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In this paper we generalize Nesterenko's criterion to the case where the small linear forms have an oscillating behaviour (for instance given by the saddle point method). This criterion provides both a lower bound for the dimension of the vector space spanned over the rationals by a family of real numbers, and a measure of simultaneous approximation to these numbers (namely, an upper bound for the irrationality exponent if 1 and only one other number are involved). As an application, we prove an explicit measure of simultaneous approximation to ζ(5), ζ(7), ζ(9), and ζ(11), using Zudilin's proof that at least one of these numbers is irrational.

Introduction

To investigate on Diophantine properties of real numbers ξ 1 , . . . , ξ r , a strategy is to construct small linear forms in 1, ξ 1 , . . . , ξ r with integer coefficients. This is the only known way to study this problem if ξ 1 , . . . , ξ r are, for instance, values of Riemann zeta function

ζ(s) = ∞ n=1 1 
n s at odd integers s ≥ 3.

In more precise terms, linear forms ℓ 0,n + ℓ 1,n ξ 1 + . . . + ℓ r,n ξ r are constructed, with absolute value ≤ α n+o(n) as n → ∞ and coefficients ℓ j,n ∈ Z such that |ℓ j,n | ≤ β n+o(n) (where 0 < α < 1 < β). Then:

• If ℓ 0,n + ℓ 1,n ξ 1 + . . . + ℓ r,n ξ r = 0 for infinitely many n, the subgroup Z + Zξ 1 + . . . + Zξ r of R is not discrete so that at least one number among ξ 1 ,. . . , ξ r is irrational. • If αβ < 1 and ℓ 0,n + ℓ 1,n ξ 1 + . . . + ℓ r,n ξ r = 0 for infinitely many n, the subspace spanned over Q by 1, ξ 1 ,. . . , ξ r has dimension at least 3, so that 1, ξ i and ξ j are Q-linearly independent for some i, j with 1 ≤ i < j ≤ r.

An elementary proof of this result can be found in [START_REF] Fischler | A refinement of Nesterenko's linear independence criterion with applications to zeta values[END_REF] (Proposition 1, §2.2). • If the linear forms are not too small, namely ≥ α n+o(n) , a result of Nesterenko [START_REF] Nesterenko | On the linear independence of numbers[END_REF] implies the following two properties (see the remark after Theorem 1 below for a precise formulation): (i) A lower bound 1 -log α log β on the dimension of the vector space spanned over the rationals by 1, ξ 1 , . . . , ξ r . This linear independence criterion is one of the main tools in the proof ( [START_REF]La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs[END_REF], [START_REF] Ball | Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs[END_REF]) that ζ(s) ∈ Q for infinitely many odd integers s ≥ 3. (ii) A measure of simultaneous approximation to ξ 1 , . . . , ξ r ; if r = 1, this is an upper bound µ(ξ 1 ) ≤ 1 -log β log α on the irrationality exponent of ξ 1 . For instance, Apéry proved at the same time [START_REF] Apéry | Irrationalité de ζ(2) et ζ(3)[END_REF] that

ζ(3) ∈ Q and µ(ζ(3)) ≤ 13.41 . . ..
The assumption that the linear forms are not too small is very important here, and it cannot be omitted. It can be weakened: Nesterenko proves such results for linear forms with absolute values between α n+o(n) 1 and α n+o(n) , where 0 < α 1 < α < 1, but the conclusion is then weaker too.

In this paper we generalize Nesterenko's results (i) and (ii) (without weakening the conclusion) to the case where the linear forms behave essentially like α n+o(n) cos(nω + ϕ) with ω, ϕ ∈ R. This is an interesting situation because the saddle point method is often applied to obtain asymptotic estimates for the linear forms, and it typically produces this kind of behaviour. Our main result is the following. Theorem 1. Let r ≥ 1, ξ 1 , . . . , ξ r ∈ R, α, β, ω, ϕ ∈ R. Assume that 0 < α < 1, β > 1, and either ω ≡ 0 mod π or ϕ ≡ π 2 mod π. For any n ≥ 1, let ℓ 0,n , . . . , ℓ r,n ∈ Z be such that, as n → ∞:

max 0≤i≤r |ℓ i,n | ≤ β n+o(n) and |ℓ 0,n + ℓ 1,n ξ 1 + . . . + ℓ r,n ξ r | = α n+o(n) | cos(nω + ϕ)| + o(1) . (1) 
Then:

(i) We have dim Q Span Q (1, ξ 1 , . . . , ξ r ) ≥ 1 -log α log β . (ii) For any κ > 1 -log β
log α and any q, p 1 , . . . , p r ∈ Z with q > 0 sufficiently large in terms of κ, we have

max ξ 1 - p 1 q , . . . , ξ r - p r q ≥ 1 q κ .
When (ω, ϕ) = (0, 0) these are exactly Nesterenko's above-mentioned results [START_REF] Nesterenko | On the linear independence of numbers[END_REF]. If e iω and e iϕ are algebraic numbers, a very concise remark of Sorokin [START_REF] Sorokin | On the Zudilin-Rivoal Theorem[END_REF] (which we expand in §2.2) provides another proof of Theorem 1, based upon lower bounds for linear forms in logarithms.

As the proof shows, the cosine may be replaced in Theorem 1 (and also in Proposition 1 below) with any continuous periodic function, which vanishes only at finitely many points within each period.

Theorem 1 can be used in the following situation (see §3.1 for other possible applications). Zudilin has proved [START_REF] Zudilin | One of the numbers ζ(5), ζ(7), ζ(9), ζ([END_REF] that among ζ(5), ζ [START_REF] Fischler | Nesterenko's linear independence criterion for vectors[END_REF], ζ(9), and ζ [START_REF] Kuipers | Uniform distribution of sequences[END_REF], at least one is irrational (refining upon Rivoal's result [START_REF]Irrationalité d'au moins un des neuf nombres ζ(5)[END_REF]). He proceeds by constructing small linear forms in 1 and these numbers. He applies the saddle point method to prove the estimate (1) (see §2.3 below), and deduce that the linear form is non-zero for infinitely many n, thereby proving the irrationality of at least one number among ζ(5), ζ [START_REF] Fischler | Nesterenko's linear independence criterion for vectors[END_REF], ζ [START_REF] Fischler | Irrationality exponent and rational approximations with prescribed growth[END_REF], and ζ [START_REF] Kuipers | Uniform distribution of sequences[END_REF].

Using Theorem 1 we obtain a quantitative version of this result: Theorem 2. For any q, p 5 , p 7 , p 9 , p 11 ∈ Z with q > 0 sufficiently large we have:

max ζ(5) - p 5 q , ζ(7) - p 7 q , ζ(9) - p 9 q , ζ(11) - p 11 q ≥ 1 q 438.23 .
In particular, in the (very unlikely) case where ζ(5), ζ [START_REF] Fischler | Nesterenko's linear independence criterion for vectors[END_REF] 

0,ψ(n) + ℓ 1,ψ(n) ξ 1 + . . . + ℓ r,ψ(n) ξ r ,
where ψ is given by the following proposition (with N = 1). 

Proposition 1. Let N ≥ 1, ω 1 , . . . , ω N , ϕ 1 , . . . , ϕ N ∈ R.
)ω i + ϕ i )| ≥ ε.
This proposition is a consequence of Kronecker-Weyl's equidistribution theorem (see §2.1). The assumption that for infinitely many n,

nω i + ϕ i ≡ π 2 mod π for any i is of course necessary because if ψ exists, all n ∈ ψ(N) have this property. If N = 1, it is equivalent to (ω 1 , ϕ 1 ) ≡ (0 mod π, π 2 mod π). For N = 2, it is equivalent to:        (ω 1 , ϕ 1 ) ≡ (0 mod π, π 2 mod π) (ω 2 , ϕ 2 ) ≡ (0 mod π, π 2 mod π) (ω 1 , ω 2 , ϕ 1 , ϕ 2 ) ≡ ( π 2 mod π, π 2 mod π, π 2 mod π, 0 mod π) (ω 1 , ω 2 , ϕ 1 , ϕ 2 ) ≡ ( π 2 mod π, π 2 mod π, 0 mod π, π 2 mod π) (2) 
In all Diophantine applications we have in view (see §3.2), N is fixed (and even N = 1 for the above-mentioned results), so that this assumption is not too difficult to check. It should be pointed out that in Proposition 1, no Diophantine condition is assumed on ω i or ϕ i : for instance, we don't assume π, ω 1 , . . . , ω N to be Q-linearly independent. This is very useful because such a condition could be very difficult to check (whereas approximate values of these numbers are often easily computed, making it very easy to check conditions such as (2)).
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Proofs

∈ R such that x i < y i , let K = s i=1 [x i , y i ] ⊂ (R/Z) s . Given ϑ 1 , . . . , ϑ s ∈ R, we denote by N the set of all n ∈ N such that (nϑ 1 mod Z, . . . , nϑ s mod Z) ∈ K.
Then Kronecker-Weyl's equidistribution theorem (see [START_REF] Kuipers | Uniform distribution of sequences[END_REF], Chapter 1.6) asserts that, if 1, ϑ 1 , . . . , ϑ s are Q-linearly independent:

lim k→∞ |{n ∈ N , n ≤ k}| k = s i=1 min(y i -x i , 1).
Denoting by ψ 0 (n) the n-th element of N in increasing order (so that ψ 0 : N → N is an increasing bijection), this implies

lim n→∞ ψ 0 (n) n = s i=1 max((y i -x i ) -1 , 1) (3) 
by letting k = ψ 0 (n) and taking reciprocals. Equation (3) will be the main tool in the proof of Proposition 1.

To illustrate the ideas in a simpler case, let us prove Proposition 1 first when 

N = 1. If ω 1 /π is a rational number c/d, then it is enough to choose ψ(n) = nd + a for a suitable a ∈ {1, . . . , d}. If ω 1 /π is irrational, let K = [-ϕ1 π -1 4 , -ϕ1 π + 1 4 ] ⊂ R/Z
(n)ω 1 + ϕ 1 ) = cos π ψ 0 (n) ω 1 π + ϕ 1 π ≥ √ 2 2 .
This concludes the proof when N = 1.

Let us come now to the proof of Proposition 1 for any N , starting with a special case: we assume that ω1 π , . . . , ωN π are irrational numbers. Let E denote the Q-subspace of R spanned by 1, ω1 π , . . . , ωN π . Since ω1 π ∈ Q, we have dim Q E ≥ 2; let (1, ϑ 1 , . . . , ϑ s ) denote a basis of E, with s ≥ 1. For any i ∈ {1, . . . , N }, we have ωi π = s j=0 r i,j ϑ j with r i,j ∈ Q, where we let ϑ 0 = 1. Let D be a positive integer such that Dr i,j ∈ Z for any i, j. Then we have

cos(Dnω i + ϕ i ) = cos π s j=1 Dr i,j nϑ j + ϕ i π (4) 
because Dr i,0 nϑ 0 ∈ Z.

For any i ∈ {1, . . . , N }, let ∆ i ⊂ (R/Z) s be the set of all (σ 1 , . . . , σ s ) such that ( s j=1 Dr i,j σ j ) + ϕi π -1 2 ∈ Z. Since (Dr i,1 , . . . , Dr i,s ) ∈ Z s \ {(0, . . . , 0)} because ωi π ∈ Q, ∆ i is a finite union of translated tori of dimension s -1, and a proper compact subset of (R/Z) s . There exists a point (z 1 , . . . , z s ) ∈ R s and a (small) positive real number η such that

K = s i=1 [z i -η, z i + η] ⊂ (R/Z) s is disjoint from ∆ 1 ∪ . . . ∪ ∆ N .
Let N be the set of all n ∈ N such that (nϑ 1 mod Z, . . . , nϑ s mod Z) ∈ K, and ψ 0 (n) denote the n-th element of N (in increasing order). Since 1, ϑ 1 , . . . , ϑ s are Q-linearly independent, Kronecker-Weyl's equidistribution theorem (3) yields

lim n→∞ ψ 0 (n) n = (2η) -s > 0.
Moreover, since K, ∆ 1 , . . . , ∆ N are compact subsets there exists η ′ > 0 such that, for any n ∈ N and any i ∈ {1, . . . , N }, (

s j=1 Dr i,j ψ 0 (n)ϑ j ) + ϕi π -1 2 Z ≥ η ′ (where x Z is the distance of x ∈ R to Z).
Using Eq. ( 4), this provides ε > 0 such that | cos(Dψ 0 (n)ω i + ϕ i )| ≥ ε, and by letting ψ(n) = Dψ 0 (n) this concludes the proof of Proposition 1 if ω1 π , . . . , ωN π ∈ Q. Let us deduce the general case from this special case. Reordering the pairs (ω i , ϕ i ) if necessary, we may assume that for some N ′ ∈ {0, . . . , N } we have ω1 π , . . . , ω N ′ π ∈ Q and

ω N ′ +1 π , . . . , ωN π ∈ Q. Let d ≥ 1 be a common denominator of ω N ′ +1
π , . . . , ωN π and for any i, let E i be the set of all k ∈ N such that kω i + ϕ i ≡ π 2 mod π. Then E i has at most one element for i ≤ N ′ , and E i is a union of residue classes mod d for i > N ′ . By assumption N\(E 1 ∪. . .∪E N ) is infinite, so that there exists a ∈ N such that for any k sufficiently large with k ≡ a mod d, we have k ∈ E 1 ∪ . . . ∪ E N . For any i > N ′ , the number | cos((nd + a)ω i + ϕ i )| is positive and independent from n (since dω i ∈ πZ).

If N ′ = 0 this concludes the proof by letting ψ(n) = nd + a. Otherwise we apply the special case of Proposition 1 proved above to cos((nd + a)

ω i + ϕ i ) = cos(ndω i + aω i + ϕ i ) for 1 ≤ i ≤ N ′ , that is with ω ′ 1 = dω 1 , . . . , ω ′ N ′ = dω N ′ , ϕ ′ 1 = aω 1 + ϕ 1 ,. . . , ϕ ′ N ′ = aω N ′ + ϕ N ′ .
We obtain in this way an increasing function ψ 0 , and letting ψ(n) = ψ 0 (n)d + a concludes the proof of Proposition 1.

Remark. If ω1 π , . . . , ωN π are irrational numbers, applying Kronecker-Weyl's theorem with more general subsets K enables one to obtain ψ 0 such that lim n→∞ ψ0(n) n is arbitrarily close to 1 (because this is the inverse of the measure of K). This leads to a control upon λ = lim n→∞ ψ(n) n in terms of the common denominator D in this case. If 1, ω1 π , . . . , ωN π are Q-linearly independent then we can take D = 1, so that λ can be chosen arbitrarily close to 1. However we did not try to go any further in this direction (nor to get a lower bound for ε) because this is completely useless for the applications we have in view.

Proof of Theorem 1

Since ω ≡ 0 mod π or ϕ ≡ π 2 mod π, there are infinitely many integers n such that nω + ϕ ≡ π 2 mod π. Applying Proposition 1 (with N = 1) yields ε, λ > 0 and an increasing function ψ :

N → N such that ψ(n) = λn + o(n) as n → ∞ and | cos(ψ(n)ω + ϕ)| ≥ ε for any n. Therefore Eq. (1) yields |ℓ 0,ψ(n) + ℓ 1,ψ(n) ξ 1 + . . . + ℓ r,ψ(n) ξ r | = α ψ(n)(1+o(1)) = α λn+o(n)
and we have also max 0≤i≤r |ℓ i,ψ(n) | ≤ β λn+o (n) . Therefore Nesterenko's results [START_REF] Nesterenko | On the linear independence of numbers[END_REF] (that is, the special case of Theorem 1 where ω = ϕ = 0) apply to the sequence ℓ 0,ψ(n) + ℓ 1,ψ(n) ξ 1 + . . . + ℓ r,ψ(n) ξ r , with α λ and β λ instead of α and β. This provides exactly the same conclusions (i) and (ii) because log α λ log β λ = log α log β . Remark. Another proof of Theorem 1 under the additional assumption that e iω and e iϕ are algebraic numbers is provided by the following remark of Sorokin (p. 823 of [START_REF] Sorokin | On the Zudilin-Rivoal Theorem[END_REF]):

lim n→∞ n∈S | cos(nω + ϕ)| 1/n = 1 in this case, if ω ≡ 0 mod π or ϕ ≡ π
2 mod π, where S is the set of all n such that cos(nω + ϕ) = 0. Indeed, it follows from Gel'fond's lower bound for linear forms in logarithms (see Theorem 4.1 of [START_REF] Fel'dman | Number Theory IV, Transcendental Numbers[END_REF], p. 179) that for any ε > 0 and any k, n sufficiently large in terms of ε, we have

|nω + ϕ - π 2 -kπ| ≥ (1 -ε) n
provided the left hand-side is non-zero.

Simultaneous approximation to zeta values

This subsection is devoted to a proof of Theorem 2. We use Zudilin's linear forms ( [START_REF] Zudilin | One of the numbers ζ(5), ζ(7), ζ(9), ζ([END_REF]; see also [START_REF] Zudilin | Arithmetic of linear forms involving odd zeta values[END_REF] for further details), which can be written as

S n = 1 2 10 j=1 ((13 + 2j)n)! (27n)! 6 ∞ k=1 d 2 dt 2 (37n+2t) (t -27n) 3 27n (t + 37n + 1) 3 27n 10 j=1 (t + (12 -j)n) (13+2j)n+1 |t=k , (5) 
where the second derivative is taken at t = k and (α) p = α(α+1) . . . (α+p-1) is Pochhammer's symbol. This sum can be written as a linear form 5), . . . span an infinite-dimensional Q-vector space ([3], [START_REF]La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs[END_REF]), i s exists for any s. Apéry's result that ζ(3) ∈ Q means i 2 = 3; conjecturally, i s = 2s -1 for any s. Ball-Rivoal's construction yields an upper bound on i s , which has been improved for small values of s, namely i 3 ≤ 139 and i 4 ≤ 1961 ( [START_REF] Fischler | A refinement of Nesterenko's linear independence criterion with applications to zeta values[END_REF], refining upon previous bounds due to Zudilin [18]). Now let j s denote the least odd integer j ≥ 5 such that

dim Q Span Q (1, ζ(5), ζ(7), . . . , ζ(j)) ≥ s.
The trivial remark that j s ≤ i s+1 yields j 2 ≤ 139 and j 3 ≤ 1961. Now Zudilin's result [START_REF] Zudilin | One of the numbers ζ(5), ζ(7), ζ(9), ζ([END_REF] is an important improvement of the former bound, namely j 2 ≤ 11. The linear forms in 1, ζ(5), ζ(7), . . . , ζ(j) he constructs (in the style of (5) above: see also [START_REF] Zudilin | Irrationality of values of the Riemann zeta function[END_REF]) have the asymptotics (1), with ω ≡ 0 mod π in general. Theorem 1 enables one to deduce from it an upper bound on j s , which should be better (for a fixed value of s) than the one derived from the trivial bound j s ≤ i s+1 . In particular the bound j 3 ≤ 1961 can probably be improved in this way (note however that for proving that at least three numbers in a family are Q-linearly independent, Theorem 1 can be replaced with Proposition 1 of [START_REF] Fischler | A refinement of Nesterenko's linear independence criterion with applications to zeta values[END_REF], as explained at the beginning of the introduction: a lower bound for the linear forms is not necessary in this case).

Further generalizations of Nesterenko's criterion

Nesterenko's results (i) and (ii) (with ω = ϕ = 0 in Eq. ( 1)) have been generalized in several directions, namely:

• In the setting of algebraic number fields ([4], [START_REF] Töpfer | Über lineare Unabhängigkeit in algebraischen Zahlkörpern[END_REF]).

• If the coefficients ℓ i,n are known to have divisors δ i,n such that δ i,n divides δ i,n+1 , then (under suitable assumptions on δ i,n ) both (i) and (ii) can be improved (see [START_REF] Fischler | A refinement of Nesterenko's linear independence criterion with applications to zeta values[END_REF] for (i), and [START_REF] Fischler | Restricted rational approximation and Apéry-type constructions[END_REF] for a detailed study of (ii) with only one number, namely r = 1). • If the linear forms ℓ 0,n X 0 + ℓ 1,n X 1 + . . . + ℓ r,n X r are small at several points (ξ

(i) 0 , . . . , ξ (i) 
r ): see [START_REF] Fischler | Nesterenko's linear independence criterion for vectors[END_REF]. • A lower bound can be obtained [START_REF] Nesterenko | On the linear independence of numbers[END_REF] for the distance of the point (1 : ξ 1 : . . . : ξ r ) ∈ P r (R) to any rational subspace of dimension less than 1-log α log β . This bound, proved by induction on the dimension, is Nesterenko's original approach to deduce (i) from (ii) (see [START_REF] Fischler | Irrationality exponent and rational approximations with prescribed growth[END_REF] for a proof of this deduction based on Dirichlet's pigeonhole principle). In all these generalizations, Proposition 1 enables one to replace the asymptotic behaviour α n+o(n) with the more general oscillating formula (1). The proof is the same as for Theorem 1 (see §2.2), namely one applies the result to a subsequence given by Proposition 1. In the case [START_REF] Fischler | Nesterenko's linear independence criterion for vectors[END_REF] where the linear forms ℓ 0,n X 0 + ℓ 1,n X 1 + . . . + ℓ r,n X r are small at several points, the full generality of Proposition 1 is needed (and not only the case N = 1).

At last, it would be interesting to apply Proposition 1 to other results in Diophantine approximation. For instance, an analogous question about oscillating linear forms was asked in [START_REF] Fischler | Un exposant de densité en approximation rationnelle[END_REF] ( §6), and answered by Adamczewski [START_REF] Adamczewski | Sur l'exposant de densité des nombres algébriques[END_REF] using ideas similar to the ones used here (but without Kronecker-Weyl's theorem); see however [START_REF] Fischler | Irrationality exponent and rational approximations with prescribed growth[END_REF] for a complete answer to all questions asked in [START_REF] Fischler | Un exposant de densité en approximation rationnelle[END_REF].
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  n = ℓ 0,n + ℓ 5,n ζ(5) + ℓ 7,n ζ(7) + ℓ 9,n ζ(9) + ℓ 11,n ζ[START_REF] Kuipers | Uniform distribution of sequences[END_REF] with rational coefficients ℓ i,n . Zudilin deduces from the saddle point method thatS n = e -C0n+o(n) | cos(nω + ϕ) + o(1)|,(6)with ω ≡ 0 mod π and C 0 = 227.58019641 . . ., and constructs a common denominator D n of the rational numbers ℓ 0,n , ℓ 5,n , ℓ 7,n , ℓ 9,n , and ℓ 11,n , such thatD n = e C1n+o(n) with C 1 = 226.24944266 . . . Then D n S n is a linear form in 1, ζ(5), . . . , ζ([START_REF] Kuipers | Uniform distribution of sequences[END_REF], with integer coefficients; as n → ∞, it tends to 0 because α = e C1-C0 < 1, and is non-zero for infinitely many n thanks to[START_REF] Fischler | Restricted rational approximation and Apéry-type constructions[END_REF]. This proves that among the four numbers ζ(5), . . . , ζ[START_REF] Kuipers | Uniform distribution of sequences[END_REF], at least one is irrational.To prove Theorem 2, we also need the following upper bound on the coefficients ℓ j,n , which can be proved along the same lines as Lemma 4 of[START_REF] Ball | Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs[END_REF]: max j∈{0,5,7,9,11} |ℓ j,n | ≤ 2 513n+o(n) , since 3(27 + 37 + 27) + 10 j=1 (13 + 2j) = 513. This allows us to apply Theorem 1 with β = e C1 2 513 , so that 1 -log β log α = 438.22134 . . .. This concludes the proof of Theorem 2.

3. Other possible applications 3 . 1 .

 31 Applications of the linear independence criterionFor any s ≥ 2, let i s denote the least odd integer i ≥ 3 such that dim Q Span Q (1, ζ(3), ζ(5), . . . , ζ(i)) ≥ s. Since ζ(3), ζ(

  2.1. Proof of Proposition 1Let p : R → R/Z, x → x mod Z denote the canonical surjection. For x, y ∈ R with x < y, we denote by [x, y] ⊂ R/Z the image under p of the segment between x and y, that is the set of all p(z) with x ≤ z ≤ y. Its normalized Haar measure is min(yx, 1).

Let s be a positive integer. For x 1 , . . . , x s , y 1 , . . . , y s