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STABILITY OF THE DETERMINATION OF THE SURFACE IMPEDANCE OF

AN OBSTACLE FROM THE SCATTERING AMPLITUDE

†MOURAD BELLASSOUED, ‡MOURAD CHOULLI, AND §AYMEN JBALIA

Abstract. We prove a stability estimate of logarithmic type for the inverse problem consisting in the
determination of the surface impedance of an obstacle from the scattering amplitude. We present a
simple and direct proof which is essentially based on an elliptic Carleman inequality.
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1. Introduction

Let D be a bounded subset of R3. For simplicity, even if it is not always necessary, we assume that
D is of class C∞. As usual, we denote by ui the incident plan wave : ui(x) = eikx·ω, where k > 0 is the
wave number and ω ∈ S2 is the direction of propagation. A simplest model of a scattering problem for
impedance boundary condition is to find the total field u = ui + us, us is the scattered field, such that







(∆ + k2)u = 0 in R3 \D,
∂νu+ iλ(x)u = 0 on ∂D,
lim
r→∞

r(∂ru
s − ikus) = 0, r = |x|.

(1.1)

Here λ is the surface impedance of the obstacle D. The last condition in (1.1) is called the Sommerfeld
radiation condition. This condition guarantees that the scattered wave is outgoing.

Theorem 1.1. Assume that λ ∈ C(D) and λ ≥ 0. Then the scattering problem has a unique solution

u ∈ C(R3 \D)∩C2(R3 \D)1. Moreover, for any M > 0, there exists a constant C > 0, depending only

on M , such that

(1.2) ‖u‖C(R3\D) ≤ C for any λ ∈ C(D), 0 ≤ λ ≤M

and for any closed subset K of R3 \D, α ∈ N
3, there exists a constant C̃, that can depend only on K,

α and M , such that

(1.3) ‖∂αu‖C(K) ≤ C̃ for any λ ∈ C(D), 0 ≤ λ ≤M.

1Let us observe that with this regularity, Theorem 2.2 in [CK] implies that the solution of (1.1) is analytic in R3 \D.
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The proof of the existence and the uniqueness part is similar to that of Theorem 3.10 in [CK]
(Neumann boundary condition) with slight modifications. For sake of completeness we give a sketch of
this proof in Appendix A. In this appendix we give also the proof of estimates (1.2) and (1.3).

In order to give a regularity result of the solution of (1.1), we need to recall the definition of a
boundary vector space introduced in [Ch]. Let m be a positive integer, s ∈ R and 1 ≤ r ≤ ∞. We
consider the vector space

Bs,r(R
m) = {w ∈ S′(Rm); (1 + |ξ|2)s/2ŵ ∈ Lr(Rm)},

where S′(Rm) is the space of temperate distributions on Rm and ŵ is the Fourier transform of w.
Equipped with the norm

‖w‖Bs,r(Rm) = ‖(1 + |ξ|2)s/2ŵ‖Lr(Rm),

Bs,r(R
m) is a Banach space (it is noted that Bs,2(R

m) is merely the Sobolev space Hs(Rm)). Using
local charts and partition of unity, we construct Bs,r(∂D) from Bs,r(R

2) in the same way as Hs(∂D)
is built from Hs(R2).

The space Bs,1(∂D) is very useful because from Theorem 2.1 in [Ch] we know that the multiplication
by a function from Bs,1(∂D) defines a bounded operator from Hs(∂D) into itself.

We proceed similarly to the proof of Theorem 2.3 in [Ch] to prove the Hℓ regularity of the solutions
of (1.1). We obtain with the help of the usual elliptic Hℓ-regularity (e.g. [LM]) and estimate (1.3) the
following theorem.

Theorem 1.2. Let ω̃ ⊃⊃ D be a bounded C∞ open subset of R3, ℓ ≥ 0 an integer and set ω = ω̃ \D.

If λ ∈ Bℓ+1/2,1(∂D)∩C(∂D), then u, the solution of the scattering problem (1, 1), belongs to H2+ℓ(ω).
In addition for any M > 0, there exists a constant C > 0, depending only on M and ℓ, such that

(1.4) ‖u‖H2+ℓ(ω) ≤ C for any λ ∈ C(D), 0 ≤ λ ≤M and ‖λ‖Bℓ+1/2,1(∂D) ≤M.

Since us is a radiating solution to the Helmholtz equation, it follows from Theorem 2.5 in [CK] that
it has the asymptotic behavior of an outgoing spherical wave:

us(x) =
eik|x|

|x|

[

u∞(x̂) +O

(

1

|x|

)]

, |x| → ∞,

uniformly in all directions x̂ = x/|x|. The function u∞ defined on S
2 is known as the scattering

amplitude or the far field pattern.
In the present paper, we investigate the question of the stability of the inverse problem consisting

in the determination of the surface impedance coefficient λ from the scattering amplitude u∞. Before
stating our main theorem, we need to introduce some geometric assumptions on the domain.

First, we assume that Ω = R3 \D has the following uniform exterior sphere-interior cone property.

(GA1) There exist ρ > 0 and θ ∈]0, π/2[ with the property that for all x̃ ∈ ∂Ω, we find x′ ∈ R3 \ Ω
such that B(x′, ρ) ∩D = ∅, B(x′, ρ) ∩D = {x̃} and

C(x̃) =
{

x ∈ R
3; (x− x̃) · ξ > |x− x̃| cos θ

}

⊂ Ω, where ξ =
x̃− x′

|x̃− x′| .

We set B(x̃, r) = B(x′, ρ+ r) and we make the following second geometric assumption on Ω.

(GA2) there exist C > 0, 0 < κ < 1 and 0 < r0 such that for all x̃ ∈ ∂Ω and 0 < r ≤ r0,

B(x̃, r) ⊂ B(x̃, Crκ).

By a straightforward computations, one can prove that if D is the unit ball then the geometric
assumptions (GA1) and (GA2) are simultaneously satisfied for arbitrary ρ > 0 and θ ∈]0, π/2[, with
r0 = ρ, C =

√
3ρ and κ = 1/2, not only for dimension three par for any dimension greater or equal to

two.

Theorem 1.3. Let M > 0 and 0 < α ≤ 1, there exist C > 0, ǫ > 0, and σ > 0 such that for all λ,
λ̃ ∈ B3/2,1(∂D) ∩ Cα(∂D) satisfying2

‖λ‖B3/2,1(∂D)∩Cα(∂D) + ‖λ̃‖B3/2,1(∂D)∩Cα(∂D) ≤M,

2Here ‖ · ‖B3/2,1(∂D)∩Cα(∂D) = ‖ · ‖B3/2,1(∂D) + ‖ · ‖Cα(∂D).
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and

‖λ− λ̃‖C(∂D) ≤ ǫ,

we have

‖λ− λ̃‖C(∂D) ≤ C

∣

∣

∣

∣

ln

(

ln | ln δ|2
| ln δ|

)∣

∣

∣

∣

−σ

.

Here δ = ‖u∞(λ)− u∞(λ̃)‖L2(S2).

Our result can be seen as an extension of an earlier result by C. Labreuche [La] corresponding to
the case where the impedance λ is analytic. Another result of the same kind as ours was proved by E.
Sincich [Si] by a different method. In comparison with what have been done previously, we develop in
the present work a simple method which is, in some sense, a direct method. Similarly to [La], our proof
is based on a lower bound for the L2-norm of the solution of the scattering problem in any ball around
a boundary point. The crucial step in the proof consists in establishing the dependence of the lower
bound on the radius of each ball. Instead of a lower bound of the solution of the scattering problem,
the approach used in [Si] uses the boundary version of the so-called Ap weights.

We make some geometric assumptions that seem somehow restrictive. We choose to make these
assumptions for a better presentation and because the proofs are more simple. We believe that some
of these geometric assumptions can be relaxed.

The main ingredient in our method is a Carleman inequality with constants depending on an explicit
way on data. This is done in section 2. An intermediate result consisting in a quantitative estimate of
continuation from Cauchy data is proved section 3. This result is then used in section 4 to derive an
appropriate lower bound for the L2-norm of the solution of the scattering problem in any ball around a
boundary point. The results in sections 2 to 4 are given in an arbitrary dimension greater or equal to
two. The last section is devoted to the proof of the stability estimate of our inverse scattering problem.

One can see that these results can be adapted to other problems such as the problem of recovering
the corrosion coefficient appearing in some usual corrosion detection problems.

2. An elliptic Carleman inequality

Let Ω be a Lipschitz bounded domain of Rn (n ≥ 2), with boundary Γ, and 0 ≤ ψ ∈ C2(Ω) be such
that

m = min

(

1,min
Ω

|∇ψ|
)

> 0.

We fix M ≥ max
(

‖ψ‖C2(Ω), 1
)

, where

‖ψ‖C2(Ω) =
∑

|α|≤2

‖∂αψ‖C(Ω).

For λ > 0, we set ϕ = eλψ.

Proposition 2.1. Let v ∈ H2(Ω). Then
∫

Ω

e2τϕ
(

m4λ4τ3ϕ3v2 +m2λ2τϕ|∇v|2
)

dx

≤ 8

∫

Ω

e2τϕ(∆v)2dx+ 48

∫

Γ

e2τϕ
(

M3λ3τ3ϕ3v2 +Mλτϕ|∇v|2
)

dσ,

λ ≥ 6M3/m4, τ ≥ 88M6/m4.

Proof. Set Φ = e−τϕ. Then straightforward computations give

∇Φ = −λτϕΦ∇ψ
∆Φ = λ2τ2ϕ2Φ|∇ψ|2 − λ2τϕΦ|∇ψ|2 − λτϕΦ∆ψ.

Let w ∈ H2(Ω). Then from formulae above, we deduce

Lw = [Φ−1∆Φ]w = L1w + L2w + cw.
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Here

L1w = aw +∆w,

L2w = B · ∇w + bw,

where we set

a = a(x, λ, τ) = λ2τ2ϕ2|∇ψ|2,
B = B(x, λ, τ) = −2λτϕ∇ψ,
b = b(x, λ, τ) = −2λ2τϕ|∇ψ|2,
c = c(x, λ, τ) = −λτϕ∆ψ + λ2τϕ|∇ψ|2.

We have

(2.1)

∫

Ω

awB · ∇wdx =
1

2

∫

Ω

aB · ∇w2dx = −1

2

∫

Ω

div(aB)w2dx+
1

2

∫

Γ

aB · νw2dσ

and
∫

Ω

∆wB · ∇wdx = −
∫

Ω

∇w · ∇(B · ∇w)dx +

∫

Γ

B · ∇w∇w · νdσ(2.2)

= −
∫

Ω

B′∇w · ∇wdx −
∫

Ω

∇2wB · ∇wdx +

∫

Γ

B · ∇w∇w · νdσ.

Here B′ = (∂iBj) is the jacobian matrix of B and ∇2w = (∂2ijw) is the hessian matrix of w.
But

∫

Ω

Bi∂
2
ijw∂jwdx = −

∫

Ω

∂jwBi∂
2
ijwdx −

∫

Ω

∂iBi(∂jw)
2 +

∫

Γ

Bi(∂jw)
2νidσ.

Therefore,

(2.3)

∫

Ω

∇2wB · ∇wdx = −1

2

∫

Ω

div(B)|∇w|2dx +
1

2

∫

Γ

|∇w|2B · νdσ.

It follows from (2.2) and (2.3),

(2.4)

∫

Ω

∆wB · ∇wdx =

∫

Ω

[

−B′ +
1

2
div(B)I

]

∇w · ∇wdx+
∫

Γ

B · ∇w∇w · νdσ − 1

2

∫

Γ

|∇w|2B · νdσ.

As before, an integration by parts gives
∫

Ω

∆wbwdx = −
∫

Ω

b|∇w|2dx−
∫

Ω

w∇b · ∇wdx +

∫

Γ

bw∇w · νdσ.

Then, using the following inequality

−
∫

Ω

w∇b · ∇wdx ≥ −
∫

Ω

(λ2ϕ)−1|∇b|2w2dx−
∫

Ω

λ2ϕ|∇w|2dx,

we obtain

(2.5)

∫

Ω

∆wbwdx ≥ −
∫

Ω

(b + λ2ϕ)|∇w|2dx−
∫

Ω

(λ2ϕ)−1|∇b|2w2dx+

∫

Γ

bw∇w · νdσ.

Now a combination of (2.1), (2.4) and (2.5) leads

(2.6)

∫

Ω

L1wL2wdx −
∫

Ω

c2w2dx ≥
∫

Ω

fw2dx+

∫

Ω

F∇w · ∇wdx +

∫

Γ

g(w)dσ,

where

f = −1

2
div(aB) + ab− (λ2ϕ)−1|∇b|2 − c2,

F = −B′ +
(1

2
div(B)− b− λ2ϕ

)

I,

g(w) =
1

2
aw2B · ν − 1

2
|∇w|2B · ν +B · ∇w∇w · ν + bw∇w · ν.
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From the following elementary inequality (s− t)2 ≥ s2/2− t2, s, t > 0, we obtain

‖Lw‖22 ≥ (‖L1w + L2w‖2 − ‖cw‖2)2 ≥ 1

2
‖L1w + L2w‖22 − ‖cw‖22 ≥

∫

Ω

L1wL2wdx−
∫

Ω

c2w2dx.

This and (2.6) imply

(2.7) ‖Lw‖22 ≥
∫

Ω

fw2dx+

∫

Ω

F∇w · ∇wdx +

∫

Γ

g(w)dσ.

By a straightforward computation, we obtain

−1

2
div(aB) = λ3τ3div(ϕ3|∇ψ|2∇ψ) = λ3τ3(3λϕ3|∇ψ|4 + ϕ2div(|∇ψ|2∇ψ)).

Therefore

−1

2
div(aB) + ab = λ3τ3(λϕ3|∇ψ|4 + ϕ3div(|∇ψ|2∇ψ)).

Hence

(2.8) −1

2
div(aB) + ab ≥ λ3τ3ϕ3(λm4 − 3M3).

From now we assume that λ ≥ 1 and τ ≥ 1. Using −c2 ≥ −4λ4τ2ϕ2M4, we deduce from (2.8)

(2.9) −1

2
div(aB) + ab− c2 ≥ λ3τ3ϕ3(λm4 − 3M3)− 12λ4τ2ϕ2M4.

Next, we estimate |∇b|2. We have

∇b = −2λ2τ∇(ϕ|∇ψ|2) = −2λ2τ(λϕ|∇ψ|2|∇ψ + ϕ∇|∇ψ|2).
Consequently,

−|∇b|2 ≥ −10λ6τ2ϕ2M6.

This and (2.9) imply

−1

2
div(aB) + ab− c2 − (λ2ϕ)−1|∇b|2 ≥ λ3τ3ϕ3(λm4 − 3M3)− 22λ4τ2ϕ3M6.

That is
f ≥ λ3τ3ϕ3(λm4 − 3M3)− 22λ4τ2ϕ3M6.

Then

f ≥ 1

2
λ4τ3ϕ3m4 − 22λ4τ2ϕ3M6 = λ4τ2ϕ3

(

1

2
τm4 − 22M6

)

, λ ≥ 6M3/m4.

Hence

(2.10) f ≥ 1

4
λ4τ3ϕ3m4, λ ≥ 6M3/m4, τ ≥ 88M6/m4.

We have

(2.11) −B′ξ · ξ = 2λτ(λϕ|∇ψ · ξ|2 + ϕ∇2ψξ · ξ) ≥ −2λτϕM |ξ|2, ξ ∈ R
n.

On the other hand,

1

2
div(B)− b− λ2ϕ = −λ2τϕ|∇ψ|2 − λϕ∆ψ + 2λ2τϕ|∇ψ|2 − λ2ϕ

= λ2τϕ|∇ψ|2 − λϕτ∆ψ − λ2ϕ

≥ λ2τϕm2 − λϕτM − λ2ϕ, λ ≥ 4M/m2.

A combination of this estimate and (2.11) implies

(2.12) Fξ · ξ ≥ 1

4
λ2τϕm2, λ ≥ 6M/m2, τ ≥ 4/m2, ξ ∈ R

n, |ξ| = 1.

For g(w), we first note that

|bw∇w · ν| =
√

λ|∇ψ||b||w|
√

(λ|∇ψ|)−1|b||∇w · ν| ≤ λ|∇ψ||b|w2 + (λ|∇ψ|)−1|b||∇w|2.
From this inequality, we easily deduce

(2.13) |g(w)| ≤ 2(M3λ3τ3ϕ3w2 +Mλτϕ|∇w|2).
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Finally, (2.7), (2.10), (2.12) and (2.13) yield
∫

Ω

(

m4λ4τ3ϕ3w2 +m2λ2τϕ|∇w|2
)

dx(2.14)

≤ 4

∫

Ω

(Lw)2 + 8

∫

Γ

(

M3λ3τ3ϕ3w2 +Mλτϕ|∇w|2
)

dσ,

λ ≥ 6M4/m4, τ ≥ 88M6/m4.

Let us now apply this inequality to w = Φ−1v, v ∈ H2(Ω). We have

|∇w|2 = |Φ−1∇v − Φ−2v∇Φ|2 ≥ 1

2
Φ−2|∇v|2 − Φ−2|Φ−1∇Φ|2v2

≥ 1

2
Φ−2|∇v|2 − Φ−2λ2τ2ϕ2M2v2.

≥ 1

2
Φ−2|∇v|2 − Φ−2λ2τ2ϕ3M2v2.

Hence,

2

∫

Ω

(

m4λ4τ3ϕ3w2 +m2λ2τϕ|∇w|2
)

dx

≥
∫

Ω

Φ−2
([

2m4λ4τ3 − 2λ2τ2M2
]

ϕ3v2 +m2λ2τϕ|∇v|2
)

dx.

But,

2m4λ4τ3 − 2λ2τ2M2 = m4λ4τ3 +m4λ4τ3 − 2λ2τ2M2 = m4λ4τ3 + λ2τ2(λ2τ −M2).

Therefore,

2m4λ4τ3 − 2λ2τ2M2 ≥ m4λ4τ3, λ ≥ 6M3/m4, τ ≥ 88M6/m4.

With these inequalities in view, we easily deduce from (2.14),
∫

Ω

Φ−2
(

m4λ4τ3ϕ3v2 +m2λ2τϕ|∇v|2
)

dx

≤ 8

∫

Ω

Φ−2(∆v)2 + 48

∫

Γ

Φ−2
(

M3λ3τ3ϕ3v2 +Mλτϕ|∇v|2
)

dσ,

λ ≥ 6M3/m4, τ ≥ 88M6/m4,

which is the desired inequality. �

Let P be a partial differential operator of the form

P = ∆w +A · ∇+ a,

where A ∈ L∞(Ω)n, a ∈ L∞(Ω).
Fix Λ > 0 satisfying

Λ ≥ 4max
(

‖A‖2L∞(Ω)n , ‖a‖2L∞(Ω)

)

.

Then a straightforward computation shows

(∆w)
2 ≤ (Pw)

2
+ Λ

(

w2 + |∇w|2
)

in Ω, for any w ∈ H2(Ω).

Using this inequality, we obtain as an immediate consequence of the previous proposition the following
corollary.

Corollary 2.1. For any v ∈ H2(Ω), we have
∫

Ω

e2τϕ
(

m4λ4τ3ϕ3v2 +m2λ2τϕ|∇v|2
)

dx

≤ 32

∫

Ω

e2τϕ(Pv)2dx+ 96

∫

Γ

e2τϕ
(

M3λ3τ3ϕ3v2 +Mλτϕ|∇v|2
)

dσ,

for any

λ ≥ 6M3/m4, τ ≥ max(88M6, 16Λ)/m4
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or

λ ≥ max(6M3, 16Λ)/m4, τ ≥ 88M6/m4.

We shall need also the following consequence of Proposition 2.1.

Corollary 2.2. Let Λ̃ be given. Then for any v ∈ H2(Ω) satisfying

(∆v)2 ≤ Λ̃
(

v2 + |∇v|2
)

in Ω,

we have
∫

Ω

e2τϕ
(

m4λ4τ3ϕ3v2 +m2λ2τϕ|∇v|2
)

dx ≤ 96

∫

Γ

e2τϕ
(

M3λ3τ3ϕ3v2 +Mλτϕ|∇v|2
)

dσ,

for any

λ ≥ 6M3/m4, τ ≥ max(88M6, 16Λ̃)/m4

or

λ ≥ max(6M3, 16Λ̃)/m4, τ ≥ 88M6/m4.

3. A quantitative estimate of continuation from Cauchy data

Let Ω be as in the previous section. That is a bounded Lipschitz domain of Rn with boundary Γ.
Let Γ0 be a closed subset of Γ having nonempty interior. We assume that Ω has the uniform exterior
sphere property at any point of Γ0:

(GA0) there exists ρ > 0 with the property that for all x̃ ∈ Γ0, we find x0 ∈ Rn \ Ω such that
B(x0, ρ) ∩Ω = ∅ and B(x0, ρ) ∩ Ω = {x̃}.

We shall use the following notations

B(x̃, r1) = B(x0, ρ+ r1) B(x̃, r1, r2) = B(x̃, r2) \ B(x̃, r1), B = B(x̃, d),
where d = diam(Γ0).

Henceforth, P is an operator with bounded coefficients of the form

P = ∆+A · ∇+ a.

We set

Λ = 4max
(

‖A‖L∞(Ω)n , ‖a‖L∞(Ω)

)

.

Lemma 3.1. There exist two constants C > 0 and 0 < γ < 1 with the property that, for any 0 < r ≤ d
and any u ∈ H2(Ω) satisfying Pu = 0 in Ω, we have the following estimate

Cr2‖u‖L2(B(x̃, r2 )∩Ω) ≤ ‖u‖1−γH1(Ω)

(

‖u‖L2(B(x̃,r)∩Γ) + ‖|∇u|‖L2(B(x̃,r)∩Γ)

)γ
.

Proof. Pick x̃ ∈ Γ0. Let x0 be as in (GA0) and

ψ(x) = ψx̃(x) = ln
(

(ρ+ d)2/|x− x0|2
)

.

Then

|∇ψ(x)| = 2

|x− x0|
≥ 2

ρ+ d
= m′, x ∈ B.

Set m = min(1,m′) and choose M independent on x̃ such that

M ≥ max
ỹ∈Γ0



1,
∑

|α|≤2

‖∂αψỹ‖C(B)



 .

Let χ ∈ C∞
c (B(x̃, r)), χ = 1 on B(x̃, 3r4 ) and |∂αχ| ≤ Kr−|α|, |α| ≤ 2, whereK is a constant independent

on r.
Let u ∈ H2(Ω) satisfying Pu = 0 in Ω. We apply Corollary 2.1 to v = χu. For λ = max(6M3, 16Λ)/m4

and τ ≥ τ0 = 88M6/m4, we obtain

(3.1) C

∫

B(x̃, r2 )∩Ω

e2τϕu2dx ≤
∫

B(x̃,r)∩Ω

e2τϕ(Qu)2dx+
1

r2

∫

B(x̃,r)∩Γ

e2τϕ(u2 + |∇u|2)dσ.
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Here and in the sequel C is a generic constant independent on r and

Qu = 2∇χ · ∇u+∆χu+A · ∇χu.

Using the properties of χ, we easily prove
∫

B(x̃,r)∩Ω

e2τϕ(Qu)2dx ≤ C

r4

∫

B(x̃, 3r4 ,r)∩Ω

e2τϕ(u2 + |∇u|2)dx.

Therefore, (3.1) implies

Cr4
∫

B(x̃, r2 )∩Ω

e2τϕu2dx ≤
∫

B(x̃, 3r4 ,r)∩Ω

e2τϕ(u2 + |∇u|2)dx+

∫

B(x̃,r)∩Γ

e2τϕ(u2 + |∇u|2)dσ.

We have

ϕ = eλ ln
(

(ρ+d)2/|x−x0|
2
)

=
(ρ+ d)2λ

|x− x0|2λ
.

Consequently,

Cr4e2τϕ0

∫

B(x̃, r2 )∩Ω

u2dx ≤ e2τϕ1

∫

B(x̃, 3r4 ,r)∩Ω

(u2 + |∇u|2)dx(3.2)

+e2τϕ2

∫

B(x̃,r)∩Γ

(u2 + |∇u|2)dσ,

where

ϕ0 =
(ρ+ d)2λ

(ρ+ r
2 )

2λ
, ϕ1 =

(ρ+ d)2λ

(ρ+ 3r
4 )

2λ
, ϕ2 =

(ρ+ d)2λ

ρ2λ
.

By the mean value theorem, for some θ ∈]0, 1[,

ϕ0 − ϕ1 =
(

(ρ+
r

2
)− (ρ+

3r

4
)
) −2λ(ρ+ d)2λ

(θ(ρ+ r
2 ) + (1− θ)(ρ+ 3r

4 ))2λ+1

≥ λr

2

(ρ+ d)2λ

(ρ+ 3r
4 ))2λ+1

≥ λr

2

(ρ+ d)2λ

(ρ+ 3d
4 ))2λ+1

= αr

with

α =
λ(ρ+ d)2λ

2(ρ+ 3d
4 ))2λ+1

.

Similarly, we prove

ϕ2 − ϕ1 ≤ βr,

with

β =
λ(ρ+ d)2λ

ρ2λ+1
.

We obtain from (3.2),

Cr4
∫

B(x̃, r2 )∩Ω

u2dx ≤ e−αrτ
∫

B(x̃, 3r4 ,r)∩Ω

(u2 + |∇u|2)dx+ eβrτ
∫

B(x̃,r)∩Γ

(u2 + |∇u|2)dσ.

In particular,

(3.3) Cr4
∫

B(x̃, r2 )∩Ω

u2dx ≤ e−αrτ
∫

Ω

(u2 + |∇u|2)dx + eβrτ
∫

B(x̃,r)∩Γ

(u2 + |∇u|2)dσ.
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Let us introduce the following temporary notations

A =

∫

Ω

(u2 + |∇u|2)dx,

I =

∫

B(x̃,r)∩Γ

(u2 + |∇u|2)dσ,

J = Cr4
∫

B(x̃, r2 )∩Ω

u2dx.

Then (3.3) becomes

(3.4) J ≤ e−αrτA+ eβrτI.

Let

τ1 =
ln(A/I)

αr + βr
.

If τ1 ≥ τ0, then τ = τ1 in (3.4) yields

(3.5) J ≤ A
αr

αr+βr I
βr

αr+βr = A
α

α+β I
β

α+β .

If τ1 < τ0, then A < eτ0(α+β)rI ≤ eτ0(α+β)dI. Since

J = Cr4
∫

B(x̃, r2 )∩Ω

u2dx ≤ Cd2A,

we have

(3.6) J ≤ CI = CI
α

α+β I
β

α+β ≤ CA
α

α+β I
β

α+β .

Hence, in any case, one of estimates (3.5) and (3.6) holds. That is in terms of our original notations

Cr2‖u‖L2(B(x̃, r2 )∩Ω) ≤ ‖u‖1−γH1(Ω)

(

‖u‖L2(B(x̃,r)∩Γ) + ‖|∇u|‖L2(B(x̃,r)∩Γ)

)γ
,

where we set γ = β
α+β . The proof is then complete. �

Corollary 3.1. There exist two constants C > 0 and 0 < γ < 1 with the property that, for any

0 < r ≤ d and any u ∈ H2(Ω) satisfying Pu = 0, we have the following estimates

(3.7) Cr2‖∇u‖L2(B(x̃, r4 )∩Ω) ≤ ‖u‖1−γ/2H2(Ω)

(

‖u‖L2(B(x̃,r)∩Γ) + ‖|∇u|‖L2(B(x̃,r)∩Γ)

)γ/2
.

and

(3.8) Cr2‖u‖H1(B(x̃, r4 )∩Ω) ≤ ‖u‖1−γ/2H2(Ω)

(

‖u‖L2(B(x̃,r)∩Γ) + ‖|∇u|‖L2(B(x̃,r)∩Γ)

)γ/2
.

Proof. Fix χ ∈ C∞
c (B(x̃, r2 )) satisfying χ = 1 in B(x̃, r4 ) and |∂αχ| ≤ Kr−|α|, |α ≤ 2, where K is a

constant indepedent on r. Let u ∈ H2(Ω) satisfying Pu = 0. From the usual interpolation inequalities,
there exists a constant c = c(Ω) > 0 such that

‖|∇(χu)|‖L2(Ω) ≤ c‖χu‖1/2L2(Ω)‖χu‖
1/2
H2(Ω).

Hence

(3.9) ‖|∇u|‖L2(B(x̃, r4 )∩Ω) ≤ cr−1‖u‖1/2L2(B(x̃, r2 )∩Ω)‖u‖
1/2
H2(Ω).

On the other hand, it follows from Lemma 3.1

(3.10) Cr2‖u‖L2(B(x̃, r2 )∩Ω) ≤ ‖u‖1−γH2(Ω)

(

‖u‖L2(B(x̃,r)∩Γ) + ‖∇u‖L2(B(x̃,r)∩Γ)

)γ
.

Therefore, (3.7) is a consequence of (3.9) and (3.10).
Next, as the trace mapping

w ∈ H2 → (w,∇w) ∈ L2(Γ)n+1

is bounded and
‖u‖L2(B(x̃,r)∩Γ) + ‖|∇u|‖L2(B(x̃,r)∩Γ) ≤ ‖u‖L2(Γ) + ‖|∇u|‖L2(Γ),

we have
‖u‖L2(B(x̃,r)∩Γ) + ‖|∇u|‖L2(B(x̃,r)∩Γ) ≤ K ′‖u‖H2(Ω).
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Here K ′ is a constant independent on r.
This estimate in (3.10) yields

(3.11) Cr2‖u‖L2(B(x̃, r2 )∩Ω) ≤ ‖u‖1−γ/2H2(Ω)

(

‖u‖L2(B(x̃,r)∩Γ) + ‖|∇u|‖L2(B(x̃,r)∩Γ)

)γ/2
.

We complete the proof by noting that (3.8) follows from a combination of (3.7) and (3.11). �

4. Lower bound for solutions of elliptic equations

As in the previous section, Ω is a bounded Lipschitz domain of Rn, with boundary Γ, and P an
elliptic operator of the form

P = ∆+A · ∇+ a,

with A ∈ L∞(Ω)n and a ∈ L∞(Ω). We set

Λ = 4max
(

‖A‖2L∞(Ω)n + ‖a‖2L∞(Ω)

)

.

We start with a three sphere inequality. We set B(i) = B(0, i), i = 1, 2, 3 and r0 = 1
3diam(Ω). Let

y ∈ Ω and u ∈ H1(B(y, 3r)), where 0 < r < 1
3dist(y,Γ)(≤ r0). If

v(x) = u(rx + y), x ∈ B(3),

a simple change of variables leads to the following inequalities

(4.1) c∗r
1−n/2‖u‖H1(B(y,ir)) ≤ ‖v‖H1(B(i)) ≤ c∗r−n/2‖u‖H1(B(y,ir)).

Here

c∗ = min(1, r0), c∗ = max(1, r0).

In addition, if u satisfies Pu = 0 in B(y, 3r), then a straightforward computation yields

(∆v)2 ≤ Λ̃(v2 + |∇v|2) in B(3),

where Λ̃ = Λr20 max(1, r20).
We apply Corollary 2.2 to w = χv, where χ ∈ C∞

c (U), χ = 1 in K, with

U = {x ∈ R
n; 1/2 < |x| < 3}, K = {x ∈ R

n; 1 ≤ r ≤ 5/2}.
Similarly to the previous section, we prove the following interpolation inequality in which the constant
C > 0 and 0 < α < 1 depend only on Λ and r0.

(4.2) ‖v‖H1(B(2)) ≤ C‖v‖αH1(B(1))‖v‖1−αH1(B(3)).

The following lemma is a consequence of (4.1) and (4.2).

Lemma 4.1. There exist C and 0 < α < 1, depending only on Λ > 0 and r0 > 0 with the property

that, for all u ∈ H2(Ω) satisfying Pu = 0 in Ω, y ∈ Ω and 0 < r ≤ 1
3dist(y,Γ),

r‖u‖H1(B(y,2r)) ≤ C‖u‖αH1(B(y,r))‖u‖1−αH1(B(y,3r)).

Next, let Ω0 = Rn \K, where K is a compact subset of Rn with nonempty interior. For simplicity

we may assume that 0 ∈ K̊. We make the assumption that Ω0 has the uniform exterior sphere-interior
cone property (GA1). We recall that this geometric assumption is the following one.

(GA1) There exist ρ > 0 and θ ∈]0, π/2[ with the property that for all x̃ ∈ ∂Ω0, we find x
′ ∈ Rn \Ω0

such that B(x′, ρ) ∩ Ω0 = ∅, B(x′, ρ) ∩Ω0 = {x̃} and

C(x̃) = {x ∈ R
n; (x− x̃) · ξ > |x− x̃| cos θ} ⊂ Ω0, where ξ =

x̃− x′

|x̃− x′| .

Fix R > 4 supK |x| and set Ω = Ω0 ∩B(0, R).
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Theorem 4.1. Let M > 0, τ > 0 and Λ0 > 0 be given. There exist C > 0, η > 0 and r∗ > 0 such that

for all u ∈ H5/2(Ω) satisfying














Pu = 0 in Ω,
|∂νu| ≤ Λ0|u| on Γ0,
|u| ≥ τ in Ω ∩ {x ∈ Rn; |x| ≥ R/12},
‖u‖H5/2(Ω) ≤M,

x̃ ∈ Γ0 = ∂Ω0 and 0 < r ≤ diam(Γ0), we have

e−
C
rη ≤ ‖u‖L2(B(x̃,r)∩Γ0).

Proof. Let x̃ ∈ Γ0 and x′ ∈ Rn \ Ω such that B(x′, ρ) ∩ Ω = ∅, B(x′, ρ) ∩ Ω = {x̃}. We set, for
0 < r < diam(Γ0),

x′′ = x̃+ rξ, x0 =
x̃+ x′′

2
.

Clearly, B(x0, r/2) ⊂ B(x̃, r) ∩Ω and, for d0 = |x0 − x̃|, ρ0 = (d0 sin θ)/3, B(x0, 3ρ0) ⊂ C(x̃).
By induction in k, we construct a sequence of balls (B(xk, 3ρk)), contained in C(x̃), as follows







xk+1 = xk + αkξ,
ρk+1 = µρk,
dk+1 = µdk,

where

dk = |xk − x̃|, ρk = cdk, αk = (1 − µ)dk,

with

c =
sin θ

3
, µ =

3 + 2 sin θ

3 + sin θ
.

Note that our construction of these balls guaranties that

(4.3) B(xk+1, ρk+1) ⊂ B(xk, 2ρk).

Let us denote by N the smallest integer such that dN ≥ R/8. Since dN = µN r
2 ,

(4.4)
ln R

4r

lnµ
≤ N <

ln R
4r

lnµ
+ 1

or equivalently,

N =

[

ln R
4r

lnµ

]

.

If 0 ≤ k ≤ N , we have

|xk|+ 3ρk ≤ |x̃|+ dN + sin θdN ≤ R/4 + µR/4 ≤ 3R/4.

Here, we used 1 < µ < 2 and dN = µµN−1d0 < µR8 .
Also, for x ∈ B(xN , ρN ),

|x| ≥ |xN | − ρN ≥ dN − sin θ

3
dN ≥ 2

3
dN ≥ R

12
.

In other words,

(4.5) B(xk, 3ρk) ⊂ Ω, 0 ≤ k ≤ N and B(xN , ρN ) ⊂ Ω ∩ {x ∈ R
n; |x| ≥ R/12}.

We obtain by applying Lemma 4.1,

ρ0‖u‖H1(B(x0,2ρ0)) ≤ CM1−α‖u‖αH1(B(x0,ρ0))
.

But from (4.3), B(x1, ρ1) ⊂ B(x0, 2ρ0). Therefore

(4.6) ρ0‖u‖H1(B(x1,ρ1)) ≤ CM1−α‖u‖αH1(B(x0,ρ0))
.

Set

Ik = ‖u‖H1(B(xk,ρk)).
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Then (4.6) can be rewritten as

I1 ≤ C

ρ0
M1−αIα0 .

Using an induction in k, we prove

Ik ≤ C1+α+...+αk−1

ρk−1ραk−2 . . . ρ
αk−1

0

Iα
k

0 M (1−α)(1+α+...+αk−1).

From the inequality

ρk−1ρ
α
k−2 . . . ρ

αk−1

0 = µmρ
1−αk

1−α

0 ≥ ρ
1−αk

1−α

0 , with m =

k−2
∑

j=0

(k − 1− j)αj ,

it follows

(4.7) Ik ≤
(

C

ρ0

)
1−αk

1−α

M1−αk

Iα
k

0 .

We have
C

ρ0
=

6C

(sin θ)r
.

Hence, we find r∗ > 0 such that
6C

(sin θ)r
≥ 1, if 0 < r ≤ r∗.

From now we assume that 0 < r ≤ r∗. We derive from (4.7)

(4.8) IN ≤ M̃

(

C

r

)β

Iα
N

0 ,

where

β =
1

1− α
, M̃ = max(1,M).

Now as |u| ≥ τ in B(xN , ρN ), we have

IN ≥ τ
∣

∣S
n−1

∣

∣

1/2
ρ
n/2
N = τ

∣

∣S
n−1

∣

∣

1/2
(µNρ0)

n/2

and since µ > 1, we deduce

(4.9) IN ≥ Crn/2.

A combination of (4.8) and (4.9) leads

Crγ ≤ Iα
N

0 , with γ = n/2 + β.

That is

(4.10) (Cr)γ/α
N ≤ I0.

By (4.4), we have
1

αN
= eN | lnα| < e| lnα|(lnR+4| ln r|+1).

Therefore, reducing r∗ if necessary,

1

αN
= eN | lnα| < e6| lnα|| ln r| =

1

rs
, with s = 6| lnα|.

Reducing once again r∗ if needed, we may assume that Cr < 1 in (4.10) (for any 0 < r ≤ r∗). Then

(Cr)γ/α
N ≥ (Cr)γ/r

s

= e−
γ
rs ln( 1

Cr ) ≥ r−
γ

Crs+1 .

This and (4.10) imply, where η = s+ 1,

e−
C
rη ≤ ‖u‖H1(B(x0,ρ0)) ≤ ‖u‖H1(B(x̃,r)∩Ω).

Combined with (3.8), this estimate implies

(4.11) e−
C
rη ≤ ‖u‖L2(B(x̃,r)∩Γ0) + ‖∇u‖L2(B(x̃,r)∩Γ0).
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According to our assumption

|∇u|2 = (∂νu)
2 + |∇τu|2 ≤ max

(

1,Λ)(u2 + |∇τu|2
)

.

Hence (4.11) yields

(4.12) e−
C
rη ≤ ‖u‖H1(B(x̃,r)∩Γ0).

We now estimate the H1 norm in the right hand of the previous inequality by an L2 norm with the
help of an interpolation inequality. To this end, let χ ∈ C∞

c (B(x̃, 2r)) satisfying χ = 1 in B(x̃, r) and
|∂αχ| ≤ Cr−|α|, |α| ≤ 2.

It follows from classical interpolation inequalities

‖u‖H1(B(x̃,r)∩Γ0) ≤ ‖χu‖H1(Γ0) ≤ C‖χu‖1/2H2(Γ0)
‖χu‖1/2L2(Γ0)

≤ Cr−1‖u‖1/2H2(Γ0)
‖u‖1/2L2(B(x̃,2r)∩Γ0)

.

On the other hand, by classical trace theorems, we have

‖u‖H2(Γ0) ≤ ‖u‖H5/2(Ω) ≤M.

The last two estimates together with (4.12) lead to the desired inequality. �

It the sequel we assume that Ω0 possesses (GA1) and

(GA2) there exist C > 0, 0 < κ < 1 and 0 < r0 such that, for all x̃ ∈ Γ0 and 0 < r ≤ r0,

B(x̃, r) ⊂ B(x̃, Crκ).

Under this new geometric assumption, we deduce from Theorem 3.1 the following corollary.

Corollary 4.1. Let M > 0, τ > 0 and Λ0 > 0 be given. There exist C > 0, η > 0 and r∗ > 0 such

that, for all x̃ ∈ Γ0 = ∂Ω0, 0 < r ≤ r0 and u ∈ H5/2(Ω) satisfying














Pu = 0 in Ω,
|∂νu| ≤ Λ0|u| on Γ0,
|u| ≥ τ in Ω ∩ {x ∈ Rn; |x| ≥ R/12},
‖u‖H5/2(Ω) ≤M,

we have

e−
C
rη ≤ ‖u‖L2(B(x̃,r)∩Γ0).

Next, we derive a result on which is based our stability estimate for the inverse problem consisting
in the determination of the surface impedance of an obstacle in terms of boundary Cauchy data. Recall
that f ∈ Cα(Γ0) if there exists L ≥ 0 such that

(4.13) |f(x)− f(x′)| ≤ L|x− y|α, x, x′ ∈ Γ0.

We denote by [f ]α the infimum of L’s for which (4.13) is satisfied.

Proposition 4.1. Let M > 0, τ > 0, 0 < α ≤ 1 and Λ0 > 0 be given. There exist C > 0, ǫ > 0 and

σ > 0 such that, for all u ∈ H5/2(Ω) satisfying














Pu = 0 in Ω,
|∂νu| ≤ Λ0|u| on Γ0,
|u| ≥ τ in Ω ∩ {x ∈ Rn; |x| ≥ R/12},
‖u‖H5/2(Ω) ≤M

(4.14)

and, for all f ∈ Cα(Γ0) satisfying [f ]α ≤M , ‖f‖L∞(Γ0) ≤ ǫ,

‖f‖L∞(Γ0) ≤
C

∣

∣ln
[

‖fu‖L∞(Γ0)

]∣

∣

σ .

The following lemma will be used in the proof of Proposition 4.1. Hereafter, r∗ is the same as in
Corollary 4.1.
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Lemma 4.2. There exist δ∗ with the property that, for all u as in Corollary 4.1 satisfying u ∈ C(Γ0),
x̃ ∈ Γ0 and 0 < δ ≤ δ∗,

{x ∈ B(x̃, r∗) ∩ Γ0; |u(x)| ≥ δ} 6= ∅.
Proof. Otherwise we find a sequence (δk), 0 < δk ≤ 1

k , (uk) satisfying the assumptions of Corollary
4.1 with uk ∈ C(Γ0) for each k, and (x̃k) in Γ0 such that

{x ∈ B(x̃k, r
∗) ∩ Γ0; |uk(x)| ≥ δk} = ∅.

In particular,

|uk| ≤
1

k
in B(x̃k, r

∗) ∩ Γ0.

Therefore, we have by applying Corollary 4.1

e−
C

(r∗)η ≤ 1

k
|B(x̃k, r

∗) ∩ Γ0| ≤
1

k
|Γ0|, for all k ≥ 1,

which is impossible. This leads to the desired contradiction and proves the lemma. �

Proof of Proposition 4.1. Let δ∗ be as in the previous lemma, 0 < δ < δ∗, u ∈ H5/2(Ω) satisfying
(3.14) and f ∈ Cα(Γ0).

Let x̃ ∈ Γ0. If |u(x̃)| ≥ δ then

(4.15) |f(x̃)| ≤ 1

δ
|f(x̃)u(x̃)|.

Let x̃ ∈ Γ0 such that |u(x̃)| < δ and set

r = sup{0 < ρ; |u| < δ on B(x̃, ρ) ∩ Γ0}.
From Lemma 4.2 , we know that

{x ∈ B(x̃, r∗) ∩ Γ0; |u(x)| ≥ δ} 6= ∅.
Hence r ≤ r∗ and

∂B(x̃, r) ∩ {x ∈ B(x̃, r∗) ∩ Γ0; |u(x)| ≥ δ} 6= ∅.
Let x̂ ∈ ∂B(x̃, r) be such that |u(x̂)| ≥ δ. We have

|f(x̃)| ≤ |f(x̃)− f(x̂)|+ |f(x̂)| ≤ [f ]α|x̃− x̂|α +
1

δ
|f(x̂)u(x̂)|

and then

|f(x̃)| ≤ |f(x̃)− f(x̂)|+ |f(x̂)| ≤Mrα +
1

δ
|f(x̂)u(x̂)|.

This and (4.15) show

(4.16) ‖f‖L∞(Γ0) ≤Mrα +
1

δ
‖fu‖L∞(Γ0).

Since |u| ≤ δ in B(x̃, r) ∩ Γ0, Corollary 4.1 implies

e−
C
rη ≤ δ|B(x̃, r) ∩ Γ0| ≤ δ|Γ0|

or equivalently

r ≤ C

| ln δ|σ , with σ = 1/η.

Hence, (4.16) implies

(4.17) ‖f‖L∞(Γ0) ≤
C

| ln δ|σ +
1

δ
‖fu‖L∞(Γ0), 0 < δ ≤ δ∗.

Set δ = e−s. Then (4.17) takes the form

(4.18) ‖f‖L∞(Γ0) ≤
C

sσ
+ es‖fu‖L∞(Γ0), s ≥ s∗ = | ln δ∗|.

We use the temporary notation N = ‖fu‖L∞(Γ0). The function s → C
sσ +Nes attains its minimum at

ŝ satisfying

− σC

ŝσ+1
+Neŝ = 0.
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Using the elementary inequality sλ ≤ eλs, s ≥ 1, λ > 0, we obtain

C

N
= ŝσ+1eŝ ≤ e(σ+2)ŝ if ŝ ≥ 1.

That is

(4.19)
1

σ + 2
ln
C

N
≤ ŝ if ŝ ≥ 1.

But

ln
C

N
≥ ln

C

M‖f‖L∞(Γ0)
.

Therefore there exists ǫ > 0 (independent on u and f) such that ŝ ≥ max(1, s∗) provided that
‖f‖L∞(Γ0) ≤ ǫ. When this last condition is satisfied, we can take s = ŝ in (4.19). Taking into ac-

count (4.18), eŝ = σC
Nŝσ+1 and the fact that 1

ŝσ+1 ≤ 1
ŝσ , we easily obtain

‖f‖L∞(Γ0) ≤
C

∣

∣ln
[

‖fu‖L∞(Γ0)

]∣

∣

σ ,

which is the expected inequality. �

5. Proof of the stability theorem

In this section we prove Theorem 1.3. The solution of (1.1) corresponding to λ is denoted by u(λ).
Set us(λ) = u(λ)− ui.

We start with the following Lemma.

Lemma 5.1. Let M > 0 be given, λ ∈ C(∂D), 0 ≤ λ ≤ M . Then there exists R > 0, depending only

on M and D, such that D ⊂⊂ B(R) and

(5.1) |u(λ)| ≥ 1/2, |x| ≥ R.

Proof. Since

|u(λ)(x)| = |ui(x) + us(λ)(x)| ≥ 1− |us(λ)(x)|,
(5.1) will follow from

(5.2) |us(λ)(x)| ≤ 1/2, |x| ≥ R.

From Green’s formula of Theorem 2.4 in [CK], we have

us(λ)(x) =

∫

∂D

[

∂ν(y)Φ(x, y)u
s(λ)(y) − ∂νu

s(λ)(y)Φ(x, y)
]

ds(y), x ∈ R
3 \D,

where

Φ(x, y) =
eik|x−y|

4π|x− y| , x, y ∈ R
3, x 6= y.

Then, (1.2) and the fact that

∂νu
s(λ) = −iλus(λ)− (∂νu

i + iλui) on ∂D

imply

|us(λ)(x)| ≤ Cmax
y∈D

[

|∂ν(y)Φ(x, y)|+ |Φ(x, y)|
]

, x ∈ R
3 \D, |x| ≥ R.

A straightforward computation shows that the right hand of the last inequality tends to zero when R
goes to infinity. Then (5.2) follows. �

Proof of Theorem 1.3. Fix R as in Lemma 5.1 and set ω = B(3R+ 1),

v = u(λ)− u(λ̃) = us(λ) − us(λ̃).

Recall that by estimate (1.4), we have

(5.3) ‖v‖H3(ω) ≤ C.

Here and henceforth C denote a generic constant that can depend only on M and R.
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Let ω0 be an open subset contained in ω \ B(3R). Since H3(ω) ⊂ C1,1/2(ω), we can apply both
Propositions 1 and 2 in [BD]3. A usual argument consisting in minimizing the right hand side of
estimates in Propositions 1 and 2 in [BD], with respect to the small parameter ǫ, leads to the following
inequality

(5.4) ‖v‖C1(∂D) ≤
C

∣

∣ln
[

‖v‖H1(ω0)

]∣

∣

κ if ‖v‖H1(ω0) ≤ η,

where the constants C, κ and η can depend only on M and R. Using the interpolation inequality

‖v‖H1(ω0) ≤ c‖v‖1/2L2(ω0)
‖v‖1/2H2(ω0)

, (5.3) and (5.4), we obtain

(5.5) ‖v‖C1(∂D) ≤
C

∣

∣ln
[

‖v‖L2(ω0)

]∣

∣

κ if ‖v‖L2(ω0) ≤ η,

We obtain by applying Lemma 6.1.2 in [Is]4, where δ = ‖u∞(λ)− u∞(λ̃)‖L2(S2),

‖v‖C1(∂D) ≤
C

∣

∣ln
[

δθ(δ)
]∣

∣

κ if δ ≤ δ0,

for some constant δ0 > 0. Here

θ(δ) = 1/(1 + ln(| ln δ|+ e)).

Therefore, reducing δ0 if necessary,

(5.6) ‖v‖C1(∂D) ≤ C

[

ln | ln δ|2
| ln δ|

]κ

if δ ≤ δ0.

From the estimate in Proposition 4.1, we have

(5.7) ‖λ− λ̃‖C(∂D) ≤
C

∣

∣

∣ln
[

‖(λ− λ̃)u(λ)‖C(∂D)

]∣

∣

∣

σ ,

if ‖λ− λ̃‖C(∂D) ≤ ǫ, for some ǫ > 0.
Or

(λ− λ̃)u(λ) = λ̃v − ∂νv.

Hence,

‖(λ− λ̃)u(λ)‖C(∂D) ≤ max(1,M)‖v‖C1(∂D).

A combination of this last estimate, (5.6) and (5.7) yields

‖λ− λ̃‖C(∂D) ≤ C

∣

∣

∣

∣

ln

(

ln | ln δ|2
| ln δ|

)∣

∣

∣

∣

−σ

if δ ≤ δ0.

To complete the proof we observe that the condition δ ≤ δ0 is satisfied if ‖(λ− λ̃)‖C(∂D) ≤ ǫ̃, for some
ǫ̃, because λ → u∞(λ) is continuous from the set {h ∈ C(∂D); ℑh = 0 and h ≥ 0}, endowed with the
topology of C(∂D) into L2(S2) (see Appendix A). �

Appendix A

Sketch of the proof of Theorem 1.1. For the reader convenience, we kept the notations of [CK].
Let us first recall that the fundamental solution of the Helmholtz equation (∆+k2)u = 0, with positive
wave number k, is given as follows

Φ(x, y) =
eik|x−y|

4π|x− y| , x, y ∈ R
3, x 6= y.

3These two propositions are proved by similar tools to that we used in the proof of Theorem 4.1 and the main ingredient
is an elliptic Carleman inequality.

4This result is due to I. Bushuyev [Bu].
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We consider the single- and double-layer operators S and K, given by

(Sϕ)(x) = 2

∫

∂D

Φ(x, y)ϕ(y)ds(y), x ∈ ∂D,

(Kϕ)(x) = 2

∫

∂D

∂ν(y)Φ(x, y)ϕ(y)ds(y), x ∈ ∂D,

and the normal derivative operators K ′ and T , given by

(K ′ϕ)(x) = 2

∫

∂D

∂ν(x)Φ(x, y)ϕ(y)ds(y), x ∈ ∂D,

(Kϕ)(x) = 2∂ν(x)

∫

∂D

∂ν(y)Φ(x, y)ϕ(y)ds(y), x ∈ ∂D.

As for the exterior Neumann problem, our problem is reduced to find a radiating solution u ∈
C(R3 \D) ∩ C2(R3 \D) of the Helmholtz equation

(A.1) (∆ + k2)u = 0 in R
3 \D

satisfying the boundary condition

(A.2) ∂νu+ iλ(x)u = g on ∂D.

Similarly to the Neumann case, we seek a solution in the form

(A.3) u(x) =

∫

∂D

[

Φ(x, y)ϕ(y) + iη∂ν(y)Φ(x, y)(S
2
0ϕ)(y)

]

ds(y), x 6∈ ∂D,

with a continuous density ϕ and a real coupling parameter η 6= 0. The operator S0 is the single-layer
operator in the potential theoretic limit k = 0. (Note that S0 plays the role of a smoothing operator.
We refer to [CK] for more explanations.)

Next if Miλ is the multiplication operator by iλ, we will use the fact that I +Miλ is invertible. This
fact is a simple consequence of the assumption that λ is real valued.

By the results of Theorem 3.1 of [CK], we easily prove that u is a solution of (A.3) provided that the
density ϕ is the a solution of the equation

(A.4) ϕ− (I +Miλ)
−1 [

K ′ + iηTS2
0 +Miλ(S +K)

]

ϕ = −2 (I +Miλ)
−1
g.

From Theorem 3.4 in [CK], we know that the operator (I +Miλ)
−1

[

K ′ + iηTS2
0 +Miλ(S + K)

]

is compact, so the Riesz-Fredholm theory is available in the space X = C(∂D). The proof will be
complete if we prove that the equation (A.4) with g = 0 has only ϕ = 0 as a solution.

Let u+ = u|D and u− = u|R3\D. Then g = 0 implies that u− is such that

∂νu− + iλ(x)u− = 0, on ∂D.

Therefore

ℑ
(
∫

∂D

u−∂νu−ds

)

=

∫

∂D

λ|u|2ds ≥ 0.

We deduce from Theorem 2.12 in [CK] that u− = 0. This and the transmission conditions in Theorem
3.1 in [CK] yield

u+ = iηS2
0ϕ, ∂νu+ = ϕ on ∂D.

Then a simple application of Green’s formula leads

iη

∫

∂D

|S2
0ϕ|2 = iη

∫

∂D

ϕS2
0ϕds =

∫

∂D

u−∂νu−ds =

∫

D

[∇u|2 − k2|u|2]dx

whence S0ϕ = 0 on ∂D follows. The single-layer potential w with density ϕ and wave number k
is continuous throughout R3 and vanishes on ∂D and at infinity. Therefore, by maximum-minimum
principle for harmonic functions, we have w = 0 in R3 and the jump conditions in Theorem 3.1 in [CK]
yield ϕ = 0.

Next we prove estimate (1.2) for the solutions of (A.1)-(A.2). This will imply that (1.2) is also valid
for the solutions of (1.1). To this end, we introduce the following set

E = {M ≥ 0; ∃C(M) > 0 s.t. ‖u(λ)‖ ≤ C(M)‖g‖, ∀ g, λ ∈ C(∂D), 0 ≤ λ ≤M}.
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Here and henceforth, u(λ) is the solution of (A.1)-(A.2), corresponding to λ, and

‖u(λ)‖ = ‖u(λ)‖C∞(R3\D), ‖g‖ = ‖g‖C(∂D).

It follows from Theorem 3.10 in [CK] that 0 ∈ E (corresponding to Neumann boundary condition). Let
M ∈ E and g, λ ∈ C(∂D), 0 ≤ λ ≤M + ǫ. Since

∂νu(λ) +
Mλ

M + ǫ
u(λ) = − ǫλ

M + ǫ
u(λ) + g,

we have
‖u(λ)‖ ≤ C(M) (ǫ‖u(λ)‖+ ‖g‖) .

Therefore,

‖u(λ)‖ ≤ C(M)

1− C(M)ǫ
‖g‖ if ǫ < 1/C(M).

Noting that [0,M ] ⊂ E, we deduce that E is an open subset of [0,+∞[.
Now let Mk be a sequence in E, Mk → M . Let g, λ ∈ C(∂D), ‖g‖ = 1 and 0 ≤ λ ≤ M . Let

λk = Mkλ/M . In view of (4.3) and (A.4) we easily deduce that λ → u(λ) is continuous from the set
{h ∈ C(∂D); ℑh = 0 and h ≥ 0}, endowed with the topology of C(∂D), into C(R3 \D). Hence, there
exists a positive integer k0 such that ‖u(λ)− u(λk0)‖ ≤ 1. Consequently,

(A.5) ‖u(λ)‖ ≤ ‖u(λ)− u(λk0)‖+ ‖u(λk0)‖ ≤ 1 + C(Mk0).

Therefore, for any g ∈ C(∂D), g 6= 0,

(A.6) ‖u(λ)‖ ≤ (1 + C(Mk0))‖g‖.
We note that (A.5) is trivially satisfied when g = 0, because in this case u(λ) = u(λk0) = 0. In
conclusion, E is closed subset of [0,+∞[.

We proved that E is a nonempty interval which is at the same time closed and open in [0,+∞[. This
implies immediately that E = [0,+∞[.

With the help of Theorem 3.10 in [CK], we proceed similarly as previously to prove estimate (1.3).
�
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[Si] E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements, SIAM J. Math.

Anal. 38 (2) (2006) 434-451.
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