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Abstract 

Recent molecular studies have implicated common alleles of small to moderate effect 

and rare alleles with larger effect sizes in the genetic architecture of schizophrenia 

(SCZ). It is expected that the reliable detection of risk variants with very small effect 

sizes can only be achieved through the recruitment of very large samples of patients 

and controls (i.e. tens of thousands) , or large, potentially more homogeneous samples 

that have been recruited from confined geographical areas using identical diagnostic 

criteria. Applying the latter strategy, we performed a genome-wide association study 

(GWAS) of 1,169 clinically well-characterized and ethnically homogeneous SCZ 

patients from a confined area of Western Europe (464 from Germany, 705 from The 

Netherlands) and 3,714 ethnically matched controls (1,272 and 2,442, respectively). 

In a subsequent follow-up study of our top GWAS results, we included an additional 

2,569 SCZ patients and 4,088 controls (from Germany, The Netherlands, and 

Denmark). Genetic variation in a region on chromosome 11 that contains the 

candidate genes AMBRA1, DGKZ, CHRM4, and MDK was significantly associated 

with SCZ in the combined sample (n= 11,540; P= 3.89 x 10-9, OR= 1.25). This 

finding was replicated in 23,206 independent samples of European ancestry (P= 

0.0029, OR= 1.11). In a subsequent imaging genetics study, healthy carriers of the 

risk allele exhibited altered activation in the cingulate cortex during a cognitive 

control task. The area of interest is a critical interface between emotion-regulation and 

cognition that is structurally and functionally abnormal in SCZ and bipolar disorder.  

 

Keywords: genome-wide association study, GWAS, schizophrenia, common 

variation, imaging genetics 
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Introduction  

Schizophrenia (SCZ) is a severe psychiatric disorder characterized by fundamental 

and characteristic distortions of thought and perception. It has a life-time prevalence 

of around 0.5–1%. Formal genetic studies have shown that genetic factors contribute 

substantially to the disease risk. Meta-analyses of pooled data from 12 twin studies 

have estimated that susceptibility to SCZ has a heritability of approximately 80%1. 

Recent molecular studies have implicated common alleles of small to moderate effect 

and rare alleles with larger effect sizes in the genetic architecture of SCZ2. Genome-

wide association studies (GWAS) using Single Nucleotide Polymorphism (SNP) array 

technologies have been applied to detect common risk alleles, and a total of 12 

GWAS of SCZ have been published to date (Table S3). Common risk alleles in the 

major histocompatibility (MHC) region on chromosome 6 have so far shown the most 

statistically significant evidence of association3-5. Interestingly, the MHC region, 

which is involved in the immune response, has long been postulated to harbor variants 

conferring a risk for SCZ since there is evidence for linkage in this region6 and 

research has suggested the involvement of infection in disease development7. 

Genome-wide significance has also been reported for risk alleles at TCF43, NGRN3, 

and ZNF804A8.  

All GWAS of SCZ performed to date have indicated that the strongest common 

genetic risk factors have odds ratios that are no greater than 1.15-1.20. In fact, recent 

molecular genetic evidence points to a substantial polygenic component to the risk of 

SCZ that involves a large number of common risk alleles of very small effect4. It is 

likely that the reliable detection of risk variants with very small effects can only be 

achieved through the study of very large samples of patients and controls (i.e.tens of 

thousands) or large, potentially more homogeneous samples that have been recruited 

from a confined geographical area using the same diagnostic criteria. Using the latter 
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strategy, we performed a GWAS of clinically well-characterized and ethnically 

homogeneous SCZ patients recruited from a confined area of Western Europe 

(Germany, The Netherlands, and Denmark). Our results suggest that genetic variation 

in a region on chromosome 11, which contains the candidate genes AMBRA1, DGKZ, 

CHRM4, and MDK, is implicated in the etiology of SCZ. 

Patients and Methods 

The following section provides details of sample recruitment and quality control for 

the GWAS dataset. Information concerning specific aspects of the GWAS dataset, 

and data from the follow-up samples is provided in the SI Patients and Methods. 

Sample Ascertainment and Selection for the GWAS sample 

All participating individuals provided written informed consent. The study protocols 

were approved by the respective institutional review boards or ethics committees.  

German Sample (Bonn - Mannheim). The German SCZ patients used in the GWAS 

step (n= 487) were recruited from consecutive hospital admissions and were all of 

German descent. Lifetime best estimate diagnoses were assigned according to DSM-

IV criteria on the basis of multiple sources of information including structured 

interviews with the SCID9 or SADS-L10, the OPCRIT11, medical records, and family 

history. Best estimate diagnoses were assigned by at least 2 experienced psychiatrists/ 

psychologists. The controls were drawn from 3 population-based epidemiological 

studies: (A) PopGen12 (n= 490), (B) KORA13  (n= 488), and (C) the Heinz Nixdorf 

Recall (HNR, n= 383) study14 (Risk Factors, Evaluation of Coronary Calcification, 

and Lifestyle). The recruitment areas for PopGen, KORA, and HNR were located in: 

(i) Schleswig-Holstein (Northern Germany); (ii) Essen, Bochum, and Mühlheim 
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(Ruhr area); and (iii) Augsburg (Southern Germany), respectively. Ethnicity was 

assigned to patients and controls on the basis of self-reported ancestry. 

Dutch Sample (Utrecht and Rotterdam). Inpatients and outpatients (n= 804) were 

recruited from various psychiatric hospitals and institutions throughout the 

Netherlands. Detailed medical and psychiatric histories were collected, and this 

process included use of the Comprehensive Assessment of Symptoms and History 

(CASH)15, an instrument for assessing diagnosis and psychopathology. Only those 

patients with a DSM-IV diagnosis of SCZ were finally included as cases. The controls 

from Utrecht (n= 704) were volunteers with no history of psychiatric disorder. The 

Rotterdam control individuals (n= 2302) were drawn from a large population-based 

project on the genetics of complex traits and diseases which is financed by the Dutch 

government through the Netherlands Scientific Organization – Large Investments 

(NWO Groot; 175.010.2005.011). This prospective population-based cohort study of 

chronic disabling conditions in Dutch individuals aged 55 years and above is 

described elsewhere16,17. All patients and controls had at least 3 grandparents of Dutch 

ancestry. 

Sample ascertainment and Selection for the Imaging Genetics Study sample 

Subjects (n= 122) were drawn from an ongoing large-scale multicenter imaging 

genetics study18 (Esslinger et al. plus 7 subsequently scanned subjects) that is being 

conducted at two sites in Mannheim and Bonn, Germany. All participants were 

healthy German volunteers with parents and grandparents of European origin. None 

of the participants had any self-reported lifetime or family history of SCZ or affective 

disorder. All subjects provided written informed consent. The study was approved by 

the local ethics committees of the Universities of Heidelberg and Bonn. 

Genotyping and Quality Control for the GWAS and the Imaging Genetics Study 
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Ethylenediaminetetraacetic acid anti-coagulated venous blood samples were collected 

from all participating individuals (GWAS and imaging genetics study). Lymphocyte 

DNA was isolated by salting-out19 with saturated sodium chloride solution or by a 

Chemagic Magnetic Separation Module I (Chemagen, Baesweiler, Germany) used 

according to the manufacturer’s recommendations. The GWAS dataset was assembled 

from 7 sub-datasets which were genotyped by: (i) Illumina's customer service, San 

Diego, CA, USA (all PopGen controls, all German SCZ patients); (ii) the Department 

of Genomics, Life & Brain Center, University of Bonn (all HNR controls); (iii) the 

Helmholtz Zentrum München, Germany (all KORA controls); (iv) The Southern 

California Genotyping Consortium (SCGC) at UCLA, Los Angeles, USA (all Dutch 

SCZ patients and n= 704 Dutch controls); and (v) the genotyping facility of the 

ErasmusMC Biomics core facility, Rotterdam, The Netherlands (n= 2,302 Dutch 

controls, including the controls for the follow-up sample). All genome-wide 

genotyping for the GWAS was performed on HumanHap550v3 BeadArrays using the 

Infinium II assay (Illumina, San Diego, CA, USA). The imaging genetics sample (n= 

122) was genotyped by the Department of Genomics, Life & Brain Center, University 

of Bonn. The genome-wide genotyping was performed on Human610-quad beadchips 

using the Infinium HD assay (Illumina, San Diego, CA, USA). For a discussion on the 

possible confounding of case/control status with plate and genotyping procedures 

please see the SI Patients and Methods. 

We developed a protocol of filters for the stringent quality control (QC) of whole-

genome and sub-whole genome datasets. This accounted for call rates (CR), 

heterozygosity, cross-contamination, population stratification, relatedness, non-

random-missingness, Hardy-Weinberg equilibrium (HWE), minor allele frequency 

(MAF), and others. With the exception of the cluster plot investigations for the 

follow-up SNPs, each QC filter for the GWAS, the imaging genetics study, and the 
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follow-up datasets was performed using the PLINK toolset20. The samples from the 

Rotterdam study (controls for the GWAS and the replication step) underwent QC 

together with the other GWAS samples. 

The QC protocol was applied to a total of 1,291 patients and 4,367 controls for the 

GWAS step. As a result, 375 individuals including 122 patients and 253 controls 

(representing 6.70%, 9.73%, and 5.80%, of the sample) as well as 86,037 SNPs 

(15.32% of the HumanHap550v3 BeadArray content) were excluded prior to the 

association analysis. The final GWAS data set was comprised of 464,030 autosomal 

(including PAR1+2) and 11,397 X-chromosomal SNPs, genotyped in 1,169 SCZ 

patients and 3,714 controls. An additional 400 controls were added to the Dutch 

follow-up dataset described above.  

The QC protocol was also applied to the 122 healthy German individuals who 

participated in the imaging genetics study. As a result, one individual and 39,356 

SNPs (6.64% of the Human610-quad BeadArray content of evaluable 592,532 SNPs) 

were excluded prior to the association analyses. The mean age of the remaining 121 

individuals (43.4 % males) was 33.1 (SD 10.3). For the analysis of the imaging 

genetics data, only information for rs11819869, which was present in the post QC 

dataset, was extracted and analyzed.  

A detailed description of the QC filters is provided in the SI Patients and Methods.  

Statistical analyses for GWAS and Follow-Up 

All association analyses were performed using PLINK20 (v1.07). In the single-marker 

analysis, all autosomal (including PAR1 and PAR2) and gonosomal SNPs that passed 

QC checks were tested for association with SCZ using the Cochran-Mantel-Haenszel 

test (CMH) with 2 x 2 x K stratified tables {disease x SNP disease | cluster} with K= 

2 (assigning German and Dutch individuals to one cluster each) for the GWAS step, 
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K= 4 (one cluster for the German, Dutch, and Danish samples, respectively) for 

Replication 1, and K= 6 for the combined analysis. Following analysis of the initial 

GWAS, a set of 60 SNPs was chosen for the follow-up step using a top-down 

approach (Replication 1; more information on the selection of SNPs is provided in the 

SI Patients and Methods). The CMH was also applied to the replication sample as 

described above. In the replication analysis, the test statistic was one-tailed if the OR 

was in the same direction as in the GWAS. SNPs that exceeded the threshold for 

nominal significance (P= 0.05) were identified. Finally, for all SNPs included in the 

replication step, a combined analysis of individuals from the GWAS and the 

replication step was performed using the CMH (K= 6; test statistic always two-tailed). 

The Breslow-Day test was used to investigate the homogeneity of the odds ratios for 

the replicated SNPs. The meta-analysis for the 15 independent samples of European 

ancestry (Replication 2) was performed using PLINK20 (v1.07) and considering a 

fixed effect model. There was no evidence of heterogeneity (Cochrane’s Q). In cases 

where genome-wide data was available, the two-tailed P-value of the TREND test 

was corrected by the genomic inflation factor for the specific sample as calculated 

from the genome-wide data. 

A note on possible stratification  

We have assumed that our sample is characterized by a high degree of ethnic (and 

presumably genetic) homogeneity. Nonetheless, several steps were taken to minimize 

population stratification. Patients and controls were only included when a minimum 

of 3 grandparents originated from the respective country. Outliers were identified 

using 2 methods: 1) multidimensional scaling (MDS), and 2) outlier detection 

diagnostics as implemented in PLINK20. This was performed for the Dutch and 

German samples individually, and then in the combined sample (Figure S6, further 

information is provided in the SI Patients and Methods). Tests were applied to detect 
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differences in allele frequencies and missingness patterns between the single Dutch 

and German control samples (Rotterdam, Utrecht, Kiel, Munich, and Essen). Finally, 

association analyses were performed using a Cochran-Mantel-Haenszel test and a 

logistic regression with covariates derived from MDS analyses (first six dimensions) 

to minimize potential stratification effects (Figure S5, more information is provided 

in the SI Patients and Methods).  

Imaging Genetics Study 

The participants of the imaging genetics study completed a battery of six cognitive 

tasks that have been used and validated previously in imaging genetics. Specifically, 

the following tasks were performed: (1) an associative learning task21, in which 

subjects learn and are then tested on face-job associations, (2) an n-back working 

memory task22, in which subjects are presented with a sequence of numbers and press 

a button corresponding either to the number currently seen (control condition, ‘0-

back) or the number seen two presentations previously (‘2-back’), (3) a theory of 

mind task23, in which subjects have to make inferences about the state of mind of a 

human based on a series of cartoons, (4) a flanker task24 in which subjects have to 

perform or withhold a button press depending on a set of either congruent or 

incongruent stimuli, requiring cognitive control, (5) an implicit emotion recognition 

task25, in which subjects match pictures of angry and fearful faces, (6) a monetary 

reward task26, in which subjects receive or do not receive monetary rewards according 

to their performance in a reaction time task and a 5 minutes of rest period. Further 

information, including details of the imaging parameters, is provided in the SI 

Patients and Methods. 

For analysis of the influence of rs11819869, contrast images of incongruent > 

congruent trials were subjected to a two sample t-test with age, gender, and scanning 

site as covariates of no interest. To avoid small cell sizes, CT heterozygotes and TT 
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homozygotes were combined and compared with the CC homozygous group. 

In view of our exploratory approach, we used a significant threshold of P< 0.0083 

(equivalent to P< 0.05 with Bonferroni correction for 6 tasks), correcting for multiple 

comparisons across all voxels of the brain using family-wise error (FWE), based on 

Gaussian Random Fields theory. Further information is provided in the SI Patients 

and Methods. 

Results 

We performed a GWAS of 1,169 clinically well-characterized and ethnically 

homogeneous SCZ patients who had been recruited from a confined area of Western 

Europe (n= 464 from Germany, n= 705 from The Netherlands) and 3,714 ethnically 

matched controls (n= 1,272 and n= 2,442, respectively; Table 1). A total of 475,427 

SNPs (Illumina’s HumanHap550v3 BeadArray) were tested using the Cochran 

Mantel Haenszel test (CMH, for 2x2xK stratified tables, Methods section). No marker 

exceeded the widely acknowledged genome-wide significance threshold of 5 x 10-8, 

or a Bonferroni-corrected significance threshold of 1.1 x 10-7. The best result (PGWAS= 

4.50 x 10-7) was for the SNP rs11154491, which is located in an intron of the Rho 

GTPase activating protein 18 gene on chromosome 6 (ARGHAP18, Figure S2). An 

overview of the GWAS results is provided in Figure 1a.  

Under the assumptions that the most significantly associated SNPs included true SCZ 

susceptibility factors and that the failure to reach genome-wide significance in the 

GWAS step was a result of insufficient power, we performed a subsequent follow-up 

analysis (Replication 1). A total of 43 SNPs were selected using a top down P-value 

approach in 2,569 additional patients and 4,088 controls from Western Europe 

(Germany/Munich: 913 patients/1,668 controls; Bonn/Mannheim: 600/1,146; The 

Netherlands: 178/400; Denmark: 878/874; Table 1). Nine of the 43 SNPs (21%) 
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showed nominal significance in the combined replication samples, and all with the 

same alleles as in the GWAS (Table 2 and Table S1a/b). The strongest evidence for 

association was found for 4 highly correlated SNPs (rs7112229, rs11819869, 

rs7130141, and rs12575668). These 4 SNPs are located in intronic regions of the 

activating molecule in beclin-1-regulated gene (AMBRA1) on chromosome 11. The 

best SNP (rs11819869) showed PREPLI= 5.04 x 10-5
 (PCORR= 0.0022). One further SNP 

(rs4309482) withstood Bonferroni correction (PCORR= 0.013) for the number of SNPs 

tested in the replication step. This SNP is located in an intergenic region of 

chromosome 18 between the coiled-coil domain containing 68 gene (CCDC68) and 

the transcription factor 4 gene (TCF4). Our top GWAS SNP (rs11154491), which is 

located in ARGHAP18 on chromosome 6q22.33, was not replicated (PREPLI= 0.38). 

In an analysis of the combined samples (GWAS + follow-up; n= 3,738 patients/ 7,802 

controls; CMH, K= 6), variation in the chromosome 11 region surpassed the threshold 

for genome-wide significance (rs11819869, PCOMB= 3.89 x 10-9, OR= 1.25, Figure 

1b). A Breslow-Day test was performed across all of the analyzed samples for all 

SNPs that had withstood Bonferroni correction in the replication step. This revealed 

no significant differences in odds ratios (P > 0.05) between the investigated samples. 

In support of this, subtraction of any one individual replication sample failed to alter 

the effect sizes to any substantial degree (Table S1b).  

We then attempted to replicate our genome-wide significant result for rs11819869 in 

15 independent samples of European ancestry (Replication 2; 4,734 patients and 

18,472 controls). We observed significant association for the T risk allele of 

rs11819869, as had been observed in the GWAS study (PMETA= 0.0029, OR= 1.11; 

Table 3). We then applied a functional magnetic resonance imaging (fMRI) test 

battery for imaging genetics in a total of 121 healthy subjects (53 males, 68 females) 

of German descent with no family history of affective disorder or SCZ. This 



 11

demonstrated a significant effect of the rs11819869 genotype on medial prefrontal 

activation during a flanker task which contrasted incongruent and congruent stimuli 

configurations (P< 0.05, family wise error corrected for multiple testing, Cluster size: 

K= 9, Maximum activation found at [-3,36,-18], T(116)= 5.522, PCORR< 0.008 (see 

Patients and Methods for details of the task and the statistics). Carriers of the risk 

allele showed increased activation during incongruent conditions, whereas 

homozygote carriers of the C-allele showed decreased activation (Figure 2b). 

Discussion 

The SNP rs11819869 is located in the gene AMBRA1, in a region of strong LD that 

spans approximately 360 kb (r2 > 0.8 based on HapMap Phase 2 CEU data27, Figure 

S3). Other RefSeq genes in the LD region are KIAA0652/ATG13, CHRM4, DGKZ, 

MDK, HARBI1, ARGAPH1, and ZNF408. In our initial GWAS, 11 of the 25 most 

significant SNPs were located in this region. Although this region also showed 

evidence for association in the GWAS study of the SGENE consortium3, it was not 

among the top findings selected for follow-up3.  

AMBRA1 plays a major role in the development of the nervous system and has been 

reported to be a member of the Autophagy Interaction Network (AIN)30. In mouse 

models, AMBRA1 functional deficiency results in severe neural tube defects that are 

associated with impaired autophagy, accumulation of ubiquitinated proteins, 

unbalanced cell proliferation, and excessive apoptotic cell death28,29. The gene is 

highly expressed in the most ventral part of the undifferentiated neural tube during 

embryogenesis29. Another gene in the chromosome 11 region of strong LD 

(KIAA0652/ATG13) is also a member of the AIN30 and acts as a regulator of 

autophagy30.  Together with the association findings for genetic variation in TCF4 and 

NRGN3, these reports and our findings may be regarded as supportive evidence for the 
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role of brain-development-genes in the etiology of SCZ.  

Although AMBRA1 is an interesting functional candidate gene and includes the top 

associated SNP, (Figure 1b, Figure S3) it is difficult to pinpoint the potential 

susceptibility gene on the basis of the genetic data alone due to the presence of strong 

LD in the associated region. Another very interesting gene that is covered by LD in 

this region is the muscarinic acetylcholine receptor M4 gene (CHRM4). 

Neuropsychopharmacological and neuroimaging studies have produced strong 

evidence that muscarinic cholinergic receptors are involved in SCZ31. Studies of 

muscarinic receptor knockout (KO) mice have suggested that CHRM4 has an impact 

on the homeostatic control of cholinergic activity and dopaminergic 

neurotransmission in mesolimbic and hippocampal brain regions32. Interestingly, the 

muscarinic agonist Xanomeline, which is selective for the CHRM1 and CHRM4 

subtypes, exhibited functional dopamine antagonism and resulted in antipsychotic-

like effects in rodent models predictive of antipsychotic behaviors32. Furthermore, a 

recent study proposed allosteric modulation of the muscarinic M4 receptor as a 

potential approach to the treatment of SCZ33. Further information concerning the 

impact of CHRM4 on the pharmaceutical treatment of SCZ is provided in the SI. 

Another gene of interest in the LD region of chromosome 11 (Figure 1b, Figure S3) 

is the diacylglycerol kinase zeta gene (DGKZ). There are a total of 10 diacylglycerol 

kinase enzymes (DGKs) (DGKalpha, DGKbeta, DGKgamma, DGKdelta, 

DGKepsilon, DGKzeta, DGKeta, DGKtheta, DGKiota and DGKkappa) and these 

metabolize 1,2,diacylglycerol (DAG) to phosphatidic acid (PA). Diacylglycerol 

kinases are central to a wide range of signal transduction pathways of potential 

relevance to neuropsychiatric disorders34. The diacylglycerol kinase eta (DGKH), a 

key protein in the lithium-sensitive phosphatidyl inositol pathway, has recently been 

implicated in the etiology of bipolar disorder35. A further member of this protein 
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family, DGKbeta, has been reported to promote dendritic outgrowth and spine 

maturation in developing hippocampal neurons36. In addition, gene-wide evidence for 

association with SCZ has been reported for the gene that encodes for DGKiota 

(DGKI)33. One independent study3 found evidence for association between SCZ and a 

DGK1 variant. In view of these findings, DGKZ may represent a further promising 

candidate gene for SCZ in the LD region of chromosome 11. 

Last but not least, Midkine (MDK) is an interesting candidate gene in the region of our 

top finding. It has been shown that Mdk(−/−) mice exhibited a delayed hippocampal 

development with impaired working memory and increased anxiety37. In addition, 

midkine was found to accumulate in senile plaques in the hippocampus of patients 

with Alzheimer’s disease38. Ohgake et al. (2009) reported that Mdk(−/−) mice showed 

a significantly disrupted Prepulse inhibition (PPI) test when compared to Mdk(+/+) 

mice39. This is interesting, because PPI has previously been shown to be a valuable 

tool for evaluating models or model organisms relevant to schizophrenia40. The PPI 

reduction was compensated when Mdk(−/−) mice were pre-treated with either 

haloperidol or clozapine (both known to reverse PPI deficits)39. In view of their 

findings, Ohgake et al. (2009) hypnotized, that Mdk(−/−) mice might act as a putative 

animal model of schizophrenia39. 

Since none of the 11 top SNPs, which are all located in introns of AMBRA1, have any 

known disease causing function, the SNAP tool41 was used to test whether our top 

SNP (rs11819869) was in strong LD (r2 > 0.8, based on HapMap27 CEU Phase 2 and 

3 data) with SNPs that are functional variants. We found that a DGKZ splice-site 

variant (rs2046768) was in strong LD with our top SNP (r2= 0.935 for HapMap10 

CEU data of Phase 2 release 22, Figure S3). Since this SNP was not present in our 

post QC dataset, it was necessary to impute the information for the GWAS dataset 

using the strategy described in the SI Patients and Methods (rs2046768, PIMPUT= 8.79 
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x 10-5). Although the result for the functional variant itself lags behind the GWAS 

result for the top SNP (rs11819869, PGWAS= 4.71 x 10-6), we cannot excluded the 

possibility that this is the functionally relevant effect that was picked up by our top 

SNP in AMBRA1. 

Irrespective of which specific gene in the region is tagged by the identified SNPs, the 

impact of the risk allele on brain function and SCZ can be tested using imaging 

genetics. This approach has high specificity when applied to risk genes for SCZ42. 

The stringent statistics statistical approach, which combines Bonferroni correction 

over tasks with family-wise error correction over brain regions tested, provides strong 

protection against false positive findings42. The present results therefore indicate a 

regionally specific impact on the function of the subgenual cingulate during a 

cognitive control task. This represents a critical interface between emotion regulation 

and cognition that is structurally43 and functionally44 abnormal in SCZ and bipolar 

disorder. The present findings therefore provide evidence that the identified risk allele 

is functional in a neural system of relevance to the disorder.  

Our second best result was for rs4309482 (PCOMB= 9.68 x 10-7, OR=0.87, Figure 1c), 

which is located near CCDC68 and TCF4 on chromosome 18. This SNP, unlike the 

SNPs in the chromosome 11 region, was included in the follow-up of the SGENE 

study and achieved a combined P-value of 7.1 x 10-5 (Supplementary Table 2 in 

Stefansson et al.3). However, since a substantial proportion of our combined case 

sample (and a smaller proportion of our control sample) was included in that study, 

our result for this SNP cannot be regarded as an independent replication.  

In summary, the present study has identified a susceptibility region for SCZ on 

chromosome 11 which contains four excellent functional candidate genes: AMBRA1, 

DGKZ, CHRM4, and MDK. In addition, we found evidence that the identified risk 

allele is functional in a neural system that is of relevance to the disorder. The aim of 
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future studies will be to determine which of the genes in the region contribute to the 

risk for SCZ. CHRM4 is of particular interest as it may lead to novel therapeutic 

interventions for SCZ.  
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Figure Legend 
 
Figure 1: Association results for the GWAS and the 2 best supported genes from the 

follow-up study (replication 1). (a) Manhattan plot. Regional plots depicting (b) 

AMBRA1/CHRM4/DGKZ/MDK region and (c) CCDC68/TCF4 region. The best-

associated marker from the GWAS (enlarged red diamond) is centered in a genomic 

window of 1 Mb (hg18, RefSeq genes); its P-value from the combined analysis 

(PCOMB) is shown (enlarged blue diamond). The LD strength (r2) between the sentinel 

SNP from the GWAS and its flanking markers is demonstrated by the red (high) to 

white (low) colored bar. The recombination rate (cM/Mb; second y-axis) is plotted in 

blue, according to HapMap27 CEU. 

 

Figure 2: Effect of the rs11819869 genotype on brain activation during a flanker task 

(contrast incongruent trials > congruent trials). (a) The only cluster showing a 

significant group difference between carriers of at least one T allele and homozygote 

C allele carriers after correction for multiple testing. (P< 0.05, family wise error 

corrected for the entire brain and the number of different tasks tested). (b) Mean 

contrast estimates (+/- standard errors) for the significant cluster, reflecting an 

increased activation during incongruent trials for the T-allele carriers and during 

congruent trials for participants homozygous for the C allele. 

 

 



 

 

Table 1: Descriptive data for schizophrenia patients and controls following quality control 
 

 

GWAS Follow-up study (Replication 1) 

Germany 
(Bonn – Mannheim) 

The Netherlands 
Germany 
(Munich) 

The Netherlands 
Germany              

(Bonn – Mannheim) 
Denmark 
(Aarhus) 

Patients Controls Patients Controls Patients Controls Patients Controls Patients Controls Patients Controls 

Individuals 464 1272 705 2442 913 1668 178 400 600 1146 878 874 
Males 
(in %) 

233 
(50.1%) 

649 
(51.0%) 

539 
(76.5%) 

1224 
(50.1%) 

572 
(62.7%) 

810  
(48.6%) 

124 
(69.7%) 

165 
(41.3%) 

372 
(62.0%) 

566 
(49.4%) 

479 
(54.8%) 

475 
(54.3%) 

Mean age at recruitment 
in years (s.d.) 

34.1 
(11.0) 

50.4 
(11.4) 

34.4 
(13.1) 

59.1 
(18.3) 

37.7 
(11.7) 

49.5 
(16.0) 

37.9 
(10.9) 

70.0 
(9.5) 

38.4 
(12.3) 

46.5 
(15.8) 

20.1 
(2.7) 

20.1 
(2.7) 

Mean age of onset in 
years (s.d.) 

21.9 
(6.5) 

N/A N/A N/A 
23.6 
(8.7) 

N/A N/A N/A 
29.1 
(9.5) 

N/A 
18.9 
(2.8) 

N/A 

 
N/A, not applicable or not available; s.d., standard deviation 



 

 

Table 2: Nine SNPs replicated in the follow-up study (Replication 1) with the same alleles as in the GWAS 
 

SNP data  Association data Gene data 

 
 GWAS   Replication 1   Combined analysis (GWAS + Replication 1) 

 
 CMH (K= 2) MAF  CMH (K= 4) MAF  CMH (K= 6) MAF 

SNP Chr. Alleles  PGWAS OR 
Patients 
n= 1169 

Controls 
n= 3714 PREPLI OR 

Patients 
n= 2569 

Controls 
n= 4088  PCOMB OR 

Patients 
n= 3738 

Controls 
n= 7802  

Nearest gene or 
transcript 

rs11819869 11p11.2 T/C  4.71 x 10-6 1.32 0.19 0.15 5.04 x 10-5 1.20 0.18 0.16  3.89 x 10-9 1.25 0.19 0.16 
AMBRA1, 
intronic 

rs7112229 11p11.2 T/C  1.03 x 10-5 1.32 0.18 0.15 5.32 x 10-5 1.21 0.17 0.14  7.38 x 10-9 1.25 0.17 0.14 
AMBRA1, 
intronic 

rs7130141 11p11.2 T/C  6.87 x 10-6 1.32 0.19 0.16 6.47 x 10-5 1.20 0.18 0.16  6.96 x 10-9 1.24 0.19 0.16 
AMBRA1, 
intronic 

rs12574668 11p11.2 A/C  9.71 x 10-6 1.31 0.19 0.15 7.17 x 10-5 1.20 0.18 0.16  1.02 x 10-8 1.24 0.19 0.16 
AMBRA1, 
intronic 

rs4309482 18q21.2 G/A  3.40 x 10-4 0.84 0.38 0.43 2.93 x 10-4 0.88 0.39 0.41  9.68 x 10-7 0.87 0.39 0.42 
CCDC68/TCF4, 

intergenic 

rs6465845 7q22.1 C/T  1.14 x 10-5 1.28 0.25 0.21 0.0064 1.11 0.23 0.21  4.31 x 10-6 1.17 0.24 0.21 
CUX1,     
intronic 

rs370760 7q22.1 G/A  9.31 x 10-5 1.26 0.22 0.18 0.0084 1.12 0.19 0.18  2.65 x 10-5 1.17 0.20 0.18 
CUX1,     
intronic 

rs404523 7q22.1 A/G  8.19 x 10-5 1.26 0.22 0.18 0.0119 1.11 0.19 0.18  3.84 x 10-5 1.17 0.20 0.18 
CUX1,     
intronic 

rs2717001 2p16.1 C/T  3.20 x 10-4 0.84 0.38 0.42 0.0174 0.93 0.39 0.41  1.00 x 10-4 0.89 0.39 0.42 
VRK2,      
intronic 

 

Alleles, major/minor allele where minor allele refers to dbSNP build129 and was determined in patients and controls in each analysis; CMH, Cochran-Mantel-Haenszel test; MAF, minor allele frequency;  

OR, odds ratio referring to minor allele; CMH was one-tailed for the replication analysis if OR was in the same direction as in the GWAS and two-tailed for the meta-analysis; K, CMH's cluster variable;  

The table is sorted according to the results of the follow-up analysis (Replication 1). 

 



 

 

Table 3:  Association results for rs11819869 at all stages of the analysis: GWAS,  

Replication 1,  and Replication 2. 
 

SNP Sample  
(Patients / Controls) 

% Males Test, P OR MA MAF 
Pat Con Pat Con 

rs11819869 GWAS (1169 / 3714)   CMH (K= 2), 4.71 x 10-6 1.32    
 Germany 50.1 51.0 TREND, 0.008 1.31 T 0.19 0.15 
 The Netherlands 76.5 50.1 TREND, 1.85 x 10-4 1.34 T 0.20 0.16 
         
 Replication 1 (2569 / 4088)   CMH (K= 4), 5.04 x 10-5 1.20    
 Germany (Bonn – Mannheim)  62.0 49.4 TREND, 0.012 1.24 T 0.18 0.15 
 The Netherlands 69.7 41.3 TREND, 0.033 1.36 T 0.19 0.15 
 Germany (Munich) 62.7 48.6 TREND, 0.038 1.15 T 0.17 0.15 
 Denmark (Aarhus) 54.8 54.3 TREND, 0.016 1.20 T 0.20 0.17 
         
 GWAS + Replication 1 (3738, 7802)   CMH (K= 6), 3.89 x 10-9 1.25    
         
 Replication 2 (4734/ 18472)   META (n= 15), 0.0029 1.11    
 Denmark (Copenhagen) 58.6 58.1 LOGISTIC, 0.133 1.12 T 0.18 0.17 
 England 76.3 54.5 LOGISTIC, 0.172 1.29 T 0.20 0.16 
 Finland (Helsinki) 59.3 65.3 LOGISTIC, 0.256 1.26 T 0.13 0.11 
 Finland (Kuusamo) 62.6 52.0 LOGISTIC, 0.423 0.73 T 0.08 0.11 
 Iceland 64.5 49.9 LOGISTIC, 0.101 1.11 T 0.19 0.17 
 Wales/ UK (Cardiff) 67.8 49.2 LOGISTIC, 0.052 1.16 T 0.19 0.17 
 Italy 57.1 56.2 LOGISTIC, 0.784 0.91 T 0.18 0.19 
 Scotland 72.2 58.1 LOGISTIC, 0.211 1.09 T 0.18 0.16 
 Denmark (Aarhus) 53.7 35.7 LOGISTIC, 0.698 0.94 T 0.16 0.17 
 Poland 46.9 51.6 LOGISTIC, 0.098 1.19 T 0.18 0.16 
 Belgium 68.3 43.7 LOGISTIC, 0.317 1.10 T 0.17 0.16 
 Hungary 43.6 41.6 LOGISTIC, 0.354 1.07 T 0.20 0.19 
 Russia 27.8 38.0 LOGISTIC, 0.172 1.13 T 0.17 0.16 
 Sweden 62.7 62.0 LOGISTIC, 0.461 1.02 T 0.14 0.14 
 Norway 59.2 50.4 LOGISTIC, 0.112 1.24 T 0.18 0.15 

 
CMH, Cochran-Mantel-Haenszel test, was one-tailed for Replication 1, and two-tailed for GWAS and the combined analysis of GWAS plus 

Replication 1; TREND, Cochran-Armitage test, was one-tailed when OR was in the same direction as in the GWAS for Replication 1 

subsamples and two-tailed for GWAS subsamples; LOGISTIC, Logistic regression (additive effect) was one-tailed when OR was in the same 

direction as in the GWAS for Replication 2 subsamples; META, meta-analysis (random effects model) was two-tailed; OR, odds ratio referring 

to the minor allele (MA), italic when OR was in the opposite direction to GWAS (; MAF, MA frequency; Pat, patients; Con, controls. 
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