
HAL Id: hal-00659047
https://hal.science/hal-00659047v1

Submitted on 12 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Artificial equilibrium points for a generalized sail in the
circular restricted three-body problem

Generoso Aliasi, Giovanni Mengali, Alessandro A. Quarta

To cite this version:
Generoso Aliasi, Giovanni Mengali, Alessandro A. Quarta. Artificial equilibrium points for a general-
ized sail in the circular restricted three-body problem. Celestial Mechanics and Dynamical Astronomy,
2011, 110 (4), pp.343-368. �10.1007/s10569-011-9366-y�. �hal-00659047�

https://hal.science/hal-00659047v1
https://hal.archives-ouvertes.fr


1

Artificial Equilibrium Points for a Generalized Sail

in the Circular Restricted Three-Body Problem

by

Generoso Aliasi, Giovanni Mengali

and

Alessandro A. Quarta

Corresponding author:

Giovanni Mengali

University of Pisa,

Dipartimento di Ingegneria Aerospaziale,

Via G. Caruso 8, I-56122 Pisa, Italy

tel: +39–050–2217220

fax: +39–050–2217244

Email: g.mengali@ing.unipi.it

A Paper submitted to

Celestial Mechanics and Dynamical Astronomy



Revised version # 3

27th June 2011



3

Noname manuscript No.
(will be inserted by the editor)

Artificial Equilibrium Points for a Generalized Sail in the Circular Restricted

Three-Body Problem

Generoso Aliasi · Giovanni Mengali · Alessandro A. Quarta

the date of receipt and acceptance should be inserted later

Keywords Artificial Lagrangian Equilibrium points · Radial propulsive acceleration · Generalized sail

Abstract This paper introduces a new approach to the study of artificial equilibrium points in the cir-

cular restricted three-body problem for propulsion systems with continuous and purely radial thrust. The
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the choice of a coefficient related to the propulsion type and a performance parameter that quantifies the

system technological complexity. The propulsion system is therefore referred to as generalized sail. The

existence of artificial equilibrium points for a generalized sail is investigated. It is shown that three differ-

ent families of equilibrium points exist, and their characteristic locus is described geometrically by varying

the value of the performance parameter. The linear stability of the artificial points is also discussed.
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1 Introduction

The Lagrangian points of the Circular Restricted Three-Body Problem (CR3BP) are known to be the

five positions in an orbital system rotating with the two massive bodies where a small object (e.g., a

spacecraft), affected only by gravity (and centripetal forces), can theoretically be stationary relative to

the two larger objects. These points are the only five positions in space where the small object, if placed

there, would maintain its position relative to the two massive bodies. If however the object is equipped

with a suitable propulsion system, capable of balancing the gravitational pull of the two massive bodies,

other equilibrium points can be created allowing the third body to be stationary with respect to the first

two bodies. According to Dusek (1965) these new points are usually referred to as Artificial Equilibrium

(or Lagrangian) Points (AEPs).

The problem of describing the location of AEPs and of investigating their stability properties has

been addressed by several authors. In particular Perezhogin (1976); Kunitsyn and Perezhogin (1978);

Schuerman (1980); Simmons et al. (1985); Perezhogin and Tureshbaev (1989) investigated the effects

of the thrust due to the radiation pressure on the CR3BP and showed that seven equilibrium points

exist if one of the massive bodies is luminous. This problem is equivalent to consider a photonic (or

solar) sail, whose thrust direction is fixed and radial with respect to the luminous body. Subsequently,

different studies regarding the use of solar sails (McInnes et al., 1994; McInnes, 1999a; Baig and McInnes,

2008; Bookless and McInnes, 2008; Waters and McInnes, 2008) or low-thrust systems (Morimoto et al.,

2007) have been carried out, which proved the existence of infinite equilibrium surfaces depending on the

magnitude of the propulsive acceleration. However, only a subset of the potentially achievable AEPs turns

out to be stable and, as such, could not be exploited by a spacecraft without the use of a suitable control

system. The topology of such subset of stable AEPs is strictly dependent on the propulsion system type

employed by the spacecraft. In fact, as was recently pointed out by Bombardelli and Peláez (2011), if the

available propulsive acceleration is low, the stable AEPs are confined to a very restricted region around

the classical Lagrange points.

In this paper a general approach to the CR3BP with a continuous and purely radial thrust (with

respect to the more massive body) is discussed. The concept of generalized sail is introduced, in such a

way that different continuous propulsion systems can be described within a single mathematical model,
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depending on the choice of a coefficients that defines the propulsion type and a suitable performance

parameter that quantifies the system technological complexity. This model allows one to investigate, in

an unified framework, the position of the AEPs as a function of the performance parameter and to check

their linear stability. In this context the assumption of purely radial thrust is particularly significant as it

is representative of a situation in which the spacecraft attitude is maintained in a passive way (McInnes,

1998b, 2003; Quarta and Mengali, 2009, 2011a).

The paper is organized as follows. The spacecraft motion in a CR3BP is briefly discussed under the

assumption that the propulsion system provides a radial thrust with respect to the more massive body.

The corresponding equations of motion are derived in a dimensionless form to simplify the study of AEPs.

The mathematical model of a generalized sail is then introduced and it is shown that the AEPs can be

described in geometrical terms by varying the value of the sail’s performance parameter. Three different

families of equilibrium points, located on suitable loci, are shown to exist. Finally, the linear stability of

the equilibrium points is discussed.

2 Mathematical Model

Consider the motion of a spacecraft under the gravitational effect of two celestial bodies P1 and P2, with

masses m1 and m2 (assume that m2 ≤ m1). The two celestial bodies, which affect the motion of the

spacecraft without being affected by the spacecraft themselves, cover a circular orbit about their center

of mass C with a constant angular velocity ω whose modulus is

ω , ‖ω‖ =

√
G (m1 + m2)

l3
(1)

where l is the distance between the attractors and G is the universal gravitational constant.

Let T (C; x, y, z) be a synodic reference frame with origin at C and unit vectors î, ĵ, and k̂ , ω/ω.

Referring to Fig. 1, the (x, y) plane coincides with the orbital plane of the attractors, and the x axis is in

the direction from P1 to P2.

At a generic time instant the angular position of x is defined by means of the true anomaly ν ≥ 0, which

is measured anticlockwise from some reference direction belonging to the (x, y) plane. Let ρ1 (ρ2) be

the dimensionless vector from P1 (P2) to the spacecraft, and let µ , m2/(m1 + m2) ∈ (0, 0.5] be the
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dimensionless mass of P2, which univocally locates the position of the two attractors along the x axis,

see Fig. 1. Although in the Solar System the highest value of µ is about 10−3 (when P1 is the Sun),

spacecraft
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Fig. 1 Reference frame in the circular restricted three-body problem.

the range (0, 0.5] for the parameter µ is used, in this work, to achieve fully general results with the

proposed mathematical model. Moreover, the selected range is useful to obtain a comparison with the

classical results of the existing literature (Simmons et al., 1985) where the same variation range for the

dimensionless mass µ is adopted.

Assume that the spacecraft propulsive acceleration a is parallel to ρ1 and is given by the following

relationship

a = f
G m1

l2
ρ̂1 (2)

where ρ̂1 = ρ1/||ρ1||, and the magnitude of the dimensionless acceleration f depends on the available

propulsion system technology.
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According to Battin (1987), the spacecraft equations of motion in the synodic frame are:

l r̈ + 2 l ω × ṙ + l ω × (ω × r) +
G m1

l2 ρ3
1

ρ1 +
G m2

l2 ρ3
2

ρ2 = a (3)

where r is the dimensionless vector that defines the spacecraft position with respect to C, ρ1 , ‖ρ1‖,

ρ2 , ‖ρ2‖ and a is given by Eq. (2). Bearing in mind that ω̂ ≡ k̂, the equations of motion in dimensionless

form can be obtained by using the true anomaly ν as the independent variable. The result is

r′′ + 2 k̂ × r′ + k̂ ×
(
k̂ × r

)
+

1− µ

ρ3
1

ρ1 +
µ

ρ3
2

ρ2 =
f (1− µ)

ρ1
ρ1 (4)

where the prime symbol denotes a derivative taken with respect to ν. Note that, according to Fig. 1

r = ρ1 − µ î , ρ2 = ρ1 − î (5)

As a result, Eq. (4) can be rearranged and written as a function of the vector ρ1 only.

2.1 Artificial Equilibrium Points

The positions of AEPs are obtained by substituting Eqs. (5) into Eq. (4) and enforcing the conditions

r′′ = 0 and r′ = 0. The result can be expressed in compact form as

dk k̂ + di î = dρ ρ̂1 (6)

where

dk , ρ1 · k̂ , di , µ

(
1− 1

ρ3
2

)
, dρ , ρ1 −

1− µ

ρ2
1

− µρ1

ρ3
2

+ f (1− µ) (7)

An analysis of Eq. (6) provides the loci of AEPs and the corresponding value of the dimensionless accel-

eration f required to maintain such equilibrium points. In what follows, the AEPs will be distinguished

according to their different geometrical positions.
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2.1.1 Triangular-type points

The triangular-type points are obtained by looking for the values of f , ρ2, and ρ1 in correspondence of

which the coefficients dk, di, and dρ of Eq. (7) are all equal to zero, viz

ρ1 · k̂ = 0 , ρ2 = 1 , f = ρ1

(
1
ρ3
1

− 1
)

(8)

As a result, the locus of AEPs is constituted by a circle, with center P2 and radius l, belonging to the

(x, y) plane (see the succeeding Fig. 4). For a given point on the locus, that is, for a given value of

ρ1 ∈ (0, 2], the required value of f can be calculated using the third equation of (8). The name triangular

type points comes from the fact that in the absence of any thrust (f = 0), Eq. (8) provides ρ1 ≡ ρ2 = 1,

which corresponds to the position of the classical Lagrange triangular points ρ1L4
≡ ρ2L4

= 1, and

ρ1L5
≡ ρ2L5

= 1.

2.1.2 Collinear points

Assume now that dk = 0, but di 6= 0 and dρ 6= 0. From Eq. (6) di î = dρ ρ̂1, which implies that ρ̂1 and î

are parallel. Accordingly, the AEPs belong to the x axis and are such that

dρ = di ρ̂1 · î (9)

The second equation of (5) states that ρ2 =
∣∣∣ρ1 ρ̂1 · î− 1

∣∣∣. The latter relationship can be substituted into

Eq. (6) to find the dimensionless acceleration required to obtain the collinear AEPs. After some algebraic

manipulations the result is:

f =
µ

(1− µ) ρ̂1 · î

1 +
ρ1 ρ̂1 · î− 1∣∣∣ρ1 ρ̂1 · î− 1

∣∣∣3
 +

1
ρ2
1

− ρ1

1− µ
(10)

As in the previous case, the condition f = 0 in Eq. (10) provides the position of the three classical

collinear Lagrange points ρ1L1
, ρ1L2

, and ρ1L3
. Recall that L1 is between the two attractors, L2 is placed

on the positive x axis beyond P2, and L3 is on the left of P1.
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2.1.3 Displaced points

If dk, di, and dρ are all different from zero, Eq. (6) can be satisfied only provided that the AEPs belong

to the (x, z) plane, that is, if y = 0. Such points will be referred to as displaced points, in analogy to the

usual nomenclature for non-Keplerian orbits (Gong et al., 2009; Xu and Xu, 2008; Mengali and Quarta,

2009b), which are obtained by using low-thrust propulsion systems. A general definition of non-Keplerian

orbits is provided in McKay et al. (2011). To define the position of displaced points, take the dot product

of both sides of Eq. (6) by k̂ and by î. The result is:

µ

ρ3
2

= µ− ρ1 · î (11)

f =
1
ρ2
1

+
ρ1

(
µ− ρ1 · î

)
1− µ

(12)

where

ρ1 · î = x/l + µ (13)

ρ2 =
√

(x/l + µ− 1)2 + (z/l)2 (14)

Then substitute Eqs. (13) and (14) into (11) to get

z/l = ±
√

(−l µ/x)2/3 − (x/l + µ− 1)2 (15)

while Eq. (12) provides the corresponding value of f .

The locus of displaced AEPs is qualitatively drawn in Fig. 2. Note that the locus is symmetrical with

respect to the x axis and the points are such that x ∈ (−µ, 0) or, equivalently, ρ2 > 1, see Eq. (15). As

expected, Eqs. (11) and (12) show that displaced points cannot be obtained if f = 0. Indeed, the right

hand side of (12) is the sum of two strictly positive terms and, therefore, it cannot vanish.

2.2 Power radial thrust

So far the AEPs positions have been expressed as a function of the dimensionless acceleration f . Now

the study is specialized to the situation in which f varies with the distance ρ1 from the massive attractor
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Fig. 2 Locus of displaced equilibrium points.

according to the following power law:

f =
β

ρη
1

(16)

where η is a real, nonnegative, coefficient that depends on the propulsion system type, while β is a real

parameter that quantifies the propulsion system performance. More precisely, for a given value of η, a

decrease of |β| implies a corresponding decrease in terms of propulsion system overall dimensions and

mass (equivalently, for a given launch mass, the available payload mass increases).

Note that with the aid of Eq. (16) the equations of motion (3) can be written in compact form as

l r̈ + 2 l ω × ṙ = ∇J? (17)

where J? , J + Ψ , and J is the sum of the gravitational and centrifugal potential (Battin, 1987), while

Ψ represents the potential due to the propulsive acceleration, viz

Ψ =
β

1− η

G m1

l2
1

ρη−1
1

(18)
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Paralleling Battin (1987), it is possible to obtain a generalization of the Jacobi integral for a radial

propulsive thrust as

l2 ṙ · ṙ − 2 J? = C (19)

where C is an integration constant.

A spacecraft equipped with a propulsion system capable of generating an acceleration in the form

of Eq. (2), with f given by Eq. (16), will be referred to as generalized sail. The reason is that if the

massive body m1 coincides with the Sun, Eq. (16) encompasses different types of propulsion systems,

either currently available or under development (Racca, 2003; Frisbee, 2003). This is possible by simply

specializing the value of η. For example η = 2 describes the thrust provided by a solar sail (McInnes,

1999b) or a magnetic sail (Zubrin and Andrew, 1991), while η ∈ [1, 7/6] corresponds to an electric sail

model (Janhunen and Sandroos, 2007; Mengali et al., 2008; Janhunen, 2010). Finally η = 0 represents

a constant propulsive acceleration, or a thrust that is independent of the distance from the massive

attractor. Actually η = 0 is consistent with a situation in which the propulsion system is either a mini-

magnetospheric plasma thruster (Winglee et al., 2000; Trask et al., 2004; Mengali and Quarta, 2006),

or an electric thruster when the thrust is modulated such as to provide a constant thrust-to-mass ratio

(Prussing and Coverstone, 1998; Mengali and Quarta, 2009a) and the power source is independent of

the Sun-spacecraft distance, as in a nuclear-powered system. This happens, for example, when the power

subsystem is represented by a radio-isotope thermoelectric generator (Hunt, 1993; Lyngvi et al., 2007).

Note however that an electric thruster can also be characterized by a coefficient η 6= 0. In fact, the

propulsive acceleration of a spacecraft of total mass ms, equipped with an electric thruster of constant

specific impulse Isp, can be written as (Kechichian, 1995; Vadali et al., 2000; Mengali and Quarta, 2005)

a =
2 τ σ P

ms g0 Isp
t̂ (20)

where σ is the constant thruster efficiency, P is the engine maximum input power, τ ∈ [0, 1] is the

dimensionless throttle parameter (τ = 1 corresponding to the maximum thrust level for a given value of

P ), g0 is the Earth’s standard gravitational acceleration, and t̂ is the thrust unit vector.

In a solar-powered spacecraft, in which the electric power is supplied by solar arrays, the maximum input
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power P is a function of the distance from the Sun (Sauer, 1978; Rayman and Williams, 2002), but also

depends on the flight time due to the solar cells degradation (Richardson and Warren, 1971; Bourke,

1972; Saleh et al., 2002). If P1 coincides with the Sun and the time degradation of solar cells is neglected,

the maximum input power P can be described through a rational function of ρ1, that is, to a first order

approximation (Sauer, 1978; Williams and Coverstone-Carroll, 1997)

P =
Pr

ρη
1

(21)

where Pr is a reference value that usually coincides with the maximum power generated at 1 Astronomical

Unit from the Sun, and η depends on the numerical coefficients that model the solar cells performance

variation with the Sun-spacecraft distance. For example, using the numerical coefficients of Sauer (1978),

the value of η is about 1.6. Note that in an ideal case, that is, when the dependence of P from ρ1 is

due only to the solar intensity radial variation, the exponent in Eq. (21) becomes η = 2, and an inverse

square law of P with the Sun-spacecraft distance is obtained. In general, a reasonable assumption is that

the value of η varies within a range depending on the solar array characteristics. Finally note that the

case of nuclear-powered spacecraft (η = 0) is recovered from Eq. (21) by observing that, for such a power

source, P ' Pr.

Also note that for an electric propulsion system the instantaneous spacecraft mass is a function of time

t. In fact, under the assumption that the thruster cannot be switched off and introducing the propellant

mass flow rate ṁp > 0, the instantaneous spacecraft mass is

ms = ms0

(
1− ṁp

ms0

t

)
(22)

where ms0 is the initial mass. Substituting Eqs. (21) and (22) into Eq. (20) yields:

a =
2 σ Pr

ms0 g0 Isp

(
τ

1− ṁp t/ms0

)
t̂

ρη
1

(23)

If the thrust level τ is modulated in such a way to counterbalance the mass loss, viz.

τ = 1− ṁp

ms0

t (24)
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and the thrust is oriented parallel to ρ̂1 (that is t̂ · ρ̂1 = ±1), Eq. (23) becomes:

a = ± 2 σ Pr

ms0 g0 Isp ρη
1

ρ̂1 (25)

which is in the form of Eq. (2) provided that

f = ± 2 σ Pr l2

G m1 ms0 g0 Isp ρη
1

(26)

Bearing in mind Eq. (16), the performance parameter β of a solar-powered spacecraft is related to the

main vehicle’s characteristics through the equation:

β = ± 2 σ Pr l2

G m1 ms0 g0 Isp
(27)

Note that, unlike a solar sail or an electric sail, an electric thruster can orient the thrust in any space

direction. In particular, the propulsive acceleration can be oriented toward the attractor P1 (that is,

t̂ · ρ̂1 = −1) to obtain a negative value of β.

However, the use of an electric thruster as a primary propulsion system introduces a constraint on the

total mission duration, as an AEP can be maintained only for a limited time interval. In fact, if mp < ms0

is the onboard propellant mass, the mission duration tm is

tm =
mp

ṁp
(28)

For example, assuming a propellant flow rate ṁp = 2.3 mg/s, corresponding to the NASA’s NSTAR ion

thruster (Brophy, 2003, 2001), and a propellant mass mp = 100 kg, Eq. (28) states that an AEP can be

maintained for about 500 days. Note however that the value of ṁp (and the mission duration tm) actually

depends on the thruster setting, and a constant value of the propellant flow rate should be thought of as

a first order approximation only. An in-depth discussion of the complex interactions between the thruster

mathematical model and the mission performances is beyond the scope of this work, and the interested

reader is referred to Quarta and Mengali (2011b).
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As previously stated, while η defines the propulsion system type, β quantifies the propulsion system

performance. With reference to both solar sails and electric sails, β can be expressed as a function of

the maximum propulsive acceleration ac (referred to as characteristic acceleration) at a Sun-spacecraft

distance equal to 1 Astronomical Unit. This is possible by combining Eqs. (2) and (16).

A brief discussion about the order of magnitude of the characteristic acceleration is now given. The only

solar sails that have been successfully deployed in space so far, that is the JAXA’s“IKAROS”(Higuchi and

Ishimura, 2009) and the NASA’s “NanoSail-D” (Johnson et al., 2011), have a characteristic acceleration of

about 1-2 micro-g0 (β is on the order of 10−3). However such a value is well below the current technological

capabilities. For example proposals for NASA’s Millennium Space Technology 9 mission include solar sails

that produce thrust on the order of 0.58 mm/s2 to values as high as 1.70 mm/s2 (Lichodzeijewski and

Derbes, 2006). Moreover it is widely accepted (Macdonald et al., 2006; Ozimek et al., 2009) that for

a near term solar sail technology a reasonable performance is ac = 0.5 − 1 mm/s2 (β is on the order

of 0.05 − 0.2), especially when non-Keplerian orbits and AEPs are considered (West, 2008). A second

generation of solar sails (Leipold et al., 1999) will probably have a higher characteristic acceleration. As

a matter of fact, many studies exist with medium-high performance solar sails (ac = 1 − 3 mm/s2, or β

around 0.2− 0.5) and very-high performance solar sails (ac = 3− 6 mm/s2 or β on the order of 0.5− 1)

either for Solar System escape missions or for the fulfilment of highly-Non-Keplerian orbits (Sauer, 1999;

Forward, 1991; McInnes, 1998a; Vulpetti and Scaglione, 1999; Vulpetti, 1997; Dandouras et al., 2004;

Mengali and Quarta, 2007; Macdonald et al., 2010).

As far as the electric sail is concerned, the latest simulations by Janhunen (Janhunen, 2009, 2011)

show that the propulsive thrust of a spacecraft with an in-flight mass of 100 kg is about 1 N. Using these

data, and according to the propulsion system’s mathematical model discussed by Quarta and Mengali

(2010), an electric sail is potentially capable of providing a characteristic acceleration of 2 mm/s2 to a

spacecraft with a total mass of 625 kg and a payload mass of about 215 kg. In any case, it is important to

recall that the value of ac is closely related to the value of the payload mass fraction for a given in-flight

total mass. Therefore, the effective value of β can be calculated only after that the payload mass has been

selected.
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As a final remark, the succeeding discussion will be given in fully general terms, including values of η

and β that do not correspond to any currently available propulsion system (this happens, for example,

for η > 2). The reason is to get an effective method for easily comparing the performance of different

propulsion devices in generating AEPs. In this context the use of η and β as design parameters provides

a certain degree of flexibility in dealing with exotic/future thrusters. For example it is worth mentioning

that until the definition of the electric sail concept (that is, until Janhunen (2004)), the only realistic

value for a propellantless propulsion system was η = 2.

In what follows, for a given propulsion system type (that is, for a given value of η) the problem is

to find the value of β required for an AEP to be placed at a prescribed distance ρ1 from the massive

attractor. The pairs (β, ρ1) describe a locus, in the synodic reference frame, whose shape can be obtained

for each of the three different families of AEPs. This matter is discussed in the next sections.

2.2.1 Triangular-type points

For triangular-type equilibrium points substitute Eq. (16) into Eq. (8) to get an expression of β as a

function of the distance ρ1 ∈ (0, 2] and of the coefficient η. The result is

β = ρη+1
1

(
1
ρ3
1

− 1
)

(29)

whose shape is qualitatively shown in Fig. 3. For a fixed value of η > 2 the contour line β = β(ρ1, η)

presents a maximum with coordinates (ρ1βmax
, βmax), where

ρ1βmax
= 3

√
η − 2
η + 1

, βmax = 3 3

√
(η − 2)η−2

(η + 1)η+1
(30)

In particular, when η = 2 and β > 0, that is, when the propulsion system is constituted by either a solar

or a magnetic sail, in accordance with Simmons et al. (1985), Eq. (30) states that β takes its maximum

value (β = 1) as ρ1 tends to zero. Clearly such a condition is not physically acceptable because the

corresponding AEP would coincide with the attractor P1. In the following those unattainable equilibrium

points will be marked in the figures with a white circle.
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The presence of a maximum value of the performance parameter β implies that, for a given value of

β > 0, there exist either two AEPs (if η ≤ 2) or four AEPs (if η > 2). These points are at symmetrical

positions with respect to the x axis of the synodic reference frame, as is shown in Fig. 4. This figure

illustrates the variation of |β| on the locus of triangular-type points in the three cases η < 2, η = 2, and

η > 2. Note that for a fixed distance ρ1 < 1 (> 1), the parameter η must be increased (decreased) to

reduce the value of |β| necessary to maintain such an AEP.

2.2.2 Collinear points

In this case the relationship between the performance parameter β and the distance ρ1 is obtained by

substituting Eq. (16) into (10). To simplify the analysis of the function β = β(ρ1, η) it is useful to

distinguish the collinear points according to their position with respect to the attractors, as shown in

Fig. 5. The variation of β with ρ1 for L3-type points (the points in which ρ̂1 ·î = −1) is qualitatively shown

in Fig. 6(a), while Fig. 6(b) illustrates the corresponding variation of the AEP position as a function of β.

Similar to the previous triangular-type points, Fig. 6(a) shows that the contour curves β = β(ρ1, η > 2)

take an absolute maximum whose value decreases as η is increased. Once again, when η = 2 the maximum
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Fig. 4 Triangular-type equilibrium points locus (arrows indicate a |β| increase).
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Fig. 6 Performance parameter as a function of ρ1 and η for L3-type equilibrium points locus (arrows indicate a |β| increase).

is not attainable because it would coincide with the attractor P1. If η > 2 and β ∈ (0, βmax) two AEPs are

obtained, whose position along the x axis is between P1 and the classical Lagrange point L3. As the thrust

tends to zero (β = 0), one AEP tends to coincide with L3 and the other approaches P1. Moreover, if β is

negative, that is, the propulsive acceleration is in the direction of the attractor P1, there exists a single

AEP on the left of L3. Such a point can be theoretically placed at any distance from P1 provided that a

sufficient value of β is available. Similar conclusions can be drawn for L1-type points, that is, points in

which ρ̂1 · î = +1 and ρ1 < 1, see Figs. 7(a) and 7(b). In this case, η being the same, a negative value of β
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corresponds to an AEP between the Lagrangian point L1 and the attractor P2, while the condition β > 0

permits to move the AEP toward the massive attractor P1. Unlike the two previous cases an increase of

η corresponds now to a decrease of |β|.
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Fig. 7 Performance parameter as a function of ρ1 and η for L1-type equilibrium points locus (arrows indicate a |β| increase).

Finally, the contour curves corresponding to the L2-type points (when ρ̂1 · î = +1 and ρ1 > 1) are

illustrated in Fig. 8(a). Fig. 8(a) shows that there exists a suitable value of η, referred to as η̃, beyond

which the contour curves β = β(ρ1, η > η̃) display both a local minimum (βmin) and a maximum (βmax)

at a distance ρ1βmin
and ρ1βmax

from the attractor P1, respectively. The value of η̃ is a function of the

dimensionless mass of P2 only and it decreases with µ, as is shown in Fig. 9. Note however that the

presence of the above points of maximum and minimum is confined to high value of η, that is, η̃ > 9.5,

see Fig. 9.

2.2.3 Displaced points

For displaced AEPs that belong to the plane (x, z) of the synodic reference frame (except for the points

on x axis, see Fig. 2), the expression for β is obtained by substituting Eq. (16) into (12):

β = ρη−2
1

(
1 +

µ

1− µ

ρ3
1

ρ3
2

)
(31)
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Fig. 9 Parameter eη as a function of µ for L2-type points.

where ρ2 is given by Eq. (14). In particular for η = 2 the result obtained with Eq. (31) is in agreement with

Kunitsyn and Perezhogin (1978) and Simmons et al. (1985). Note that in the plane (x, z) the distance ρ1
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is

ρ1 =
√

(x/l + µ)2 + (z/l)2 (32)

where z/l is obtained from Eq. (15). Accordingly, β is a function only of the dimensionless coordinate

x/l. The function β = β(x/l, η) is drawn in Fig. 10.
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Fig. 10 Performance parameter β as a function of x/l and η for displaced points.

As for the L2-type points, it can be shown that a suitable value η̃ < 2 exists, such that the function

β = β(x/l, η) presents two stationary points when η ∈ (η̃, 2). Figure 11 shows how η̃ varies with µ.

When η ≤ η̃ or η > 2, only two equilibrium points exist for a given value of β. On the other hand, when

η ∈ (η̃, 2), there is a range of β ∈ [βmin, βmax], such that four or six equilibrium points are possible. The

different kinds of AEP locus are illustrated in Fig. 12, where the point A corresponds to the condition

ρ1 = 1. Note that for a given ρ1 < 1 (> 1) it is necessary to increase (decrease) η to decrease the

performance parameter β. In particular, according to Kunitsyn and Perezhogin (1978), and Simmons

et al. (1985), if η = 2 two equilibrium points exist only for β ranging in the interval (1, 1/(1− µ)).
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3 Linear Stability Analysis

It is now possible to better characterize the spacecraft dynamical behavior by investigating its linear

stability around the AEPs. Note that a linear analysis provides necessary conditions for stability and

sufficient conditions for instability. To begin, introduce the second-order tensors K and E:

K , ∇

[
−1− µ

ρ3
1

ρ1 −
µ

ρ3
2

ρ2 + β
1− µ

ρη+1
1

ρ1 − k̂ ×
(
k̂ × r

)]∣∣∣∣∣
r0

(33)

k̂ × r = E · r (34)

where r0 is the dimensionless vector that defines the position of a generic AEP with respect to the center

of mass of the synodic frame. The variational equation of motion is obtained by linearizing the nonlinear

equation (4) [where f is given by Eq. (16)] around the equilibrium position r0. To this end, use the

transformation r = r0 + δr and define a state vector x , [δr, δr′]T. The linearized equation takes the

form

[x′]T = M [x]T (35)
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with

M =

 O I

KT −2 E

 (36)
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where O is a 3×3 zero matrix, I is a 3×3 identity matrix, while matrices K and E contain the components

of the second order tensors K and E in the synodic frame, that is

K , [K]T =


k11 k12 k13

k21 k22 k23

k31 k32 k33

 , E , [E]T =


0 −1 0

1 0 0

0 0 0

 (37)

The value of all of matrix entries kij (with (i, j) = 1, 2, 3) is detailed in the appendix, as a function of ρ1

(or ρ2), η, and µ, for the three different families of AEPs.

If λ is the generic eigenvalue of M, the characteristic equation of M can be shown to be in the form

λ6 + aλ4 + b λ2 + c = 0 (38)

or

s3 + a s2 + b s + c = 0 (39)

where s , λ2 and a, b, and c are real coefficients that depend on the entries kij . Note that if λ̄ is a root

of Eq. (38), then so is −λ̄. For λ̄ to be a stable eigenvalue, that is, a root with no positive real part, it is

necessary that λ̄ be both imaginary and a simple root of (38). Therefore, according to Abramowitz and

Stegun (1965) and using the Descartes sign rule (Henrici, 1988), the system is marginally stable if and

only if

∆3 < 0 ∩ a ≥ 0 ∩ b ≥ 0 ∩ c > 0 (40)

where ∆3 is the discriminant of the cubic equation (39), that is:

∆3 ,
1
4

(
c +

2 a3 − 9 a b

27

)2

+
1
27

(
b− a2

3

)3

(41)

As will be shown later, in some cases the characteristic equation can be factorized as

(s− c̃)
(
s2 + ã s + b̃

)
= 0 (42)
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with suitable values of ã, b̃, and c̃, still depending on the entries kij . In such circumstances the necessary

and sufficient conditions for the marginal stability become

(
ã2 − 4 b̃

)
> 0 ∩ ã ≥ 0 ∩ b̃ > 0 ∩ c̃ < 0 ∩

(
c̃2 + ã c̃ + b̃

)
6= 0 (43)

Because both the conditions (40) and (43) affect only the coefficients of the characteristic equation,

the stability of the linearized system can be investigated without the need of calculating the roots of Eq.

(38). Moreover, with the aid of the results in the appendix, it can be verified that for a given system of

attractors the coefficients of the characteristic equation are a function only of η and ρ1 (or ρ2). Therefore,

it is possible to draw the regions of stable AEPs for the different families of points, as is now discussed

in detail.

3.1 Collinear points stability

The characteristic equation for collinear points is in the form of Eq. (42) with

ã = 4− k11 − k22 , b̃ = k11 k22 , c̃ = k33 (44)

where k11, k22, and k33 are given in Eqs. (51)–(52) or (56)–(57). The stability conditions, provided by

Eq. (43), must be specialized to the different families of AEPs.

For L3-type points, taking into account that k33 < 0 and k22 < 0, the stability conditions (43) reduce

to

(4− k11 − k22)2 − 4 k11 k22 > 0 ∩ k11 < 0 (45)

where k22 and k11 are given by (52) and (54), respectively. First assume that k11 < 0. The left inequality

(45) can be written as

(k11 − k22)
2 − 8 (k11 + k22) + 16 > 0 (46)

which is always fulfilled because k22 < 0. That means that L3-type points are stable provided that k11 < 0.

From Eq. (54) the sign of k11 is a function of ∂β/∂ρ1. According to Fig. 6(a), one concludes that k11 < 0
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if η > 2∩ρ1 < ρ1βmax
, where ρ1βmax

corresponds to the distance ρ1 at which the function β = β(ρ1, η > 2)

attains its maximum value. The variation of ρ1βmax
with η, for a given value of µ, is qualitatively drawn

in Fig. 13(a) along with the stability region of L3-type points.

Similar considerations apply to L1-type points, and the corresponding stability region is shown in

gray in Fig. 13(b). Note that for both Figs. 13(a) and 13(b) the boundary of the stability region is to be

excluded as it corresponds to the condition k11 = 0. Figures 14(a) and 14(b) show the stability regions

corresponding to µ = 0.01. Finally, the stability conditions (43) for L2-type points can be simplified by

3
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Fig. 13 Distance ρ1βmax
as a function of η (with µ given) for L3 and L1 type points.
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Fig. 14 Stability region with µ = 0.01 for L3 and L1 type points.
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taking into account the actual value of ρ1. In fact, when ρ1 < 2 the stability conditions coincide with those

shown in Eq. (45) in which k11 and k22 are now given by Eqs. (56) and (57). The study of the stability

region proceeds as in case of L3-type points, and the corresponding graphical results are summarized in

Fig. 15. Note that the value η̃ shown in Fig. 15 depends on µ and can be taken from Fig. 9.
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max
1 1�

� ��
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1 1�

� ��

Fig. 15 Position of stationary values of β for L2–type points.

On the contrary, when ρ1 > 2 the conditions (43) must be studied with a numerical approach. For a

given value of µ the stability region (with the exclusion of the boundary line) can be drawn in the plane

(ρ1, η). An example of this kind of study is shown in Fig. 16 where the region corresponding to ρ1 < 2 is

also displayed for the sake of completeness. Note that the equilibrium point corresponding to ρ1 = 2 is

unstable. In fact in such a case b̃ = 0, see Eqs. (43).

Figure 16 shows that for η = 0 there exist stable points only provided that ρ1 > 2. Note that the

results of Fig. 16 do not match that of Morimoto et al. (2007) because of the different assumptions made

on the thrust direction. In fact Morimoto et al. (2007) uses a constant thrust vector, that is, a vector

with a constant modulus and a fixed direction. Accordingly, in Morimoto et al. (2007) the gradient of the

propulsive acceleration is equal to zero. In this paper, instead, when η = 0 the thrust modulus is constant

(see Eq. (16)), but its orientation is always radial, see Eq. (2). Therefore, when the system is perturbed,

the gradient of the propulsive acceleration is different from zero, see Eq. (33).

The existence of the stability regions shown in Fig. 16 is confirmed by numerical simulations of the

perturbed trajectory. For example, according to Fig. 16, the L2–type collinear point located at ρ1 = 1.5
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Fig. 16 Stability region for L2–type collinear points with µ = 0.1 (the dashed line is excluded).

is unstable both for η = 0 and η = 1 (see Figs. 17(a) and 17(c)). On the contrary, assuming ρ1 = 2.5,

Figs. 17(b) and 17(d) prove that the perturbed motion around AEP is actually stable.

3.2 Triangular points stability

The characteristic equation for triangular type points is in the form of Eq. (42) with

ã = 4− k11 − k22 , b̃ = k11 k22 − k2
12 , c̃ = k33 (47)

where k11, k22, and k33 are given by Eqs. (60)–(62).

The conditions (43) (with the exception of c̃ < 0, which is always satisfied) must be studied numerically

to find the stability region in the plane (ρ1, η). An example is shown in Fig. 18 for some values of µ,

including the critical value (Szebehely, 1967) µ? , (1−
√

23/27)/2 ' 3.85209× 10−2, which defines the

stability of the classic solution with ρ1 = 1.

As long as µ ≥ µ?, the plane (ρ1, η) contains two distinct stability regions, see Fig. 18(a), that exclude

the case ρ1 = 1. As µ is decreased, the two regions get closer and eventually they touch when µ = µ?,
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Fig. 17 Numerically integrated perturbed trajectory (ten-periods time span) around an L2–type collinear point with
µ = 0.1.

see Fig. 18(b). Finally, if µ < µ? there exists a single stability region in the plane (ρ1, η), as shown in

Fig. 18(c). Note that, as in the previous case, the boundary line does not belong to the stability region.
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Fig. 18 Stability region for triangular points for different values of µ (the dashed lines are excluded).
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3.3 Displaced points stability

The characteristic equation for displaced points is in the form of Eq. (39) in which, bearing in mind

Eq. (68), the coefficients a, b, and c can be written as

a = 3− k11 − k33 , c = k2
13 − k11 k33 , b = k11 − 3 k33 − c (48)

where k11, k33, and k13 are obtained from Eqs. (67), (69) and (70).

The stability region must be investigated with a numerical approach by looking for the pairs ρ2 and

η that, for a given value of µ, satisfy the condition (40). The results are summarized in Fig. 19, in which

the stability region does not include the boundary line.

4 Conclusions

Under the assumption of a spacecraft subject to a radial propulsive acceleration with respect to the

massive attractor, a new approach has been discussed for the analysis of artificial equilibrium points in the

circular restricted three body problem. The concept of generalized sail is capable of describing, by means

of a unified mathematical model, the position and the linear stability of AEPs for different propulsion

systems of practical interest. Within this new model the spacecraft propulsive acceleration depends on the

available propulsion system technology by means of two parameters, η and β, one defining the propulsion

system type, and the other that quantifies the propulsion system performance. While the paper contains an

analysis about the order of magnitude of current and near future technological capabilities, the discussion

is given in very general terms and, in particular, it includes values of η and β that do not correspond

to any currently available propulsion system. The rationale is to provide a certain degree of flexibility in

dealing with exotic/future thrusters and space missions. Likewise, although in the Solar System µ does

not exceed about 10−3, the paper includes a discussion in which µ ranges in the interval (0, 0.5]. The

selected range is useful to obtain a comparison with classical results of the existing literature in which the

same variation is assumed. The proposed model allows one to compare, either in an analytical or graphical

form, the performance required by a given propulsion system to produce and maintain a prescribed AEP.

Accordingly, it is possible to quickly obtain information about different propulsion systems and decide
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Fig. 19 Stability region for displaced points for different values of µ.

upon which one is better suited for a particular mission type. The proposed model can also be extended

to deal with an elliptical restricted three body problem and with the more general situation in which the

spacecraft thrust is not constrained to coincide with the radial direction. The latter aspects are currently

under development.
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A Entries of K-matrix

Consider the second-order tensor K defined by means of Eq. (33). The entries of the symmetric matrix K, corresponding

to the components of K in the synodic frame T (C; x, y, z), are obtained observing that

K =

"
1− µ

ρ5
1

�
3 [ρ1]T [ρ1]TT − ρ2

1 I
�

+
µ

ρ5
2

�
3 [ρ2]T [ρ2]TT − ρ2

2 I
�
−E2 − β

1− µ

ρη+3
1

h
(η + 1) [ρ1]T [ρ1]TT − ρ2

1 I
i#�����

r0

(49)

where E is given by Eq. (37), and β takes that particular value for which r0 corresponds to an equilibrium position. As a

result, the entries of K take different expressions for the distinct families of AEPs.

A.1 Collinear points: L3-type

The expression for β is obtained by combining Eqs. (10) and (16), and

[ρ1]T = − [ρ1 0 0 ]T , [ρ2]T = − [ (ρ1 + 1) 0 0 ]T (50)

Therefore, Eq. (49) gives the following results

k11 = 2
1− µ

ρ3
1

+ 2
µ

(ρ1 + 1)3
+ 1−

η

ρ1

�
1− µ

ρ2
1

+
µ

(ρ1 + 1)2
− ρ1 − µ

�
(51)

k22 = k33 + 1 =
µ

ρ1

�
1

(ρ1 + 1)3
− 1

�
(52)

k12 = k21 = k23 = k32 = k13 = k31 = 0 (53)

Note that Eq. (51) can also be rearranged into the following equivalent expression:

k11 = −
∂β

∂ρ1

�
1− µ

ρη
1

�
(54)

A.2 Collinear points: L1-type and L2-type

In this case

[ρ1]T = [ρ1 0 0 ]T , [ρ2]T = [(ρ1 − 1) 0 0 ]T (55)
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and Eq. (49) provides

k11 = 2
1− µ

ρ3
1

± 2
µ

(ρ1 − 1)3
+ 1−

η

ρ1

�
1− µ

ρ2
1

±
µ

(1− ρ1)2
− ρ1 + µ

�
(56)

k22 = k33 + 1 =
µ

ρ1

�
1±

1

(1− ρ1)3

�
(57)

k12 = k21 = k23 = k32 = k13 = k31 = 0 (58)

where the sign of the terms containing ± is + for L2-type points and − for L1-type points.

A.3 Triangular-type points

The triangular-type points are characterized by means of the vectors

[ρ1]T =

2666666664

ρ2
1/2

±
q

ρ2
1 − ρ4

1/4

0

3777777775
, [ρ2]T =

2666666664

ρ2
1/2− 1

±
q

ρ2
1 − ρ4

1/4

0

3777777775
(59)

Because β is given by Eq. (29), from Eq. (49) one obtains

k11 =
1− µ

ρ3
1

�
3ρ2

1

4
− 1

�
+ µ

"
3

�
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k22 =
1− µ
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1
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k33 = −1 (62)

k12 = k21 = ±

s
ρ2
1 −

ρ4
1

4

�
3 (1− µ)

2 ρ3
1

+ 3µ

�
ρ2
1

2
− 1

�
−

(1− µ)(η + 1)

2

�
1

ρ3
1

− 1

��
(63)

k13 = k31 = k23 = k32 = 0 (64)

where the sign of the terms containing ± is + for points with y > 0 ad − for points with y < 0.

A.4 Displaced points

In this last case one has

[ρ1]T = [ρ1x 0 ρ1z ]T , [ρ2]T = [ρ2x 0 ρ1z ]T (65)
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where

ρ1x = ρ2x + 1 = µ (1− 1/ρ3
2) , ρ1z = ±

q
ρ2
2 −

�
−µ/ρ3

2 + µ− 1
�2

(66)

Substituting the expression (31) for β into Eq. (49) provides:

k11 =
1− µ
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1

�
3ρ2

1x
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1
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µ
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2
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3ρ2
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(67)

k22 = 1 (68)

k33 =
1− µ

ρ5
1

�
3ρ2

1z
− ρ2

1

�
+

µ

ρ5
2

�
3ρ2

2z
− ρ2

2
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(η + 1)ρ2

1z
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i
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1

�
1− µ
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1
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(69)

k13 = k31 = ρ1z

�
3
1− µ

ρ5
1

ρ1x +
3 µ ρ2x

ρ5
2

−
(η + 1)ρ1x

ρ2
1

�
1− µ

ρ3
1

+
µ

ρ3
2

��
(70)

k12 = k21 = k23 = k32 = 0 (71)

where ρ1 =
q

ρ2
2 − 1 + 2 µ

�
1− 1/ρ3

2

�
and the sign of the terms containing ± is + for points with z > 0 ad − for points

with z < 0.
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