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Abstract

In the perspective of defining a modeling language for compu-
tational music theory [9], this paper deals with languages of one-
dimensional discrete overlapping tiles, i.e. triples of words of the form
(u, v, w) where v is the root of tile and u and w define compatibility
conditions for a (partial) product.

This leads to define a monoid called the monoid of positive tiles.
Completed with negative tiles, it is shown to be isomorphic with the
McAlister (inverse) monoid [16, 14].

Several properties of this monoid are studied. We prove in particu-
lar that some canonical left and right residual operations are defined on
positive tiles and that they encode within positive tiles product with
negative tiles in McAlister monoid.

Then we define particular classes of languages of tiles: languages
recognizable by finite monoids, rational languages of tiles, and lan-
guages definable by monadic second order (MSO) formulae.

In contrast with former studies of word languages recognizable by
inverse monoids [15, 21], recognizable languages of tiles are shown to
be even weaker : they are at most characterized by finite sets of bi-
infinite periodic words. Rational languages of tiles are shown to be
MSO-definable.

For the most general class of MSO-definable languages, we provide a
simple though indirect Myhill–Nerode like characterization. It induces
a simple characterization of MSO definable languages of positive tiles
by means of rational languages of words.

This shows that the class of MSO definable languages of tiles is a
class of languages as robust and as simple the class of rational languages
of words.
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1 Introduction
In this paper, we study languages of one dimensional discrete overlapping
tiles : tiles that can be used to cover words with arbitrary overlaps between
two consecutive tiles.

There are several ways to define one dimensional overlapping tiles (just
called tiles in the sequel) on alphabet A. In fact, tiles convey such a huge
amount of intuition and mathematical richness that they have been defined
many times in many fields. For instance, they appear more or less implicitly
in the theory of zig-zag codes [3, 22], or analyzing two-way automata [19],
or, explicitly, studying the structure of tilings of the d-dimensional euclidian
space IRd [10, 11, 8, 1].

In fact, tiles can be combined sequentially, say from left to right, forming
bigger and bigger tiles. With caution, we obtain a monoid of tiles with
a curious partial associative product. Evenmore, equipping this monoid
with reverse tiles : tiles that goes from right to left, we define a monoid
known for years as a particularly interesting inverse monoid : the monoid
of McAlister [14, 16].

An algebraic definition of this inverse monoid is given by Lawson [14].
More precisely, following Munn’s representation theorem of elements of the
free inverse monoid [17], tiles can be defined as the birooted word trees that
are both unidirectional and linear [18].

Lawson and Munn each provide an explicit definition of this monoid [14,
18]. We give a third one that put emphasis on the quasi-inverse submonoid
induced by positive (or left to right) tiles which is the main subject of our
study.

Oddly enough, our interest in (re)defining this monoid came from an
application perspective in computational music theory [9].

There, every musical pattern is modeled as a triple (u, v, w) with in-
troduction u, development v and conclusion w. Combining two musical
patterns by synchronizing their developments one after the other, one ob-
tains overlaps between developments, introductions and conclusions that are
commonly encountered in music.

Of course, these overlaps may need to satisfy some coherence constraints.
Abstracting a little, say from melody to harmony, this constraints just be-
come letter by letter equality. And there comes tile product.

Obviously, these overlapping tiles and tile product can be used in many
other application context. For instance, in concurrent process behavior mod-
eling, positive tiles product could also be a way to define some notion of
directed communication with explicit and unbounded information transfer.

Indeed, if each process behavior is defined as a tile, the sequential product
of two tiles can be seen as a directed rendez-vous of processes, and overlaps
define the knowledge transferred from the first process to the second.
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In other words, languages of tiles can be used in many modeling context.
But what are the properties of there languages ? Is there a class of such
languages - as rational languages of words - robust enough to be closed
under sequential product or iterated product but also simple enough to be
decidable ? Is there an automata oriented language theory (or even better an
algebraic language theory) associated with this class ? Which specification
and synthesis techniques, known for rational languages of words, can be
lifted up to languages of tiles ?

Languages of tiles convey such a high modeling potential that it is worth
looking for precise answers to these questions. As far as we know, despite
McAlister monoid has been known and studied for long, it seems that no
systematic study of languages of tiles have been conducted so far.

In this paper, we start such a study. We prove that the class of MSO
definable languages of tiles is that expected class of languages : both simple
and robust.

Main results and structure of the paper

We first define positive tiles and the associated product. This leads us to
define the monoid of positive tiles which basic properties are studied.

A natural order (analogous to the natural order in inverse monoid [13])
is defined over positive tiles. The notion of left and right residuals induced
by that order are considered. Although there can be several residuals, we
show that there always exit a canonical least one.

Equipped with residuals, the monoid of positive tiles can be seen as a
completion of the free monoid by some recorder of word cancelation opera-
tors.

Extending the monoid of positive tiles with negative tiles we obtain
McAlister’s inverse monoid [13]. Canonical left and right residuals and shift
operators, defined for positive tiles, are then characterized by means of prod-
uct and inverse operator in arbitrary tiles.

We then consider recognizable languages, i.e. languages definable as
inverse images by morphism of finite sets. The class of such languages turns
out to be fairly small. In contrast with languages of words recognizable by
finite inverse monoid [15, 21], recognizable languages of tiles are shown to
be even weaker : they are at most characterized by finite sets of bi-infinite
periodic words. A non trivial example of such a recognizable language of
positive tiles is shown to exists.

Last, we consider the class of MSO-definable languages of tiles, i.e. lan-
guages definable by formulae of monadic second order logic. It is shown
that it contains rational languages of tiles. This result is proved by showing
that the class of MSO-definable languages is not only closed under boolean
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operators and projection, but also closed under sequential product, iterated
product, residuals (in positive tiles) or inverses (in arbitrary tiles).

Despite this robustness, we still obtain a simple Myhill-Nerode like char-
acterization of that class by means of a word congruence associated to every
language of tiles. This leads to an even simpler characterization of these tile
languages.

Despite the high modeling potential and robustness of these languages of
tiles, MSO-definable languages of tiles are shown essentially as simple as
rational languages of words.

We conclude this paper discussing several perspectives open by our study.

2 Monoid of positive tiles
We define in this section the monoid of positive tiles and show how it can be
extended with left and right shift operators in order to be finitely generated.

Some notations

Given a finite alphabet A, let A∗ be the free monoid generated by A with
neutral element denoted by 1 and let Aω be the set of infinite words on the
alphabet A.

Let ≤p stand for the prefix order relations over words, i.e. for any two
words x and y ∈ A∗, x ≤p y when there is a (unique) word denoted by
x−1(y) such that xx−1(y) = y. Likewise, let ≤s stand for the suffix order
relations over words, i.e. for any two words x and y ∈ A∗, x ≤s y when
there is some word denoted by (y)x−1 such that y = (y)x−1x.

Extending A∗ with 0, with 0u = u0 = 0 for arbitrary u ∈ A∗, the
resulting monoid can be seen as a complete bi-lattice with ∨p and ∧p the
joint and meet operators for the prefix order and ∨s and ∧s the joint and
meet operators for the suffix order.

Given Ā a disjoint copy of A, we write also u 7→ ū for the mapping from
(A + Ā)∗ to itself inductively defined by 1̄ = 1, for every letter a ∈ A, ā is
the copy of a in Ā, ¯̄a = a and, for every word u ∈ (A+ Ā)∗, au = ūā.

The free group FG(A) generated by A is defined to be (A + Ā)∗ quo-
tiented by the least congruence over (A + Ā)∗ such that, for every letter
a ∈ A, aā = 1 and āa = 1.

For every w ∈ (A+ Ā)∗ there is a unique word red(w) equivalent to w,
such that there is no occurrence of aā nor āa in red(w). In the remainder
of the text, we shall identify elements of FG(A) to their reductions.

With that assumption, for any two words u and v in A∗, if u ≤p v then
u−1(v) = ūv and if u ≤s v then (v)u−1 = vū.
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Positive tiles

A positive (or left to right) tile over the alphabet A is define to be a triple
of words u = (u1, u2, u3) ∈ A∗ ×A∗ ×A∗.

In such a tile u = (u1, u2, u3), u1 is called the prefix, u2 is called the root
and u3 is called the suffix of tile u. The word u1u2u3 is called the support
or the domain of tile u.

Such a tile is conveniently drawn as a (linear, unidirectional and left to
right) Munn’s birooted word tree [17].

u1 u3u2

The beginning of the root is marked with a dangling input arrow and the
end of the root is marked with a dangling output arrow.

For technical reason, we define an extra tile, written 0 and called the
undefined tile.

Tiles product

The sequential product of two non-zero tiles u = (u1, u2, u3) and v =
(v1, v2, v3) is intuitively defined as the tile (if it exists) resulting of the su-
perposition of the two tiles positioned in such a way that the end of the root
of the first tile is synchronized with the beginning of the root of the second
tile.

u1 u3u2
v1 v3v2

A pattern-matching contraint, to the left and to the right of the synchroni-
sation point, forces superposed letters to be equal.

The root of the resulting product tile is then defined as the concatenation
of the roots of its terms.

Formally, for any two positive tiles u = (u1, u2, u3) and v = (v1, v2, v3),
the sequential product of u and v is defined by

u.v = ((u1.u2 ∨s v1)u−1
2 , u2v2, v

−1
2 (u3 ∨p v2v3))

when the left matching constraint u1.u2 ∨s v1 6= 0, i.e.u1u2 and v1 are suffix
one of the other, and the right matching constraint u3 ∨p v2v3 6= 0, i.e. u3
and v2v3 are prefix one of the other, are both satisfied.

This partial product is completed by u.v = 0 when the matching con-
straint are not satisfied and by u.0 = 0.u = 0.
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Example: Let a, b, c and d ∈ A be four distinct letters. Then (a, b, c).(b, c, d) =
(a, bc, d) while (a, b, c).(a, c, d) = 0. In the latter case, the left matching con-
straint is violated because a 6= b.

One can observe that the domain of a non-zero product contains the
domains of its components. In fact, it is defined as the (well positioned and
compatible) superposition of their domains.

Observe also that the domain of the product can arise from both tiles in-
volved in the product. There is no limit nor order in the (matching) overlaps
that are allowed in sequential product of tiles. For instance, (a, b, cc).(b, c, 1) =
(a, bc, c) with a resulting domain that entirely comes from the first tile.

The monoid of positive tiles

The set TA of positive tiles is defined as the set A∗×A∗×A∗+ 0. denoting
1 the tile 1 = (1, 1, 1) we can state that:

Theorem 1 The set TA of positive tiles equipped with the sequential product
of tiles is a monoid with neutral element 1 and absorbant element 0.

Proof. The fact that 1 is neutral is immediate. Associativity of the se-
quential product comes from the fact that, as already noticed, the domain
of non-zero a product always contains the domains of its components. 2

Lemma 2 The mapping i : A∗ → TA, defined, by i(u) = (1, u, 1) for every
word u ∈ A∗ is an embedding of A∗ in TA, i.e. it is a one to one monoid
morphism.

Proof. Straightforward. 2

One may ask what could be a set of generators of the monoid of positive
tiles on the alphabet A. Are some irreducible tiles behaving in TA much in
the same way elements of A generate the free monoid A∗ ?

It occurs that, in sequential products of tiles, although roots are indeed
combined sequentially, both prefixes and suffixes decrease. More precisely,
arbitrary roots can be generated, via tiles product, from the (canonical
images of) letters of A, but, the monoid TA itself is not finitely generated,
i.e. in some sense, monoid TA is incomplete. We need some other operators
on tiles to generate all tiles from a finite subset of tiles.

The left and right shifts defined below give a radical solution for generat-
ing arbitrary tiles from (canonical images of) words of A∗. The left and right
residuals defined in the next section give an alternative and more subtle way
to complete the monoid of positive tiles.
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Left and right shift of a tile

For every tiles u ∈ TA we define the left shift σL(u) of tile u to be the tile 0
when u = 0 or the tile σL(u) = (u1u2, 1, u3) when u = (u1, u2, u3).

u1 u3u2

Symmetrically, for every tiles u ∈ TA we define the right shift σR(u) of
tile u to be the tile 0 when u = 0 or the tile σR(u) = (u1, 1, u2u3) when
u = (u1, u2, u3).

u1 u3u2

In the sequel, tiles of the form (u, 1, w) ∈ TA are called context tiles.

Lemma 3 The set CA of context tiles extended with zero is a (sub)monoid
of TA which elements are commuting idempotents.

Proof. Straightforward. 2

Theorem 4 The monoid of positive tiles TA is finitely generated from (canon-
ical images of) letters of A, product and left and right shift operators.

Moreover, for every word u ∈ A∗ still denoting u for the tile (1, u, 1),
and denoting uL for the tiles (u, 1, 1) = σL(u) and uR for the tile (1, 1, u) =
σR(u), one has (u, v, w) = uLvwR for every non zero tiles (u, v, w) ∈ TA.

Proof. As (canonical images of) any words are generated from letters and
products this is immediately follows from the second statement that is im-
mediate. 2

3 Natural order and residuals
Although the monoid of positive tiles is not an inverse monoid [13], it hap-
pens that positive tiles can be naturally ordered in a way similar to the way
inverse monoids are naturally ordered.

The natural order

We say that a tile (u1, u2, u3) is smaller than a tile (v1, v2, v3), which we
write (u1, u2, u3) ≤ (v1, v2, v3), when v1 ≤s u1, v2 = u2 and v3 ≤p u3. We
extend this relation with 0 ≤ u for every tile u ∈ TA.

One can easily check that this relation is an order. It is called the natural
order over tiles. Its properties are described in the following three lemmas.
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Lemma 5 (The submonoid of roots) Maximal elements of TA under the
natural order form a monoid isomorphic with the free monoid A∗.

Proof. Maximal elements are all elements of the form i(u) = (1, u, 1) with
u ∈ A∗. 2

Lemma 6 (The meet semi-lattice of contexts) For any context tiles u
and v ∈ CA:

(1) u ≤ v if and only if uv = u,

(2) u ∧ v = uv.

Proof. Elements of CA are commuting idempotent elements hence it is
a classical result that CA is a meet semi-lattice with respect to the order
relation defined by x � y when xy = x. In that case, x ∧ y = xy. One can
then easily check that this order � and the natural order ≤ coincide. 2

Lemma 7 (Natural order and shift operators) For every tiles u and
v ∈ TA, u ≤ v if and only if u = v.σL(u) if and only if u = σR(u).v.

Proof. Straightforward. 2

The natural order defined here is actually the restriction to TA of the
natural order (in the sense of inverse monoid) of the McAlister monoid
defined in Section 4.

Prefix, suffix and residuals

Prefix and suffix preorder relations can be defined as for words. Formally,
for every u and v ∈ TA, u ≤p v (resp. u ≤s v) when there exists some
w ∈ TA such that u.w = v (resp. w.u = v).

The prefix and suffix relations over non zero tiles are characterized in TA

by the following technical lemma.

Lemma 8 For every u = (u1, u2, u3), v = (v1, v2, v3) ∈ TA and w =
(w1, w2, w3) ∈ TA:

(1) u ≤p w if and only if u1 ≤s w1, u2 ≤p w2 and u2u3 ≤p w2w3,

(2) v ≤s w if and only if v1v2 ≤s w1w2, v2 ≤s w2 and v3 ≤p w3.

In particular, both relations ≤p and ≤s in TA are partial order relations in
TA with 1 as least element and 0 as greatest elements.
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Proof. Straightforward from the product definition since, by definition,
w = uw means that
(w1, w2, w3) = ((u1.u2 ∨s v1)u−1

2 , u2v2, v
−1
2 (u3 ∨p v2v3)) 2

For every u, v and w ∈ TA, we say that u is a left residual of w by v and
that v is a right residual of w by u when w ≤ u.v.

Over words, with natural order defined as identity, left and right residuals
are uniquely defined when they exists and coincide with string cancellation.
Over positive tiles, the situation is different as there might be several left or
right residuals.

The following lemma gives some necessary and sufficient conditions for
u (resp. v) to be a left (resp. right) residual of w by v (resp. w by u).

Lemma 9 For all positive tiles u = (u1, u2, u3), v = (v1, v2, v3) and w =
(w1, w2, w3), the following propositions are equivalent:

(1) w ≤ u.v

(2) v ≤s w with u1 ≤s w1, u2 = (w2)v−1
2 (henceforth u2 ≤p w2) and

u3 ≤p v2w3,

(3) u ≤p w with v1 ≤s w1u2, v2 = u−1
2 (w2) (henceforth v2 ≤s w2) and

v3 ≤p w3.

In particular, given w and u (resp. w and v) there always exists a least v
(resp. a least u) such that w = uv.

Proof. Straightforward. 2

Canonical residuals

For all tiles u = (u1, u2, u3) and w = (w1, w2, w3) ∈ TA the canonical left
residual u−1(w) of w by u is defined by u−1(w) = (w1u2, u

−1
2 (w2), w3) when

u ≤p w and u−1(w) = 0 otherwise. This is illustrated as follows:

u1 u3
w1 w3w2

u2

Symmetrically, for all tiles v = (v1, v2, v3) and w = (w1, w2, w3) ∈ TA

the canonical right residual (w)v−1 of w by v is defined by (w)v−1 =
(w1, (w2)v−1

2 , v2w3) when v ≤s w and (w)v−1 = 0 otherwise. This is il-
lustrated as follows:

w1 w3w2
v1 v3v2
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Left and right residuals are related with left and right shifts as follows.

Lemma 10 For all u ∈ TA, σL(u) = u−1(u) and σR(u) = (u)u−1.

Proof. Straightforward from the definitions. 2

Theorem 11 The monoid TA of positive tiles over the alphabet A is gener-
ated by the (images of) letters of A, product, and (canonical) left and right
residuals.

More precisely, denoting u the canonical image of u ∈ A∗ in TA, for all
(u, v, w) ∈ TA we have (u, v, w) = (u−1(uvw))w−1 = u−1((uvw)w−1).

Proof. Immediate consequence of the previous definitions. 2

Remark: This says that any tile (w, v, w) can be seen in some sense as a rep-
resentation of the word residual expression (u−1(u)).v.((w)w−1) defined in
A∗ where the canceled strings u and w have been recorded into the structure
of the corresponding tile in TA.

4 McAlister monoid of arbitrary tiles
In the definition of the canonical left (resp. right) residual of w by u (resp.
w by v), everything looks as if this residual is computed by means of a
generalized sequential product of some u−1 by w (resp. w by some v−1)
where u−1 is obtained from u (resp. v−1 is obtained from v) by flipping the
input and output vertices.

This observation leads to the definition of negative tiles. This completion
of the monoid of positive tiles by negative tiles define an (inverse) monoid
MA known as the monoid of McAlister [14].

One shall keep in mind however that residuals and product by inverse,
though tightly related, are distinct operations as shown by Theorem 13
below.

Negative tiles

A negative (or right to left) tile over the alphabet A is define to be a triple
of word of the form v = (u1u2, ū2, u2u3) ∈ A∗ × Ā∗ × A∗ with u1, u2 and
u3 ∈ A∗.

Such a tile is conveniently drawn as a Munn’s birooted word tree

u1 u3u2
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which is obtained from the birooted word tree representing the tile (u1, u2, u3)
just by flipping the input and output arrows.

We write MA for the set of positive and negative tiles extended with 0.
The product of tiles in MA is then defined accordingly, the product of two
words in A∗ + Ā∗ being interpreted in the free group FG(A) generated by
alphabet A.

Generalized tiles product

For any two non zero (positive or negative) tiles u = (u1, u2, u3) and v =
(v1, v2, v3) ∈MA, the sequential product of u and v is defined by

uv = ((u1u2 ∨s v1).ū2, u2v2, v̄2(u3 ∨s v2v3))

when both u1u2 ∨s v1 6= 0 and u3 ∨s v2v3 6= 0, and uv = 0 otherwise.

Theorem 12 The set MA equipped with the generalized sequential product
is a monoid with neutral element 1 and absorbant element 0. The set TA ⊆
MA of positive tiles is a submonoid of MA.

Proof. The generalized product is well defined, i.e. in defined cases we have
(u1u2 ∨s v1).ū2 ∈ A∗, v̄2(u3 ∨s v2v3) ∈ A∗ and, in the case u2v2 ∈ Ā∗ (with
elements of the free group FG(A) always reduced), u2v2 ≤s (u1u2 ∨s v1).ū2
and u2v2 ≤p v̄2(u3 ∨s v2v3).

Moreover, when both u and v are positive tiles, this definition coincides
with the sequential product previously defined (Section 2). 2

Observe that all non zero tiles of the form (u1, 1, u3) are both positive
and negative tiles.

Inverse tiles

For every non-zero tile u = (u1, u3, u3) ∈ MA, let u−1 ∈ MA be the inverse
of tile u defined by u−1 = (u1u2, ū2, u2u3) and let 0−1 = 0.

Left and right shift operators are extended toMA just with the same def-
inition, i.e. σL(u1, u2, u3) = (u1u2, 1, u2) and σR(u1, u2, u3) = (u1, 1, u2u3).

Theorem 13 For every positive tile u ∈ MA, u.u−1 = σL(u) and u−1.u =
σR(u).

Moreover, for all positive tiles u and v ∈ TA, if u−1(v) 6= 0 (resp.
(v)u−1 6= 0) in TA then u−1(v) = u−1.v (resp. (v)u−1 = v.u−1) in MA.

Proof. Straightforward. 2

Observe that a left or right residual in monoid TA can be zero even
though the corresponding left or right multiplication by inverse is positive.
In fact, residual u−1(v) (resp. (v)−1) is non-zero only when u ≤p v (resp.
u ≤S v).
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McAlister monoid

Theorem 14 The monoid MA is an inverse monoid isomorphic to the
monoid of McAlister.

Proof. (sketch of) We use a representation of McAlister monoid as the
quotient of the free inverse monoid FIM(A) by the ideal ⊥ of non unidi-
rectional and non linear tiles where, following Munn’s result, elements of
FIM(A) are seen as birooted word trees

The definition of FIM(A) and the monoid of McAlister FIM(A)/⊥
are first recalled below. Then we explicit an isomorphism from MA to
FIM(A)/⊥.

In [17], Munn give the following description of the free inverse monoid
on alphabet A.

A birooted word tree is (conveniently described as) a pair (P, u) where
P is a non empty finite and prefix-closed subset of (reduced elements of) the
free group FG(A) generated by A, with u ∈ P .

The product of two birooted trees (P, u) and (Q, v) is defined by

(P, u).(Q, v) = (P ∪ uQ, uv)

It is a consequence of Munn’s representation theorem [17] that the result-
ing monoid is (isomorphic to) FIM(A), the free inverse monoid generated
by alphabet A which can also be defined as the quotient of the free monoid
(A+Ā)∗ by the least congruence such that, for all words u and v ∈ (A+Ā)∗,
uūu ' u and uūvv̄ ' vv̄uū.

The monoid of McAlister can in turn be defined as follows. A birooted
word tree (P, u) is said unidirectional when P ⊆ A∗ + Ā∗, and linear when
both P ∩A∗ and P ∩ Ā∗ are totally ordered by the prefix order.

It is straightforward that the set ⊥ of non unidirectional or non linear
birooted trees is an ideal. Following Lawson or Munn, we define thus the
monoid of McAlister as the Rees quotient FIM(A)/⊥.

In that monoid, given two linear and unidirectional birooted word trees
(P, u) and (Q, v), the product of these two tiles is defined to be (P ∪uQ, uv)
as in FIM(A) when the resulting birooted tree is linear and unidirectional,
and ⊥ (from now on written 0) otherwise.

We prove now that our monoid MA is just the McAlister monoid.

For every tile u = (u1, u2, u3) let

Pu = {x ∈ Ā∗ : x ≤p ū1} ∪ {x ∈ A∗ : x ≤p u2u3}

and let tu = (Pu, u2) be the resulting birooted tree.
Observe that tu is indeed a well defined unidirectional and linear birooted

tree. In fact, when u is a positive tile, we have u2 ≤ u2u3 hence u2 ∈ Pu.
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When u is a negative tile, i.e. with u2 ∈ Ā∗ we have both u1u2 and u2u3 ∈ A∗
and thus u2 ≤p ū1 hence u2 ∈ Pu.

We claim that the mapping ϕ : MA → FIM(A)/⊥ defined by ϕ(0) = 0
and for any non-zero tile u = (u1, u2, u3) ∈ MA, ϕ(u) = (Pu, u2) is an
isomorphism.

First, it is easy to check that it is a bijection. In fact, given a linear and
unidirectional tile (P, u) one can define ϕ−1((P, u)) to be the tile (u1, u2, u3)
such that u2 = u, u1 =

∨
s P ∩ Ā∗ and u3 = ū2

∨
p P ∩A∗.

It remains to show that it is indeed a monoid morphism. For this, it
is enough to check that for any two non zero tiles u = (u1, u2, u3) and
v = (v1, v2, v3) ∈ MA, one indeed has tu.v = (Pu ∪ u2Pv, u2v2) which is
straightforward.

As a consequence, as McAlister is an inverse monoid, so is the monoid
MA. 2

In particular, the natural order defined in TA extends to MA and it
coincides with the natural order defined in any inverse monoid. We refer the
interested reader to the book of Lawson on inverse monoids [13], chapter 9.4,
for a description of the numerous additional properties of McAlister monoid.

5 Recognizable languages of tiles
In this section, we consider languages of arbitrary or positives tiles that are
recognizable in the algebraic sense.

Since the monoid of positive tiles is not an inverse monoid or since we
consider recognizable subsets of McAlister inverse monoid, the result we
obtain rather differs from the studies of languages of words recognized by
finite inverse monoids (see e.g. [15, 21]).

Preliminaries on recognizable languages

Following the standard definition we say that a language L ⊆ TA (resp. L ⊆
MA) is a recognizable language of positive tiles (resp. arbitrary tiles) when
there is a (surjective) monoid morphism ϕ : TA → S (resp. ϕ : MA → S),
with S a finite monoid such that L = ϕ−1(ϕ(L)).

Given such L, we define the syntactic congruence 'L over L by : for all
u and v ∈ TA (resp. u and v ∈ MA), u 'L v when for all x and y ∈ TA,
xuy ∈ L⇔ xvy ∈ L. As well known, such a language is recognizable if and
only if its syntactic congruence is of finite index.

The following Lemma explain why we need to restrict slightly the def-
inition of recognizability in TA. Otherwise there might be some far too
complex languages (even non computable ones) that would be considered
recognizable.
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Lemma 15 Let w ∈ A∗ be an arbitrary infinite word on the alphabet A. The
positive tiles language Lw = {(1, 1, v) ∈ TA : 1 <p v ≤p w} is recognizable.

In particular, if w is not computable, so is Lw while it remains recogniz-
able.

Proof. Let S = {0, 1, s} be the monoid defined by usual product rules for
0 and 1 and ss = s, and let ϕw : TA → S be the mapping defined for every
q ∈ TA by ϕw(q) = 1 when q = 1, ϕw(q) = s when q ∈ Lw and ϕw(q) = 0 in
the remaining cases.

We claim that ϕw is a morphism monoid. In fact, for every q1 and
q2 ∈ Lw one indeed has q1q2 = q1 or q1q2 = q2 hence ϕ(q1q2) = ϕ(q1)ϕ(q2).
It follows that, indeed, Lw = ϕ−1

w (ϕw(s)). 2

This undesirable property results from the fact that TA is not finitely
generated. It follows that there might some element u ∈ TA such that
ϕ(σR(u)) 6= 0 (or ϕ(σL(u)) 6= 0) while ϕ(u) = 0.

Observe that in McAlister monoid, finitely generated, this cannot happen
since for every u ∈MA, σL(u) = u−1u and σR(u) = uu−1.

In the sequel, whenever considering recognizable languages of positive
tiles, we shall restrict ourselves to safely recognizable languages in the sense
that the morphism ϕ : TA → S is such that for every u ∈ TA, if ϕ(σL(u)) 6= 0
or ϕ(σR(u)) 6= 0 then ϕ(u) 6= 0.

The next result, negative, tells us that rather simple languages of tiles
are not recognizable.

Lemma 16 Assume A has at least two distinct letters a and b. Language
L = {(bam, an, 1) ∈ TA : m,n ∈ IN} i.e. L = (ba∗)−1(ba∗)−0 within positive
tiles, is not recognizable.

Proof. We prove that the syntactical congruence 'L associated to L in
TA (or in MA) is of infinite index.

Consider for every m ∈ IN, the tile um = (bam, 1, 1). It is an easy
observation that for any two m and n ∈ IN, um 'L un if and only if m = n
hence the claim.

Indeed, for every k ∈ IN let vk = (ak, 1, 1). We have for any givenm ∈ IN,
umvk ∈ L if and only if k ≤ m. Now if for some m and n ∈ IN one has
um 'L un then for every k ∈ IN, umvk ∈ L if and only if unvk ∈ L. It follows
that, for every k, k ≤ m if and only if k ≤ n, hence m = n. 2

We are now ready to study (safely) recognizable subsets of the monoid
of positive or arbitrary tiles on a given alphabet A. We assume that A has
two distinct letters a and b at least.

From now on, let ϕ : TA → S be a safe morphism (or ϕ : MA → S).
For every word u ∈ A∗, let uL = (u, 1, 1), uC = (1, u, 1) and uR = (1, 1, u)
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and let ϕL, ϕC and ϕR be the induced morphisms from A∗ to S respectively
defined by ϕL(u) = ϕ(uL), ϕC(u) = ϕ(uC) and ϕR(u) = ϕ((1, 1, u)). In
McAlister monoid MA, let also uI = (u, ū, u) and ϕI(u) = ϕ(uI).

For all non-zero positive tiles (u1, u2, u3) ∈ TA one has ϕ((u1, u2, u3)) =
ϕL(u1)ϕC(u2)ϕR(u3). It follows that morphism ϕ on TA is completely de-
termined by ϕL, ϕC and ϕR. Similarly, in MA, ϕ is completely determined
by ϕL, ϕC , ϕR and ϕI since for all negative tiles (u1u2, ū2, u2u3) ∈MA one
has ϕ((u1u2, ū2, u2u3)) = ϕL(u1)ϕI(u2)ϕR(u3).

On recognizable tiles’ root languages

Theorem 17 For all non-zero s ∈ S, language Ls = ϕ−1
C (s) is totally

ordered by both prefix and suffix order.
Moreover, Ls is either empty, or a singleton or else Ls = u(vu)m(vu)∗

for some integer m and some u ∈ A∗ and v ∈ A+.

Proof. Let s ∈ S be a non zero element of S.

Let us first prove that Ls is totally ordered by prefix and suffix order.
Let u and v ∈ Ls. We need to prove that both u ∨s v and u ∨p v are non
zero. By symmetry, it suffices to prove that u ∨s v 6= 0.

Assume u∨s v = 0. This implies that uCuL = uC while vCuL = 0. Now,
since ϕ(uC) = ϕ(vC) this means

ϕ(uCuL) = ϕ(uC)ϕ(uL) = ϕ(vC)ϕ(uL) = ϕ(vCuL)

henceforth s = 0 : contradiction.

Assume Ls is non empty with two distinct words u and v such that
|u| < |v|. Without loss of generality, assume u and v are the shortest
distinct words of Ls. Since Ls is totally ordered by prefix and suffix we
know these two words are uniquely determined. Moreover, there are two
non empty words x and y ∈ A∗ such that v = ux = yu hence ϕ(u) =
ϕ(ux) = ϕ(u)ϕ(x) = ϕ(u)ϕ(x)k for every integer k, hence ux∗ = y∗u ⊆ Ls.

We now claim that Ls = ux∗ = y∗u. Indeed, let w ∈ Ls. Since Ls is
totally ordered by prefix there is a unique k such that w = uxkw′ with 1 ≤
w′ <p x. But this means that ϕC(u)ϕC(xk)ϕC(w′) = ϕC(u)ϕC(w′) = ϕC(u)
hence uw′ ∈ Ls with u ≤p uw

′ <p ux. Since we have chosen u and v = ux
minimal in length, this means w′ = 1.

In other words, Ls = ux∗ = y∗u.

Let us prove now that Ls is of the form stated above.
If u ≤s x (equivalently u ≤p y) then v = uwu for some w ∈ A∗ and

Ls = u(wu)∗ and we are done renaming w in v.
Otherwise, let m be the greatest integer such that xm ≤s u (equivalently

ym ≤p u). We have u = ymuy = uxx
m for some ux and uy ∈ A∗ with

|uy| = |ux| < |x| = |y| and, for every k, we also have uxx
mxk = ykymuy.
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This means that x = u′yuy and y = uxu
′
x for some u′y and u′x ∈ A∗ and,

thus for every k, ux(u′yuy)m+k = (uxu
′
x)m+kuy hence u′y = u′x (from now

on written w) and ux = uy (from now on written z) hence x = wz and
y = zw and u = z(wz)m and Ls = z(wz)m(wz)∗ which terminates the proof
(renaming z in u and w in v). 2

Remark: By symmetry, it is clear that in MA a similar statement holds for
the inverse image by ϕI of any non zero element.

Observe also that in the above proof, we never assume that S is finite !

On recognizable tiles’ context languages

Theorem 18 For every non zero s ∈ S, language Ls = ϕ−1
L (s) (resp. Ls =

ϕ−1
R (s)) is either empty or s is idempotent and LS is totally ordered by the

suffix order (resp. prefix order).
Moreover, either Ls is finite or there exists two words u and v ∈ A∗

with v 6= 1 such that Ls is a co-finite subset of the set of all suffixes (resp.
prefixes) of words of the form u(vu)∗.

Proof. Observe first that the set ϕL(A∗) + 0 (resp. ϕR(A∗) + 0) is a
submonoid of S of commuting idempotents elements partially ordered by
the semi-lattice order � defined for every x and y ∈ SL (resp. SR) by x � y
when xy = x. This is an immediate consequence of the fact that both left
(resp. right) context tiles in TA form a submonoid with the above properties
(see Lemma 3).

By symmetry, we only consider the case of ϕR(s). Let then s ∈ S be a
non zero element such that Ls = ϕ−1

R (s) is non empty.

We claim that Ls is totally ordered by prefix. Indeed, let u and v ∈ Ls.
By morphism definition, ϕ(uRvR) = ϕR(u)ϕR(v), hence, by idempotence of
s, ϕ(uRvR) = s 6= 0, hence u ∨p v 6= 0.

Assuming Ls is infinite, let w ∈ A∗ be the unique infinite word such that
all words of Ls are prefixes of w and let Lw be the set of all finite prefixes
of w.

Observe that for every u and v ∈ Lw, if u ≤p v then ϕR(u) � ϕR(v).
This immediately follows from uRvR = vR.

But this also implies that Lw − Ls is finite. Indeed, infinitely many
prefixes of w belong to Ls hence, for every word u ∈ Lw greater (by prefix
order) than the least element v1 of Ls there is a word v2 ∈ Ls such that
v1 ≤p u ≤p v2, thus s = ϕR(v1) � ϕR(u) � ϕR(v2) = s, thus ϕR(u) = s
since � is an order in ϕR(A∗) + 0.

Observe also that ϕR(Lw) does not contain 0. Indeed, every elements are
greater than or equal to s. By the safety assumption, this implies that the
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language of tiles’ context ϕC(Lw) does not contain 0. Then, by arguments
similar to those of the proof of Theorem 17, there exists two words u ∈ A∗
and v ∈ A+ such that w = u(vu)ω. 2

A non trivial recognizable langage of positive tiles

Our point in this section, is to demonstrate that algebraic recognizability
somehow collapses for languages of tiles. This is already fairly well illus-
trated by the necessary conditions stated in Theorems 17 and 18 above.

Still, does there exist a non trivial recognizable language that satisfies
these conditions ? We provide here such an example by means of a surjective
morphism from MA to a non trivial finite (inverse) monoid S.

Let a and b be two distinct letters of A, and let

S = {0, 1, (a, 1, b), (b, 1, a), (b, a, b), (a, b, a)} ⊆ TA

with product � define as expected for 0 and 1 and defined according to the
following product table:

� (a, 1, b) (b, 1, a) (b, a, b) (a, b, a)
(a, 1, b) (a, 1, a) 0 0 (a, b, a)
(b, 1, a) 0 (b, 1, a) (b, a, b) 0
(b, a, b) (b, a, b) 0 0 (b, 1, a)
(a, b, a) 0 (a, b, a) (a, 1, b) 0

Lemma 19 (S,�) is an inverse monoid.

Proof. One can check that product � is associative hence S is a monoid. It
remains to show [13] that the set E(S) of idempotent of S is a commutative
submonoid and that for every non-idempotent element x ∈ S there is x−1 ∈
S such that x� x−1 � x = x and x−1 � x� x−1 = x−1.

Since E(S) = {0, 1, (a, 1, b), (b, 1, a)} commutation of idempotent imme-
diately follows from the fact that (a, 1, b)� (b, 1, a) = (b, 1, a)� (a, 1, b) = 0.

One can then check that (a, b, a) � (b, a, b) � (a, b, a) = (a, b, a) and
(b, a, b) � (a, b, a) � (b, a, b) = (b, a, b) hence we have (a, b, a)−1 = (b, a, b)
and (b, a, b)−1 = (a, b, a). 2

From now one, this monoid is just denoted by S.

Let then F = (ab)∗ + (ba)∗ + a(ba)∗ + b(ab)∗, i.e. F is the set of factors
of words of (ab)∗, and let ϕ : MA → S be the mapping defined by ϕ(0) = 0,
ϕ(1) = 1 and for all (u, v, w) ∈MA such that uvw 6= 1:

(1) ϕ(u, v, w) = 0 when uvw 6∈ F ,
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(2) ϕ(u, v, w) = (a, 1, b) or, resp., (b, 1, a) when v = 1 with a ≤s u or
b ≤p w or, resp., b ≤s u or a ≤p w, i.e. when (u, v, w) is idempotent,

(3) ϕ(u, v, w) = (b, 1, a), (a, 1, b), (a, b, a) or resp. (b, a, b) when v ∈ (ab)+,
v ∈ (ba)+, v ∈ b(ab)∗ or, resp. v ∈ a(ba)∗, i.e. when (u, v, w) is strictly
positive,

(4) ϕ(u, v, w) = ϕ(uv, v̄, vw)−1 when v ∈ Ā+, i.e. when (u, v, w) is strictly
negative.

Theorem 20 The mapping ϕ : MA → S is a (surjective) morphism.

Proof. This follows from the fact that, for all u and v ∈MA,

ϕ(u)� ϕ(v) = ϕ(uv) = ϕ(ϕ(u)ϕ(v))

2

Remark: In other words, any ϕ−1(X) for X ⊆ S is a recognizable languages
of arbitrary tiles. Restricting ϕ to TA gives languages of positive tiles.

This result suggest that their might be some link between our study of
recognizable languages of tiles and the study of inverse monoids induced by
one-dimensional periodic tilings made in [8, 1].

6 MSO-definable languages of tiles
We consider in this section the languages of tiles definable by means of
monadic second order formulae.

MSO definability

First, we need a FO-structure description of tiles. For this, we uses a typical
encoding of words into FO-structures that amount to encode each letter
a ∈ A as a relation between elements of the domain. This way, there is no
need of end markers and the empty word is simply modeled as the structure
with singleton domains and empty relations. We raise models of words to
models of tiles just by marking (as for birooted trees) the entry point and
exit point of each tile.

For instance, the triple (ba, aa, bb) is modeled as indicated by the follow-
ing picture

b a a a bb
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where, as before, the entry point is marked by a dangling input arrow, and
the exit point is marked by a dangling output arrow.

In the sequel, the model of a tile t is still written t. The associated
domain of its underlying FO-structure is written dom(t), the entry point in
written in(t) and the exit point is written out(t).

A language L ⊆ MA is MSO definable (MSO(TA)) when there is a
MSO formula of the form ϕL(U, x, y) where U is a set variable and x and
y are two FO-variables such that, for every t ∈ TA, t ∈ L if and only if
t |= ϕL(dom(t), in(t), out(t)).

Closure properties

Theorem 21 For any L and M ⊆ TA (resp. L and M ⊆ MA), if L and
M are MSO definable then so are TA − L (resp. MA − L), L ∪M , L ∩M ,
L.M , L∗, L−1(M) and (M)L−1 (resp. L−1 in MA).

Proof. Let ϕL(U, x, y) and ϕM (U, x, y) be two formulae defining respec-
tively the language of tiles L and M . We assume that these formulae also
check that both x and y belongs to U (with x ≤ y when dealing with lan-
guages of positive tiles) and that U is connected.

Case of boolean combination of L and M : straightforward.
Case of LM : take ψ(U, x, y) stating that there exist two sets X and

Y such that U = X ∪ Y and there is z such that both ϕL(X,x, z) and
ϕM (Y, z, y) hold.

Case of L∗ : in order to define ϕ(U, x, y), the main idea is to consider the
reflexive transitive closure R+(x, y) of the binary relation R(x1, x2) defined
by ∃XϕL(X,x1, x2); one must take care, however, that set U is completely
covered by (sub)tiles’ domains; this is equivalent to the fact, as domains
necessarily overlap, that each extremity (left most or right most element) of
the domain U belongs to one of these sets X at least. This is easily encoded
by a disjunction of the three possible cases : extremities are reached in a
single intermediate tile, left extremity is reached first or right extremity is
reached first.

Case of L−1(M) (within positive tiles) : take ψ(U, x, y) stating that
there exist a set X ⊆ U and there is z such that z ≤ x and z ≤ y and both
ϕL(X, z, x) and ϕM (U, z, y) hold.

Case of (M)L−1 (within positive tiles) : take ψ(U, x, y) stating that
there exist a set X ⊆ U and there is z such that x ≤ z and y ≤ z and both
ϕM (U, x, z) and ϕL(X, y, z) hold.

Case of L−1 (within McAlister monoid) : take ψ(U, x, y) stating that
ϕL(U, y, x) hold.

2

A language L ⊆ TA is rational when it can be defined by means of a
finite expression built over letters of A, sum, product, star iteration of the
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product and left and right residuals. Rational languages if MA are defined
as usual.

Theorem 22 Rational languages of positive or arbitrary tiles are MSO de-
finable.

Proof. Immediate consequence of the closure properties above. 2

A canonical word congruence for languages of tiles

We aim at achieving a simple characterization of MSO definable language of
tiles. For this purpose, we first define a notion of congruence relation over
A∗ which is defined for every language of tiles. It occurs that this congruence
is of finite index if and only if the language of tile is definable in MSO.

Given a language L ⊆ TA− 0, we define three relation over words of A∗,
the prefix relation 'P L, the root relation 'RL and the suffix relation 'SL

as follows: for every two words u and v ∈ A∗ :

(1) u 'P L v when, for all words w1, w2, w3, w4 ∈ A∗, (w1uw2, w3, w4) ∈ L
⇔ (w1vw2, w3, w4) ∈ L,

(2) u 'RL v when, for all words w1, w2, w3, w4 ∈ A∗, (w1, w2uw3, w4) ∈ L
⇔ (w1, w2vw3, w4) ∈ L,

(3) u 'SL v when, for all words w1, w2, w3, w4 ∈ A∗, (w1, w2, w3uw4) ∈ L
⇔ (w1, w2, w3vw4) ∈ L,

Last, we define the relation 'L over A∗ as follows : for every two words
u and v ∈ A∗, u 'L v when the three relations u 'P L v, u 'RL v and
u 'SL v hold, i.e. 'L is the intersection of the prefix, root and suffix
relations associated to L.

A Myhill-Nerode like theorem

Theorem 23 Let L ⊆ TA − 0. All relations 'P L, 'RL, 'SL and 'L are
congruence relations over A∗.

Moreover, L is MSO-definable if and only if all these relations are of
finite index.

Proof. Let L ⊆ TA − 0 be a language of tiles. The fact that these relation
are congruences is immediate from the definition.

Now, L = Σ(u,v,w)∈L[u]L× [v]L× [w]L. Indeed, this means that whenever
(u, v, w) ∈ L for some u, v and w ∈ A∗ then if u ' u′, v ' v′ and w ' w′

for some u′, v′ and w′ ∈ A∗, we also have (u′, v′, w′) ∈ L whenever . This
property just follows from the definition of the word congruence 'L.
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Moreover, if 'L is of finite index, any language of the form [w] ⊆ A∗

with w ∈ A∗ is rational henceforth MSO definable, and the above sum is
actually finite, henceforth there exists an MSO formula ϕ(U, x, y) over tiles
that define L.

Conversely, observe that language L ⊆ TA can be encoded into a lan-
guage of words M ⊆ A∗PA

∗
RA
∗
S where AP , AR and AS are three disjoint

copies of the alphabet A for encoding prefixes, roots and suffixes of tiles.
If L is MSO definable then, clearly, so is M . Thus, by Büchi theorem,

this means that M is also rational hence M is recognizable and thus its
syntactic congruence 'M the word language M is of finite index hence so
are 'P L, 'RL and 'SM . Indeed, for every word u and v ∈ A∗, we have, for
X denoting P , R or S, u 'XL v if and only if uX 'M vX where we write
wX for the renaming of any word w ∈ A∗ in the copy alphabet AX . 2

Languages of positive tiles vs languages of words

A reformulation of Theorem 23 shows that despite its high modeling po-
tential, despite its closure under tiles product and residuals, this class is
somehow as simple as the class of rational languages of words.

Corollary 24 A language of non zero positive tiles L ⊆ TA is MSO de-
finable if and only if there are finitely many rational langages Pi, Ri and
Si ⊆ A∗ with i ∈ I such that L = Σi∈IPi ×Ri × Si.

Proof. Immediate consequence of the proof of Theorem 23. 2

7 Discussion on open perspectives

Automata theory for tile languages

Our application perspectives in music call for efficient automata theory
adapted to languages of tiles.

There is a (possibly tight) connection between languages of tiles and two-
way automata on words. In fact, our last characterization of MSO definable
languages of tiles implicitly define such automata. A run over a tile could
be, first a back and forth run on its prefix, then a forth run on its root and,
last, a run forth and back on its suffix.

From the opposite direction, studying two-way automata, it occurs that
Pécuchet in the mid 80’s already implicitly defined tiles as partial runs of
two-way automata [19]. Following Pécuchet terminology, tiles are actually
nothing but pairs of (as called) sections of their domains and his notion of
mode 2 automata runs is obviously close to what could be defined as a run
over a tile.
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However, the languages of tiles are not explicitly defined in [19]. Inter-
ested in languages of words, Pécuchet observes the robustness of two-way
automata on words described by the equivalence of mode 1 and mode 2 in-
duced notion of recognizability. Our last characterization of MSO definable
languages could perhaps explain it ?

Algebraic theory for tile languages

In his algebraic proof of Shepherdson’s reduction of two-way automata to
one-way automata [20, 23], Birget [6] almost provides an algebraic charac-
terization of two-way automata that has been used till recently [12]. But,
as he mentioned, there is stil no defined class of algebraic structures that
characterizes two-way automata in the same way that the class of monoids
characterizes one way automata.

Of course, theorems 17 and 18 tell us that the notion of morphism is
far too strong for that. Even for positive tiles, recognizability collapses. An
alternative would consist in considering instead (sort of) prehomomorphisms
(see [13]) defined as monotonic mappings ϕ between (naturally) ordered
monoid such that neutral and zero elements are mapped to neutral and zero
elements and such that ϕ(xy) ≤ ϕ(x)ϕ(y) for all x and y.

Over arbitrary tiles or, perhaps more efficiently, over positive tiles only,
could the notion of prehomomorphism leads to define an interesting class of
(quasi-)algebraic definable languages of tiles ?

Rational timed expressions for timed tile languages

Another potentially interesting development, especially in our perspective
of music modeling, is to consider tiles over a timed alphabet : pairs of
letters with positive durations. Together with timed constraints - as in
timed regular expressions [4] - over tiles domain, one can define a class of
rational timed tile languages worth being studied.

In fact, in a product of (timed) tiles, a given timed symbol may occur in
many different tiles and thus may be involved in several timed constraints;
even in the absence of intersection or projection operators on languages. It
follows that rational expression of timed tile languages just extended with
time constraints could defined a class of timed tile languages considerably
richer than the class of rational timed languages of words which, in absence
of projection and intersection, equals the class of one-clock timed automata
languages [4].

Will timed tiles overlaps capture, via rational timed expressions of tile
languages, the notion of balanced timed expressions [5, 7] ? A positive
answer to this question could lead to a fairly simple specification formalism
that would capture the class of all recognizable timed languages [2].
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