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Abstract

In a recent result by the authors [1] it was proved that solutions of the
self-similar fragmentation equation converge to equilibrium exponentially
fast. This was done by showing a spectral gap in weighted L

2 spaces of
the operator defining the time evolution. In the present work we prove
that there is also a spectral gap in weighted L

1 spaces, thus extending
exponential convergence to a larger set of initial conditions. The main
tool is an extension result in [4].

1 Introduction

In a recent paper [1] we have studied the speed of convergence to equilibrium
for solutions of equations involving the fragmentation operator and first-order
differential terms. In this paper we will focus on the case of self-similar frag-
mentation given by

∂tgt(x) = −x∂xgt(x) − 2gt(x) + Lgt(x) (1.1a)

g0(x) = gin(x) (x > 0). (1.1b)

Here the unknown is a function gt(x) depending on time t ≥ 0 and on size x > 0,
which represents a density of units (usually particles, cells or polymers) of size
x at time t, and gin is an initial condition. The fragmentation operator L acts
on a function g = g(x) as

Lg(x) := L+g(x) −B(x)g(x), (1.2)
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where the positive part L+ is given by

L+g(x) :=

∫ ∞

x

b(y, x)g(y) dy. (1.3)

The coefficient b(y, x), defined for y > x > 0, is the fragmentation coefficient,
and B(x) is the total fragmentation rate of particles of size x > 0. It is obtained
from b through

B(x) :=

∫ x

0

y

x
b(x, y) dy (x > 0). (1.4)

We refer to [1, 5, 7, 2, 6, 8] for a motivation of (1.1) in several applications and
a general survey of the mathematical literature related to it.

We call T the operator on the right hand side of (1.1a), this is,

Tg(x) := −x∂xg(x) − 2g(x) + Lg(x) (x > 0), (1.5)

acting on a (sufficiently regular) function g defined on (0,+∞). Notice that,
even though g is a one-variable function, we still denote its derivative as ∂xg in
order to be consistent with the notation in (1.1). The results in [1] show that
T has a spectral gap in the space L2(xG−1), where G is the unique stationary
solution of (1.1) with

∫

xG = 1. In the rest of this paper G will represent this
solution, called the self-similar profile. Proofs of existence of the profile G and
some estimates are given in [3, 6, 2], and additional bounds are given in [1].

The main result in [1] is a study of the long time behavior of (1.1): by
means of an inequality relating the quadratic entropy and its dissipation rate,
exponential convergence is obtained in L2(xG−1). Using the results in [4] this
is further extended to the space L2(x + xk) for a sufficiently large exponent k.
In this way one obtains convergence in a strong norm, but correspondingly has
to impose more on the initial condition than just having finite mass.

The purpose of this work is to prove that T has a spectral gap in the larger
spaces L1(xm + xM ), where 1/2 < m < 1 < M are suitable exponents. This
extension is an example of application of the results in [4]. The interest of
this concerning the asymptotic behavior of (1.1) is that it shows exponential
convergence is valid for more general initial conditions (any function in L1(xm +
xM )).

Assumptions on the fragmentation coefficient In order to use the results
in [1] we will make the following hypotheses on the fragmentation coefficient b:

Hypothesis 1.1. For all x > 0, b(x, ·) is a nonnegative measure on the interval
[0, x]. Also, for all ψ ∈ C0([0,+∞)), the function x 7→

∫

[0,x]
b(x, y)ψ(y) dy is

measurable.

Hypothesis 1.2. There exists κ > 1 such that

∫ x

0

b(x, y) dy = κB(x) (x > 0). (1.6)
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Hypothesis 1.3. There exists 0 < Bm < BM satisfying

2Bm xγ−1 ≤ b(x, y) ≤ 2BM xγ−1 (0 < y < x) (1.7)

for some 0 < γ < 2.

This implies the following useful bound, as remarked in [1, Corollary 6.4]:

Lemma 1.4. Consider a fragmentation coefficient b satisfying Hypotheses 1.1–
1.3. There exists a strictly decreasing function k 7→ pk for k ≥ 0 with limk→+∞ pk =
0,

pk > 1 for k ∈ [0, 1), p1 = 1, 0 < pk < 1 for k > 1, (1.8)

and such that
∫ x

0

ykb(x, y) dy ≤ pk x
kB(x) (x > 0, k > 0). (1.9)

Main results The main result of the present work is a spectral gap of T on
weighted L1 spaces.

Theorem 1.5. Assume hypotheses 1.1–1.3. For any 1/2 < m < 1 there exists
1 < M < 2 such that the operator (1.5) has a spectral gap in the space X :=
L1(xm + xM ). More precisely, there exists α > 0 and a constant C ≥ 1 such
that, for all gin ∈ X with

∫

x gin = 1

‖gt −G‖X ≤ C e−αt ‖gin −G‖X (t ≥ 0).

2 Preliminaries

In this section we gather some known results from previous works.

2.1 Previous results on the spectral gap of T

A result like Theorem 1.5 was proved in [1], but in the L2 space with weight
xG−1. This is summarized in the following theorem:

Theorem 2.6 ([1]). Assume Hypotheses 1.1–1.3, and consider G the self-
similar profile with

∫

xG = 1. The operator T given by (1.5) has a spectral
gap in the space H = L2(xG−1).

More precisely, there exists β > 0 such that for any gin ∈ H with
∫

x g = 1
the solution g ∈ C([0,∞);L1(xdx)) to equation (1.1) satisfies

‖gt −G‖H ≤ e−β t ‖gin −G‖H (t ≥ 0).
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2.2 Bounds for the self-similar profile

We recall the following result from [1, Theorem 3.1]:

Theorem 2.7. Assume Hypotheses 1.1–1.3 on the fragmentation coefficient b,

and call Λ(x) :=
∫ x

0
B(s)

s ds. Let G be the self-similar profile with
∫

xG = 1.
For any δ > 0 and any a ∈ (0, Bm/BM ), a′ ∈ (1,+∞) there exist constants

C′ = C′(a′, δ), C = C(a) > 0 such that

C′ e−a′Λ(x) ≤ G(x) ≤ C e−aΛ(x) for x > 0. (2.10)

Remark 2.8. In the case b(x, y) = 2 xγ−1 (so B(x) = xγ), the profile G has

the explicit expression G(x) = e−
x

γ

γ for γ > 0. This motivates the choice of
e−a Λ(x) as functions for comparison. For a general b(x, y) no explicit form is
available.

Proof. Everything but the lower bound of G for small x is proved in [1, Section
3]. For the lower bound, we calculate as follows:

∂x

(

x2 eΛ(x)G(x)
)

= x eΛ(x)

∫ ∞

x

b(y, x)G(y) dy (x > 0), (2.11)

which implies that x2 eΛ(x)G(x) is a nondecreasing function. Hence, it must have
a limit as x → 0, and this limit must be 0 since we know xG(x) is integrable.
Then, integrating (2.11), and for 0 < z < 1,

z2 eΛ(z)G(z) =

∫ z

0

x eΛ(x)

∫ ∞

x

b(y, x)G(y) dy dx

=

∫ ∞

0

G(y)

∫ min{z,y}

0

b(y, x)x eΛ(x) dx dy

≥ 2Bm

∫ ∞

0

yγ−1G(y)

∫ min{z,y}

0

xdx dy

= Bm

∫ ∞

0

yγ−1G(y)(min{z, y})2 dy

≥ Bmz
2

∫ ∞

z

yγ−1G(y) dy

≥ Bmz
2

∫ ∞

1

yγ−1G(y) dy = Cz2 (0 < z < 1). (2.12)

Notice that the number
∫∞

1
yγ−1G(y) dy is strictly positive, as the profile G is

strictly positive everywhere (see [2, 3, 1]). This proves the lower bound on G(x)
for 0 < x < 1, and completes the proof.

2.3 A general spectral gap extension result

Our proof is based on the following result from [4], which was already used in
[1] for an extension to an L2 space with a polynomial weight:
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Theorem 2.9. Consider a Hilbert space H and a Banach space X such that
H ⊂ X and H is dense in X. Consider two unbounded closed operators with
dense domain T on H, Λ on X such that Λ|H = T . On H assume that

1. There is G ∈ H such that T G = 0 with ‖G‖H = 1;

2. Defining ψ(f) := 〈f,G〉H , the space H0 := {f ∈ H ; ψ(f) = 0} is invari-
ant under the action of T .

3. T − a is dissipative on H0 for some a < 0, in the sense that

∀ g ∈ D(T ) ∩H0 ((T − a) g, g)H ≤ 0,

where D(T ) denotes the domain of T in H.

4. T generates a semigroup et T on H;

Assume furthermore on X that

5. there exists a continuous linear form Ψ : X → R such that Ψ|H = ψ;

and Λ decomposes as Λ = A + B with

6. A is a bounded operator from X to H;

7. B is a closed unbounded operator on X (with same domain as D(Λ) the
domain of Λ) and is a-dissipative; this is, there exists a constant C ≥ 1
such that

∀t ≥ 0, ∀g ∈ X with Ψ(g) = 0, ‖etBg‖X ≤ C‖g‖X eat. (2.13)

Then, for any a′ ∈ (a, 0) there exists Ca′ ≥ 1 such that

∀ t ≥ 0, ∀g ∈ X, ‖etΛ g − Ψ(g)G‖X ≤ Ca′ ‖g − Ψ(g)G‖X ea′t.

3 Proof of the main theorem

The proof consists is an application of Theorem 2.9. For this, we consider the
Hilbert space H := L2(xG−1(x)), where G is the unique self-similar profile with
∫

G = 1, and define ψ(g) :=
∫

xg. Due to our previous results [1] we know that
T and ψ satisfy points 1–4 of Theorem 2.9.

As the larger space we take X = L1(xm + xM ), with 1/2 < m < 1 < M , to
be precised later. Observe that, due to the bounds on G from Theorem 2.7,

‖g‖X =

∫ ∞

0

(xm + xM )|g(x)| dx

≤

(
∫ ∞

0

g(x)2
x

G(x)
dx

)1/2 (∫ ∞

0

(xm− 1

2 + xM− 1

2 )2G(x) dx

)1/2

= C‖g‖H ,
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and hence H ⊆ X . Similarly,
∫ ∞

0

x|g(x)| dx ≤

∫ ∞

0

(xm + xM )|g(x)| dx,

which allows us to define Ψ : X → R, Ψ(g) :=
∫

xg, and proves that Ψ is
continuous onX . Obviously Ψ|H = ψ, so point 5 of Theorem 2.9 is also satisfied.

Consider Λ the unbounded operator on X given by the same expression (1.5)
(with domain a suitable dense subspace of X which makes Λ a closed operator).
To prove the remaining points 6 and 7 we use the following splitting of Λ, taking
real numbers 0 < δ < R to be chosen later:

Ag(x) := L+,sg(x) :=

∫ ∞

x

bR,δ(y, x) g(y) dy

= 1x≤R

∫ ∞

x

1y≥δ b(y, x)g(y) dy,

(3.14)

Λ = A + B, Bg := Λg −Ag, (3.15)

where we denote bR,δ(x, y) := b(x, y)1x≥δ 1y≤R. We define

L+,rg := L+g − L+,sg

=

∫ ∞

x

b(y, x) (1 − 1y≥δ 1x≤R) g(y) dy

=

∫ ∞

x

b(y, x)1y≤δ g(y) dy +

∫ ∞

x

b(y, x)1y≥δ 1x≥R g(y) dy

=: L+,r
1 g + L+,r

2 g

so we may write B as

Bg = −2g − x∂xg −Bg + L+,r
1 g + L+,r

2 g. (3.16)

First, let us prove that A is bounded from X to H . We compute

‖Ag‖2
H =

∫ ∞

0

x (L+,sg)2G(x)−1 dx

≤ (2BM )2

(

sup
[0,R]

xG(x)−1

)

∫ R

0

(

∫ ∞

max(x,δ)

yγ−1g(y) dy

)2

dx

≤ CR

(
∫ ∞

δ

yγ−1 g(y) dy

)2

≤ CR,δ

(
∫ ∞

0

y g(y) dy

)2

≤ CR,δ ‖g‖
2
X ,

which shows A : X → H is a bounded operator. Notice that we have used here
the lower bound G(x) ≥ Cx for x small, proved in Theorem 2.7.

Then, let us prove that one can choose 0 < δ < R appropriately so that B
is α-dissipative for some α < 0. It is enough to prove that, for g in the domain
of Λ (the same as the domain of B),

∫ ∞

0

sign(g(x))Bg(x) (xm + xM ) dx ≤ α‖g‖X . (3.17)
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To show this we calculate as follows for any k > 0, using (3.16):

∫ ∞

0

sign(g(x))Bg(x)xk dx ≤ (k − 1)

∫ ∞

0

xk |g| dx

−

∫ ∞

0

B(x)xk |g| dx+

∫ ∞

0

|L+,r
1 g|xk dx+

∫ ∞

0

|L+,r
2 g|xk dx, (3.18)

where the first term is obtained from the terms −2g−∂xg through an integration
by parts. We give separately some bounds on the last two terms in (3.18). On
one hand, we have

∫ ∞

0

|L+,r
1 g|xk dx ≤

∫ ∞

0

xk

∫ ∞

x

b(y, x)1y≤δ |g(y)| dy dx

≤

∫ δ

0

|g(y)|
(

∫ y

0

xk b(y, x) dx
)

dy

≤ 2BM

∫ δ

0

|g(y)|B(y)yk dy

≤ pkBmδ
γ

∫ δ

0

|g(y)|yk dy,

(3.19)

where we have used (1.9). On the other hand, and again due to (1.9),

∫ ∞

0

|L+,r
2 g|xk dx ≤

∫ ∞

0

xk

∫ ∞

x

b(y, x)1x≥R 1y≥δ |g(y)| dy dx

≤

∫ ∞

0

xk

∫ ∞

x

b(y, x)1x≥R 1y≥R |g(y)| dy dx

≤

∫ ∞

R

|g(y)|
(

∫ y

R

xk b(y, x) dx
)

dy

≤ pk

∫ ∞

R

|g(y)|ykB(y) dy.

(3.20)

Hence, from (3.18) and the bounds (3.19)–(3.20) we obtain

∫ ∞

0

Bg(x) sign(g(x))(xm + xM ) dx

≤ (m− 1)

∫ ∞

0

xm |g| dx+ (M − 1)

∫ ∞

0

xM |g| dx

−

∫ ∞

0

B(x)(xm + xM ) |g| dx

+ pmBmδ
γ

∫ δ

0

xm|g(x)| dx+ pm

∫ ∞

R

xmB(x) |g(x)| dx

+ pMBmδ
γ

∫ δ

0

xM |g(x)| dx + pM

∫ ∞

R

xMB(x) |g(x)| dx. (3.21)
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We have to choose 1/2 < m < 1 < M < 2 so that this is bounded by −C‖g‖X

for some positive constant C. First, fix any m with 1/2 < m < 1, and take
0 < δ < 1 small enough such that

pmBmδ
γ <

1 −m

4
, Bmδ

γ <
1 −m

4
.

(Which can be done due to γ > 0.) Then, as pM < 1 and xM < xm for
x < δ < 1,

∫ ∞

0

Bg(x) sign(g(x))(xm + xM ) dx

≤ −
1 −m

2

∫ ∞

0

xm |g| dx+ (M − 1)

∫ ∞

0

xM |g| dx

−

∫ ∞

0

B(x)(xm + xM ) |g| dx

+ pm

∫ ∞

R

xmB(x) |g(x)| dx + pM

∫ ∞

R

xMB(x) |g(x)| dx. (3.22)

Now, takeR0 > 0 such that B(x) > 2 > M for x ≥ R0. Then, choose 1 < M < 2
such that (M − 1)xM < 1−m

4 xm for 0 < x < R0. Then whatever R is we have
from (3.21):

∫ ∞

0

Bg(x) sign(g(x))(xm + xM ) dx

≤ −
1 −m

4

∫ R0

0

xm |g| dx−

∫ R

R0

xM |g| dx

−

∫ ∞

R

(B(x) −M + 1)xM |g| dx

+ pm

∫ ∞

R

xmB(x) |g(x)| dx + pM

∫ ∞

R

xMB(x) |g(x)| dx. (3.23)

Finally, choose R > 1 such that

−(B(x)(1 − pM ) −M + 1)xM + pmx
m ≤ −xM for x > R.

With this, and continuing from (3.23),

∫ ∞

0

Bg(x) sign(g(x))(xm + xM ) dx

≤ −
1 −m

4

∫ R0

0

xm |g| dx−

∫ ∞

R0

xM |g| dx

≤ −C ‖g‖X , (3.24)

for some number C = C(m,M,R0) > 0. This shows point that B is dissipative
with constant −C, and hence point 7 of Theorem 2.9 holds with a = −C. A
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direct application of Theorem 2.9 then proves our result, Theorem 1.5, with
α := min{β,C} (where β is the one appearing in Theorem 2.6).
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H. Poincaré Anal. Non Linéaire, 22(1):99–125, 2005.

[4] M. P. Gualdani, S. Mischler, and C. Mouhot. Factorization for non-
symmetric operators and exponential H-theorem. Preprint, Jun 2010.

[5] J. A. J. Metz and O. Diekmann. The Dynamics of Physiologically Structured
Populations, volume 68 of Lecture notes in Biomathematics. Springer, 1st
edition, August 1986.

[6] P. Michel. Existence of a solution to the cell division eigenproblem. Math-
ematical Models and Methods in Applied Sciences, 16(1 supp):1125–1153,
July 2006.

[7] B. Perthame. Transport equations in biology. Frontiers in Mathematics.
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