monoid defined by usual product rules for 0 and
1 and ss = s, and let ϕw : TA → S be the mapping defined for all q ∈ TA by
ϕw(q) = 1 when q = 1, ϕw(q) = s when q ∈ Lw and ϕw(q) = 0 in the remaining
cases.

We claim that ϕw is a morphism monoid. Indeed, for all q1 and q2 ∈ Lw

we have q1q2 = q1 or q1q2 = q2 hence ϕ(q1q2) = ϕ(q1)ϕ(q2). It follows that
Lw = ϕ−1

w (ϕw(s)). 2

This undesirable property results from the fact that TA is not finitely gener-
ated. It follows that there can be some element u ∈ TA such that ϕ(σR(u)) 6= 0
(or ϕ(σL(u)) 6= 0) while ϕ(u) = 0. In McAlister monoid, finitely generated, this
cannot happen since for all u ∈MA, σL(u) = u−1u and σR(u) = uu−1.

This justifies the following definition. A (surjective) monoid morphism ϕ :
TA → S is safe when there are two mappings s 7→ σL(s) and s 7→ σR(s) from S
in S such that, for all u ∈ TA,ϕ(σL(u)) = σL(ϕ(u)) and ϕ(σR(u)) = σR(ϕ(u)).
The class REC of recognizable languages of positive tiles is thus defined as the
class of safely recognizable languages of tiles, i.e. languages recognizable by
means of safe morphisms.

Theorem 16 Safely recognizable languages of tiles are MSO definable, i.e. REC ⊆
MSO.

Proof. Let ϕ : TA → S be a safe surjective morphism with S a finite monoid
and let X ⊆ S. We want to prove that L = ϕ−1(X) is definable in MSO.

Let ϕL, ϕC and ϕR be the mappings from A∗ to S defined, for all u ∈ A∗,
by ϕL(u) = ϕ(uL), ϕC(u) = ϕ(uC) and ϕR(u) = ϕ(uR) (see Section 2.1 for the
definition of uC , uL and uR).

By morphism assumption, that for all (u, v, w) ∈ TA, since (u, v, w) =
uLvCwR, we have (u, v, w) ∈ ϕ−1(s) if and only if ϕL(u)ϕC(v)ϕR(w) = s.
Since S is finite (henceforth with a finite product table) it remains thus to show
that these three values are definable in MSO.

For mapping ϕC this is easy as ϕC : A∗ → S is just a monoid morphism.
For mapping ϕL and ϕR there might be a problem as they are not monoid
morphism. However, the safety assumption still ensures that ϕL(u) is definable
from ϕC(u) and that ϕR(w) is definable from ϕC(w). As M is finite, images of
words by ϕC are MSO definable and so are images of words by ϕL and ϕR. 2

14

6.2 A non recognizable MSO definable language of tiles
The next result, negative, tells us that rather simple (MSO definable) languages
of tiles are not recognizable.

Lemma 17 Language L = {(bam, an, 1) ∈ TA : m,n ∈ IN} with a and b two
distinct letters, is not recognizable.

Proof. We prove that the syntactical congruence 'L associated to L in TA

(or in MA) is of infinite index.
For all m ∈ IN, let um be the tile um = (bam, 1, 1). It is an easy observation

that for all m and n ∈ IN, um 'L un if and only if m = n hence the claim.
Indeed, for all k ∈ IN let vk = (ak, 1, 1). We have for any givenm ∈ IN, umvk ∈ L
if and only if k ≤ m. Now if for some m and n ∈ IN one has um 'L un then for
all k ∈ IN, umvk ∈ L if and only if unvk ∈ L. It follows that, for all k, k ≤ m if
and only if k ≤ n, hence m = n. 2

Since language L defined above is obviously MSO, we have:

Corollary 18 RATS 6= MSO

6.3 A (non-trivial) recognizable language
Before studying in the next section (safe) recognizable languages in full gener-
ality, we provide in this section a non trivial example of such a language. It
illustrates the main characteristic of all recognizable languages of tiles : a strong
link with tiles’s cover of periodic bi-infinite words.

Building such an example essentially amounts to provide a (surjective) safe
monoid morphism from TA (or even MA) onto some non-trivial finite monoid
M . Here, the main idea is to type tiles, by means of a safe monoid morphism,
according to their capacity to cover the bi-infinite word ω(ab)(ab)ω with a and
b two distinct letters.

In order to do so, letM = {0, 1, (a, 1, b), (b, 1, a), (b, a, b), (a, b, a)} with prod-
uct � defined as expected for 0 and 1 and defined according to the following
product table:

� (a, 1, b) (b, 1, a) (b, a, b) (a, b, a)
(a, 1, b) (a, 1, b) 0 0 (a, b, a)
(b, 1, a) 0 (b, 1, a) (b, a, b) 0
(b, a, b) (b, a, b) 0 0 (b, 1, a)
(a, b, a) 0 (a, b, a) (a, 1, b) 0

Lemma 19 Monoid (M,�) is an inverse monoid.

Proof. We easily check that product � is associative hence M is a monoid.
Given E(M) = {0, 1, (a, 1, b), (b, 1, a)} the set of idempotents of S, the commuta-
tion of idempotents immediately follows from unique non trivial case (a, 1, b)�
(b, 1, a) = (b, 1, a) � (a, 1, b) = 0. Last, we check that (a, b, a) � (b, a, b) �

15

(a, b, a) = (a, b, a) and (b, a, b) � (a, b, a) � (b, a, b) = (b, a, b). It follows that
(a, b, a)−1 = (b, a, b) and (b, a, b)−1 = (a, b, a). All other element is idempotent
and thus self-inverse. 2

The expected monoid morphism ϕ : MA → M is then defined by ϕ(0) = 0,
ϕ(1) = 1 and for all (u, v, w) ∈ MA such that uvw 6= 1, ϕ(u, v, w) = 0 when
uvw is not a factor of (ab)ω and, otherwise, when u is a positive tile:

1. ϕ(u, v, w) = (a, 1, b) when |v| is even with a ≤s u,b ≤p v, a ≤s v or b ≤p w,

2. ϕ(u, v, w) = (b, 1, a) when |v| is even with b ≤s u,a ≤p v, b ≤s v or a ≤p w,

3. ϕ(u, v, w) = (b, a, b) when |v| is odd with a ≤p v,

4. ϕ(u, v, w) = (a, b, a) when |v| is odd with b ≤p v,

and ϕ(u, v, w) = (ϕ(uv, v̄, vw))−1 when (u, v, w) is a negative tile.

Theorem 20 The mapping ϕ : MA →M is a safe (surjective) morphism.

Proof. This follows from the fact that, for all u and v ∈ MA, ϕ(u) � ϕ(v) =
ϕ(uv) = ϕ(ϕ(u)ϕ(v)). This morphism is safe with σL((b, a, b)) = (a, 1, b),
σL((a, b, a)) = (b, 1, a), σR((b, a, b)) = (b, 1, a) and σR((a, b, a)) = (a, 1, b). 2

Given LS = (ab)∗+b(ab)∗, given LC = (ab)∗, given LP = (ab)∗+(ab)∗a, this
theorem says, in particular, that the non trivial tile language LS ×LC ×LP − 1
is safely recognizable since it equals ϕ−1((b, 1, a)).

6.4 More on recognizable languages of tiles
We conclude our study by showing that recognizable languages of tiles are es-
sentially generalization of the example described above: languages of REC are
essentially definable out of finitely many periodic bi-infinite words.

Let ϕ : TA → S be a safe monoid morphism with finite M . Since we can
always restrict S to ϕ(TA) and ϕ(0) is a zero in the submonoid ϕ(TA), we
assume, without loss of generality, that M = ϕ(Ta) with ϕ(0) = 0. Now, by
complement, understanding the structure of languages of tiles recognizable by
ϕ amounts to understand the structure of languages of the form ϕ−1(s) for all
non-zero element s ∈ S which is the purpose of the following theorem.

Theorem 21 Let s ∈ M be a non-zero element. Let Ls = ϕ−1(s). There is
x ∈ A∗, y ∈ A+ and k ≥ 0 such that, either Ls is finite with Ls ⊆ {u ∈ TA :
v ≤ u} for some v ∈ TA − 0 or Ls is a co-finite subset of one of the following
set of non-zero tiles:

1. S(ω(xy))× x× P (w) for some finite w <p (yx)ω,

2. S(w)× x× P ((yx)ω) for some finite w <s
ω(xy),

3. S(ω(xy))× x× P ((xy)ω),

16

4. or S(ω(xy))× x(yx)k(yx)∗ × P ((yx)ω),

with, for all w ∈ A∗+ ωA, S(w) = {z ∈ A∗ : z <s w}, i.e. the set of strict suffix
of w, and for all w ∈ A∗ +Aω, P (w) = {z ∈ A∗ : z <p w}, i.e. the set of strict
prefix of w.

In all cases, tiles of Ls are compatible with the bi-infinite periodic word
ω(xy)x(yx)ω.

Proof. The rest of this section is dedicated to the proof of this theorem. In
order to do so, we first prove several closure properties of Ls.

Lemma 22 For all u = (u1, u2, u3) ∈ Ls and v = (v1, v2, v3) ∈ Ls, (u1 ∨s

v1, u2, u3) ∈ Ls and (u1, u2, u3 ∨p v3) ∈ Ls.

Proof. We know that (v1)Lv = v hence (v1)u ∈ Ls since ϕ((v1)Lv) =
ϕL(v1)ϕ(v) = ϕL(v1)ϕ(u) = ϕ((v1)Lu). Moreover, 0 /∈ Ls hence (v1)Lu =
(u1 ∨s v1, u2, u3) with u1 ∨S v1 6= 0. Symmetrical arguments prove the prefix
case. 2

Lemma 23 For all u = (u1, u2, u3) and v = (v1, v2, v3) ∈ Ls such that |u2| ≤
|v2|, either u2 = v2 or there exists x ∈ A∗, y ∈ A+ and k ≥ 0 such that
u2 = x(yx)k, v2 = x(yx)k+1. In that latter case, there is u′ ∈ Ls such that
u′((xy)C)∗ ⊆ Ls.

Proof. Let u and v as above. We have (v2)Rv(v2)L = v hence, by a similar
argument as in Lemma 22, (v2)Ru(v2)L ∈ Ls. Since |u2 ≤ |v2| this means that
u2 ≤p v2 and u2 ≤s v2, i.e. roots of elements of Ls are totally by both prefix and
suffix.

In the case u2 6= v2 this means v2 = wu2 = u2w
′ for w and w′ ∈ A+. Let

then k ≥ 0 be the greatest integer such that |wk| < |u2|.
When k = 0, this means w = u2y for some y ∈ A∗ and we take x = u2.

Otherwise, by a simple inductive argument over k, this means u2 = wkx for
some x ∈ A∗ with |x| < |w|. In that latter case, we have v2 = wk+1x = wkxw′.
Since |w′| = |w| it follows that w′ = yx for some y ∈ A+ and thus w = xy. In
all cases, u2 = x(yx)k and v2 = x(yx)k+1.

By applying Lemma 22, with v′1 = u1 ∨s v1, v′3 = u3 ∨p v3 and v′ =
(v′1, v2, v

′
3), we have v′ ∈ Ls. But we known that (v2v

′
3)Lv

′ = v′ hence we
also have (v2v

′
3)Lu ∈ Ls. By applying product definition, this means that

u′ = (v′1, u2, yxv
′
3) ∈ Ls hence v′ = u′(yx)C ∈ Ls hence, by an immediate

pumping argument, u′((yx)C)∗ ⊆ Ls. 2

Lemma 23 already proves the finite case of Theorem 21. We assume now
Ls is infinite.

In the case a single root appears in elements of Ls, for all u = (u1, x, u3) ∈ Ls

we have (u1)Lu(u3)L = u hence, because s 6= 0, ϕL(u1) 6= 0 and ϕL(u3) 6= 0.
By safety assumption, this means that ϕC(u1) 6= 0 and ϕC(u3) 6= 0. Since M
is finite, while Ls is finite, this means that two distinct constraints have same
images by ϕC . Applying Lemma 23 this implies all domains of tiles of Ls are

17

factors of the same periodic bi-infinite word of the form ω(xy)x(yx)ω for some
x and y ∈ A∗ with xy 6= 0.

Depending on the case elements of Ls have infinitely many left constraints,
right constraints or both left and right constraints, we conclude by showing
that for all v1 ≤s

ω(xy) and v3 ≤p (yx)ω there is v ∈ Ls such that either
(v1)Lv, v(v3)R or (v1)Lv(v3)R ∈ Ls hence, given a given fixed u = (u1, x, u3) ∈
LS , either (v1)Lu, u(v3)R or (v1)Lu(v3)R ∈ Ls. This proves the co-finiteness
inclusion in case 1, 2 and 3 in Theorem 21.

In the case two distinct roots (hence infinitely many) appears in tiles of
Ls. Applying Lemma 23 there is x ∈ A∗, y ∈ A+ and k ≥ 0 with u =
(u1, u2, xyu3) such that u((xy)C)∗ ⊆ Ls. By choosing properly the initial u
and v in Lemma 23, we may assume that u2 = x(yx)k is the least root of ele-
ments of Ls and that y(yx)k+1 is the second least. Then we claim that all roots
of elements of Ls belongs to x(yx)k(yx)∗.

Indeed, let then (v1, v2, v3) ∈ Ls and let m ≥ 0 be the unique integer such
that v2 = x(yx)m+kx′ with x′ <p x hence x = x′y′ for some y′ ∈ A+. By an
argument similar with the argument in the proof of Lemma 23, we can show that
there is u′ = (v′1, x(yx)m+k, x′v′3) ∈ Ls with v′ = (v′1, v2, v

′
3) ∈ Ls henceforth

with v′ = u′x′C ∈ Ls. But this also means that ux′C = (u1, u2x
′, y′yu3) ∈ Ls

which, by minimality of u2xy as second least roots, forces x′ to be equal to 1.
This shows the inclusion stated in case 4 in Theorem 21.

Co-finiteness of the inclusion follows from the finiteness ofM with arguments
similar to arguments for case 3 above. 2

7 Open perspective: from discrete to timed tiles
In application oriented perspectives, tiles can be seen as models of process be-
haviors distinguishing a notion of realization window (domains or tiles) from a
notion of synchronization window (tiles’ roots), the pattern matching constraints
modeling communications. Observe that this potentially leads to a rather rich
alternative with process algebras that could be studied as such.

Moreover, especially modeling music with tiles, as in [5], we need to model
time. This can easily be done extending the alphabet letters with positive
durations, defining a notion of timed tiles. What is the expressive power of
the resulting notion of rational expressions extended with shifts ? What is the
expressive power of the resulting notion of rational expressions extended with
(see Section 5.2) residuals ?

Compared to Dima’s proposal for an expressive language of timed regu-
lar expressions, timed tiles seem simpler than timed dominoes [4]. Moreover,
preliminary studies for timed tiles also show that all pathological exemples de-
scribed in [2] are easily encoded by means of tiles expressions with shifts or even
residuals.

18

References
[1] Filipa Soares de Almeida. Algebraic Aspects of Tiling Semigroups. PhD

thesis, Universidade de Lisboa, Faculdade de Ciências Departamento de
Matemática, 2010.

[2] Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions.
J. ACM, 49(2):172–206, 2002.

[3] Jean-Camille Birget. Concatenation of inputs in a two-way automation.
Theoretical Computer Science, 63(2):141 – 156, 1989.

[4] Catalin Dima. Regular expressions with timed dominoes. In DMTCS,
volume 2731 of LNCS, pages 141–154. DMTCS, 2003.

[5] David Janin. Modélisation compositionnelle des structures rythmiques :
une exploration didactique. Technical Report RR-1455-11, LaBRI, Univer-
sité de Bordeaux, 2011.

[6] David Janin. Quasi-inverse monoids. Technical Report RR-1459-12, LaBRI,
Université de Bordeaux, 2012.

[7] David Janin. Quasi-recognizable vs MSO definable languages of one-
dimentionnal overlaping tiles. Technical Report RR-1458-12, LaBRI, Uni-
versité de Bordeaux, 2012.

[8] J. Kellendonk. The local structure of tilings and their integer group of
coinvariants. Comm. Math. Phys., 187:115–157, 1997.

[9] Michal Kunc and Alexander Okhotin. Describing periodicity in two-way
deterministic finite automata using transformation semigroups. In Devel-
opments in Language Theory, volume 6795 of Lecture Notes in Computer
Science, pages 324–336. Springer, 2011.

[10] Mark V. Lawson. Inverse Semigroups : The theory of partial symmetries.
World Scientific, 1998.

[11] Mark V. Lawson. McAlister semigroups. Journal of Algebra, 202(1):276 –
294, 1998.

[12] Bertrand LeSaëc, Igor Litovsky, and Bruno Patrou. A more efficient notion
of zigzag stability. ITA, 30(3):181–194, 1996.

[13] Stuart W. Margolis and Jean-Eric Pin. Languages and inverse semigroups.
In ICALP, volume 172 of Lecture Notes in Computer Science, pages 337–
346. Springer, 1984.

[14] D.B. McAlister. Inverse semigroups which are separated over a subsemi-
groups. Trans. Amer. Math. Soc., 182:85–117, 1973.

19

[15] W. D. Munn. Free inverse semigroups. Proceeedings of the London Mathe-
matical Society, 29(3):385–404, 1974.

[16] K. S. S. Nambooripad. The natural partial order on a regular semigroup.
Proc. Edinburgh Math. Soc., 23:249–260, 1980.

[17] Jean-Pierre Pécuchet. Automates boustrophedon, semi-groupe de birget et
monoide inversif libre. ITA, 19(1):71–100, 1985.

[18] Pedro V. Silva. On free inverse monoid languages. ITA, 30(4):349–378,
1996.

20

