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Introduction

In a recent paper [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growthfragmentation equations[END_REF] we have studied the speed of convergence to equilibrium for solutions of equations involving the fragmentation operator and first-order differential terms. In this paper we will focus on the case of self-similar fragmentation given by ∂ t g t (x) = -x∂ x g t (x) -2g t (x) + Lg t (x)

(1.1a)

g 0 (x) = g in (x) (x > 0). (1.1b)
Here the unknown is a function g t (x) depending on time t ≥ 0 and on size x > 0, which represents a density of units (usually particles, cells or polymers) of size x at time t, and g in is an initial condition. The fragmentation operator L acts on a function g = g(x) as

Lg(x) := L + g(x) -B(x)g(x), (1.2) 
where the positive part L + is given by

L + g(x) := ∞ x
b(y, x)g(y) dy.

(1.

3)

The coefficient b(y, x), defined for y > x > 0, is the fragmentation coefficient, and B(x) is the total fragmentation rate of particles of size x > 0. It is obtained from b through B(x) :=

x 0 y x b(x, y) dy (x > 0). (1.4) We refer to [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growthfragmentation equations[END_REF][START_REF] Metz | The Dynamics of Physiologically Structured Populations[END_REF][START_REF] Perthame | Transport equations in biology[END_REF][START_REF] Doumic-Jauffret | Eigenelements of a general aggregationfragmentation model[END_REF][START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF][START_REF] Perthame | Exponential decay for the fragmentation or cell-division equation[END_REF] for a motivation of (1.1) in several applications and a general survey of the mathematical literature related to it. We call T the operator on the right hand side of (1.1a), this is,

T g(x) := -x∂ x g(x) -2g(x) + Lg(x) (x > 0), (1.5) 
acting on a (sufficiently regular) function g defined on (0, +∞). Notice that, even though g is a one-variable function, we still denote its derivative as ∂ x g in order to be consistent with the notation in (1.1). The results in [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growthfragmentation equations[END_REF] show that T has a spectral gap in the space L 2 (x G -1 ), where G is the unique stationary solution of (1.1) with x G = 1. In the rest of this paper G will represent this solution, called the self-similar profile. Proofs of existence of the profile G and some estimates are given in [START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF][START_REF] Michel | Existence of a solution to the cell division eigenproblem[END_REF][START_REF] Doumic-Jauffret | Eigenelements of a general aggregationfragmentation model[END_REF], and additional bounds are given in [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growthfragmentation equations[END_REF].

The main result in [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growthfragmentation equations[END_REF] is a study of the long time behavior of (1.1): by means of an inequality relating the quadratic entropy and its dissipation rate, exponential convergence is obtained in L 2 (x G -1 ). Using the results in [START_REF] Gualdani | Factorization for nonsymmetric operators and exponential H-theorem[END_REF] this is further extended to the space L 2 (x + x k ) for a sufficiently large exponent k. In this way one obtains convergence in a strong norm, but correspondingly has to impose more on the initial condition than just having finite mass.

The purpose of this work is to prove that T has a spectral gap in the larger spaces L 1 (x m + x M ), where 1/2 < m < 1 < M are suitable exponents. This extension is an example of application of the results in [START_REF] Gualdani | Factorization for nonsymmetric operators and exponential H-theorem[END_REF]. The interest of this concerning the asymptotic behavior of (1.1) is that it shows exponential convergence is valid for more general initial conditions (any function in L 1 (x m + x M )).

Assumptions on the fragmentation coefficient In order to use the results in [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growthfragmentation equations[END_REF] we will make the following hypotheses on the fragmentation coefficient b:

Hypothesis 1.1. For all x > 0, b(x, •) is a nonnegative measure on the interval [0, x]. Also, for all ψ ∈ C 0 ([0, +∞)), the function x → [0,x] b(x, y)ψ(y) dy is measurable. Hypothesis 1.2. There exists κ > 1 such that x 0 b(x, y) dy = κB(x) (x > 0). (1.6) Hypothesis 1.3. There exists 0 < B m < B M satisfying 2B m x γ-1 ≤ b(x, y) ≤ 2B M x γ-1 (0 < y < x) (1.7)
for some 0 < γ < 2.

This implies the following useful bound, as remarked in [1, Corollary 6.4]:

Lemma 1.4. Consider a fragmentation coefficient b satisfying Hypotheses 1.1-1.3. There exists a strictly decreasing function

k → p k for k ≥ 0 with lim k→+∞ p k = 0, p k > 1 for k ∈ [0, 1), p 1 = 1, 0 < p k < 1 for k > 1, (1.8) 
and such that

x 0 y k b(x, y) dy ≤ p k x k B(x) (x > 0, k > 0). (1.9)

Main results

The main result of the present work is a spectral gap of T on weighted L 1 spaces.

Theorem 1.5. Assume hypotheses 1.1-1.3. For any 1/2 < m < 1 there exists 1 < M < 2 such that the operator (1.5) has a spectral gap in the space X := L 1 (x m + x M ). More precisely, there exists α > 0 and a constant C ≥ 1 such that, for all g in ∈ X with x g in = 1

g t -G X ≤ C e -αt g in -G X (t ≥ 0).

Preliminaries

In this section we gather some known results from previous works.

Previous results on the spectral gap of T

A result like Theorem 1.5 was proved in [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growthfragmentation equations[END_REF], but in the L 2 space with weight x G -1 . This is summarized in the following theorem:

Theorem 2.6 ([1]
). Assume Hypotheses 1.1-1.3, and consider G the selfsimilar profile with x G = 1. The operator T given by (1.5) has a spectral gap in the space H = L 2 (x G -1 ). More precisely, there exists β > 0 such that for any

g in ∈ H with x g = 1 the solution g ∈ C([0, ∞); L 1 (x dx)) to equation (1.1) satisfies g t -G H ≤ e -β t g in -G H (t ≥ 0).

Bounds for the self-similar profile

We recall the following result from [1, Theorem 3.1]:

Theorem 2.7. Assume Hypotheses 1.1-1.3 on the fragmentation coefficient b, and call Λ(x) :=

x 0 B(s) s ds. Let G be the self-similar profile with x G = 1. For any δ > 0 and any a ∈ (0, B m /B M ), a ′ ∈ (1, +∞) there exist constants

C ′ = C ′ (a ′ , δ), C = C(a) > 0 such that C ′ e -a ′ Λ(x) ≤ G(x) ≤ C e -a Λ(x) for x > 0.
(2.10)

Remark 2.8. In the case b(x, y) = 2 x γ-1 (so B(x) = x γ ), the profile G has the explicit expression G(x) = e -x γ γ
for γ > 0. This motivates the choice of e -a Λ(x) as functions for comparison. For a general b(x, y) no explicit form is available.

Proof. Everything but the lower bound of G for small x is proved in [1, Section 3]. For the lower bound, we calculate as follows:

∂ x x 2 e Λ(x) G(x) = x e Λ(x) ∞ x b(y, x) G(y) dy (x > 0), (2.11) 
which implies that x 2 e Λ(x) G(x) is a nondecreasing function. Hence, it must have a limit as x → 0, and this limit must be 0 since we know x G(x) is integrable. Then, integrating (2.11), and for 0 < z < 1, x dx dy

z 2 e Λ(z) G(z) = z 0 x e Λ(x)
= B m ∞ 0 y γ-1 G(y)(min{z, y}) 2 dy ≥ B m z 2 ∞ z y γ-1 G(y) dy ≥ B m z 2 ∞ 1 y γ-1 G(y) dy = Cz 2 (0 < z < 1). (2.12)
Notice that the number ∞ 1 y γ-1 G(y) dy is strictly positive, as the profile G is strictly positive everywhere (see [START_REF] Doumic-Jauffret | Eigenelements of a general aggregationfragmentation model[END_REF][START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF][START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growthfragmentation equations[END_REF]). This proves the lower bound on G(x) for 0 < x < 1, and completes the proof.

A general spectral gap extension result

Our proof is based on the following result from [START_REF] Gualdani | Factorization for nonsymmetric operators and exponential H-theorem[END_REF], which was already used in [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growthfragmentation equations[END_REF] for an extension to an L 2 space with a polynomial weight: Theorem 2.9. Consider a Hilbert space H and a Banach space X such that H ⊂ X and H is dense in X. Consider two unbounded closed operators with dense domain T on H, Λ on X such that Λ |H = T . On H assume that 1. There is G ∈ H such that T G = 0 with G H = 1; 2. Defining ψ(f ) := f, G H , the space H 0 := {f ∈ H; ψ(f ) = 0} is invariant under the action of T .

3.

T -a is dissipative on H 0 for some a < 0, in the sense that

∀ g ∈ D(T ) ∩ H 0 ((T -a) g, g) H ≤ 0,
where D(T ) denotes the domain of T in H.

T generates a semigroup e t T on H;

Assume furthermore on X that 5. there exists a continuous linear form Ψ :

X → R such that Ψ |H = ψ;
and Λ decomposes as Λ = A + B with 6. A is a bounded operator from X to H;

7. B is a closed unbounded operator on X (with same domain as D(Λ) the domain of Λ) and is a-dissipative; this is, there exists a constant C ≥ 1 such that ∀t ≥ 0, ∀g ∈ X with Ψ(g) = 0, e tB g X ≤ C g X e at .

(2.13)

Then, for any a ′ ∈ (a, 0) there exists C a ′ ≥ 1 such that

∀ t ≥ 0, ∀g ∈ X, e tΛ g -Ψ(g) G X ≤ C a ′ g -Ψ(g) G X e a ′ t .

Proof of the main theorem

The proof consists is an application of Theorem 2.9. For this, we consider the Hilbert space

H := L 2 (x G -1 (x))
, where G is the unique self-similar profile with G = 1, and define ψ(g) := xg. Due to our previous results [START_REF] Cáceres | Rate of convergence to an asymptotic profile for the self-similar fragmentation and growthfragmentation equations[END_REF] we know that T and ψ satisfy points 1-4 of Theorem 2.9.

As the larger space we take X = L 1 (x m + x M ), with 1/2 < m < 1 < M , to be precised later. Observe that, due to the bounds on G from Theorem 2.7,

g X = ∞ 0 (x m + x M )|g(x)| dx ≤ ∞ 0 g(x) 2 x G(x) dx 1/2 ∞ 0 (x m-1 2 + x M-1 2 ) 2 G(x) dx 1/2 = C g H ,
and hence H ⊆ X. Similarly,

∞ 0 x|g(x)| dx ≤ ∞ 0 (x m + x M )|g(x)| dx,
which allows us to define Ψ : X → R, Ψ(g) := xg, and proves that Ψ is continuous on X. Obviously Ψ |H = ψ, so point 5 of Theorem 2.9 is also satisfied. Consider Λ the unbounded operator on X given by the same expression (1.5) (with domain a suitable dense subspace of X which makes Λ a closed operator). To prove the remaining points 6 and 7 we use the following splitting of Λ, taking real numbers 0 < δ < R to be chosen later:

Ag(x) := L +,s g(x) := ∞ x b R,δ (y, x) g(y) dy = 1 x≤R ∞ x 1 y≥δ b(y, x)g(y) dy, (3.14) Λ = A + B, Bg := Λg -Ag, (3.15) 
where we denote b R,δ (x, y) := b(x, y) 1 x≥δ 1 y≤R . We define

L +,r g := L + g -L +,s g = ∞ x b(y, x) (1 -1 y≥δ 1 x≤R ) g(y) dy = ∞ x b(y, x) 1 y≤δ g(y) dy + ∞ x b(y, x) 1 y≥δ 1 x≥R g(y) dy =: L +,r 1 g + L +,r
2 g so we may write B as

Bg = -2g -x∂ x g -Bg + L +,r 1 g + L +,r 2 g. (3.16) 
First, let us prove that A is bounded from X to H. We compute

Ag 2 H = ∞ 0 x (L +,s g) 2 G(x) -1 dx ≤ (2B M ) 2 sup [0,R] x G(x) -1 R 0 ∞ max(x,δ) y γ-1 g(y) dy 2 dx ≤ C R ∞ δ y γ-1 g(y) dy 2 ≤ C R,δ ∞ 0 y g(y) dy 2 ≤ C R,δ g 2 X ,
which shows A : X → H is a bounded operator. Notice that we have used here the lower bound G(x) ≥ Cx for x small, proved in Theorem 2.7.

Then, let us prove that one can choose 0 < δ < R appropriately so that B is α-dissipative for some α < 0. It is enough to prove that, for g in the domain of Λ (the same as the domain of B),

∞ 0 sign(g(x)) Bg(x) (x m + x M ) dx ≤ α g X .
(3.17)

To show this we calculate as follows for any k > 0, using (3.16):

∞ 0 sign(g(x)) Bg(x) x k dx ≤ (k -1) ∞ 0 x k |g| dx - ∞ 0 B(x)x k |g| dx + ∞ 0 |L +,r 1 g|x k dx + ∞ 0 |L +,r 2 g|x k dx, (3.18)
where the first term is obtained from the terms -2g-∂ x g through an integration by parts. We give separately some bounds on the last two terms in (3.18). On one hand, we have where we have used (1.9). On the other hand, and again due to (1.9), 

∞ 0 |L +,r 1 g|x k dx ≤ ∞ 0 x k ∞ x b(y, x) 1 y≤δ |g(y)| dy dx
∞ 0 |L +,r 2 g|x k dx ≤ ∞ 0 x k ∞ x b(y, x) 1 x≥R 1 y≥δ |g(y)| dy dx ≤ ∞ 0 x k ∞ x b(y, x) 1 x≥R 1 y≥R |g(y)| dy dx ≤ ∞ R |g ( 
(x m + x M ) dx ≤ (m -1) ∞ 0 x m |g| dx + (M -1) ∞ 0 x M |g| dx - ∞ 0 B(x)(x m + x M ) |g| dx + p m B m δ γ δ 0 x m |g(x)| dx + p m ∞ R x m B(x) |g(x)| dx + p M B m δ γ δ 0 x M |g(x)| dx + p M ∞ R x M B(x) |g(x)| dx. (3.21)
We have to choose 1/2 < m < 1 < M < 2 so that this is bounded by -C g X for some positive constant C. First, fix any m with 1/2 < m < 1, and take 0 < δ < 1 small enough such that

p m B m δ γ < 1 -m 4 , B m δ γ < 1 -m 4 .
(Which can be done due to γ > 0.) Then, as p M < 1 and for some number C = C(m, M, R 0 ) > 0. This shows point that B is dissipative with constant -C, and hence point 7 of Theorem 2.9 holds with a = -C. A direct application of Theorem 2.9 then proves our result, Theorem 1.5, with α := min{β, C} (where β is the one appearing in Theorem 2.6).

x M < x m for x < δ < 1, ∞ 0 Bg(x) sign(g(x))(x m + x M ) dx ≤ - 1 -m 2 ∞ 0 x m |g| dx + (M -1) ∞ 0 x M |g| dx

x

  k b(y, x) dx dy ≤ 2B M δ 0 |g(y)|B(y)y k dy ≤ p k B m δ γ δ 0 |g(y)|y k dy, (3.19)

  |y k B(y) dy. (3.20) Hence, from (3.18) and the bounds (3.19)-(3.20) we obtain ∞ 0 Bg(x) sign(g(x))

- ∞ 0 B0 1 -m 4 R0 0 x m |g| dx - ∞ R0 x

 0140R0 (x)(x m + x M ) |g| dx + p m ∞ R x m B(x) |g(x)| dx + p M ∞ R x M B(x) |g(x)| dx. (3.22) Now, take R 0 > 0 such that B(x) > 2 > M for x ≥ R 0 . Then, choose 1 < M < 2 such that (M -1)x M < 1-m 4 x m for 0 < x < R 0 . Then whatever R is we have from (3.21): ∞ 0 Bg(x) sign(g(x))(x m + x M ) dx x) -M + 1)x M |g| dx + p m ∞ R x m B(x) |g(x)| dx + p M ∞ R x M B(x) |g(x)| dx. (3.23) Finally, choose R > 1 such that -(B(x)(1 -p M ) -M + 1)x M + p m x m ≤ -x M for x > R.With this, and continuing from (3.23),∞ Bg(x) sign(g(x))(x m + x M ) dx ≤ -M |g| dx ≤ -C g X ,(3.24) 
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