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1 Introduction 

 

Talking about fluorescence in respect to DNA one usually refers to fluorescent labels used 

extensively in biology and genetics. Yet DNA does emit fluorescence albeit with a low 

quantum yield, of the order of 10
-4

. Such weak emission, which so far prevented large scale 

technological applications, may be precious in many respects provided that its properties are 

well understood. For example, it can contribute to elucidate questions such as: How the 

building blocks of the genetic code “survived” when intense UV radiation was reaching the 

earth? What are the primary events leading to photochemical reactions which induce 

carcinogenic mutations? This is possible because following the time behavior of fluorescence 

brings information about the singlet electronic excited states and their relaxation. 

Although the first articles reporting room temperature fluorescence of DNA components 

were published already in the 1971 
1, 2

, a thorough study of the emitting states was limited by 

the time-resolution. It is only during the past few years that the development of femtosecond 

techniques, mainly based on fluorescence upconversion and allowing excitation and detection 

in the UV spectral domain, gave an important impulse to this field. 

Here we tackle studies appeared since the turn of the 21
st
 century. We mention that two 

recent reviews deal with the excited state dynamics of nucleic acids with particular emphasis 

on transient absorption studies 
3, 4

. In the present Chapter we present the fluorescence 
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behavior of these systems in more detail and we address the main problems and outcomes 

related to such investigations.  

We examine successively the monomeric building blocks (bases, nucleosides, 

nucleotides; Section 5) and then more complex systems (single, double and quadruple strands; 

Section 6). As photon emission is strongly related to photon absorption, at least in the 

reported work, we also discuss the absorption spectra and the Franck-Condon excited states 

(Section 4). 

Detecting very weak fluorescence signals with UV excitation is not a trivial task. 

Therefore, we describe experimental methods specially related to this type of measurements 

(Section 2). Finally, in the case of DNA strands, particular cautions are required due to their 

increased fragility versus UV radiation and the plasticity of their structure. This renders 

comparison of data obtained by various groups using different experimental conditions quite 

delicate and the definition of commonly accepted protocols is an urgent need (Section 3). 

 

2 Experimental methods and setups 

2.1 Steady-state fluorescence spectra 

The following procedure was followed in order to record fluorescence spectra of DNA 

components over a large spectral domain and make a refined comparison of the emission 

spectra of various systems 
5
. 

Fluorescence spectra were recorded with a SPEX Fluorolog-2 spectrofluorimeter 

equipped with a 450 Watt arc Xenon lamp. The calibration of emission monochromator was 

verified using a Hg low pressure standard lamp whereas that of the excitation monochromator 

was confirmed by observing the scattered excitation light from water. The emission correction 

factor was performed by means of deuterium and tungsten lamps of standard irradiance and 

checked via the standard fluorescence spectrum of quinine sulfate 
6
. 
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For fluorescence measurements, 1 cm x 1 cm and 0.2 cm x 1 cm quartz cells (QZS) 

were used for dilute and concentrated solutions, respectively. For dilute solutions (< 5x10
-5

 

M; 1 cm x 1 cm cells), the signal of solvent (in most cases the Raman line of water) was not 

negligible compared to the fluorescence intensity. Therefore, its contribution was subtracted 

from the fluorescence spectra. Each spectrum was recorded several times: (i) without any 

filter at the emission side and using (ii) a Schott WG320 or (iii) a Schott GG385 filter. In all 

cases, a Schott UG5 filter was used on the excitation side. The three spectra were normalized 

at appropriate wavelengths and then joined. Such a procedure allowed us to eliminate the 

second order of the scattered excitation light from water, Raman scattering and also the 

second order of the main fluorescence peak.  

Fluorescence quantum yields (s) were determined using quinine sulfate dihydrate in 

0.1 M HClO4 (s = 0.59) 
6
. As a control the fluorescence quantum yield of PPO in 

cyclohexane was determined and found to be 0.90  0.02, in perfect agreement with the most 

recent value reported in the literature (0.89)
 7

.  

2.2 Time-resolved techniques 

As mentioned in the Introduction, time-resolved fluorescence studies of DNA 

constituents require femtosecond resolution. Nevertheless, much longer lived components are 

present in the fluorescence of DNA helices. In order to obtain a global picture, probing 

fluorescence over several decades of time is necessary. This can only be achieved by 

combination of different detection techniques.  

Femtosecond time resolution is obtained by the use of femtosecond lasers together with 

optical gating detection: fluorescence upconversion (FU) and optical Kerr gating (OKG). In 

FU an intense laser (gate) pulse is mixed with the polarized fluorescence in a nonlinear optical 

crystal creating a sum-frequency light. The gate pulse defines a time window during which 

the fluorescence can be measured. By scanning the optical delay between the gating and 
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excitation pulses, fluorescence intensity traces are recorded. The detection is performed by 

photon counting, favourable for high repetition (MHz) laser sources 
8
, but also amplified kHz 

systems are used 
9, 10

. In OKG the polarized fluorescence is directed through a Kerr shutter 

consisting of two crossed polarisers between which a Kerr medium is positioned. Without a 

gating pulse, the fluorescence is extinguished by the Kerr shutter. However, when a highly 

intense laser pulse (gate) is focused into the Kerr medium, it induces a change of the 

fluorescence polarization, letting part of it to pass through to detection. An amplified kHz 

laser system is necessary in order to attain the gating pulse intensities needed 
11

. Time 

resolved fluorescence spectra of DNA were obtained by both FU 
12-17

 and OKG 
18, 19

. 

Recent DNA fluorescence studies focusing on longer components relied on time-

correlated single photon counting (TCSPC) using either femtosecond laser 
20, 21

 or 

synchrotron radiation 
22

. 

The experimental setup developed in our laboratory for the time-resolved fluorescence 

measurements of DNA cited here gives the possibility to probe fluorescence over a large time 

domain from 100 fs to 100 ns using the same excitation source (267 nm, 120 fs). Two 

different detection techniques were used. On the one hand fluorescence upconversion detects 

emission associated with allowed electronic transitions with a resolution of ca. 100 fs after 

deconvolution. On the other, time-correlated single photon counting probes emission from 

both bright and “dark” excited states with a time-resolution of 10 ps after deconvolution.  

We paid special attention to the determination of the fluorescence anisotropy. To this 

end, parallel Ipar(t) and perpendicular components Iper(t) of the fluorescence signals were 

recorded by means of a half wave plate, positioned at the excitation side (FU) or by means of 

a Glan Thomson prism positioned at the detection side (TCSPC). Fluorescence decays F(t) 

and fluorescence anisotropy decays r(t) were determined as:  

F(t) = Ipar(t) + 2GIper(t) 
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r(t) = (Ipar(t) - GIper(t))/(Ipar(t) + 2GIper(t)).  

In the case of FU the G factor was equal to 1 whereas in the case of TCSPC it was 

determined by the tail-matching method using protonated guanosine (pH = 2.5)
23

.  

3 Protocols for the study of DNA helices 

Spectroscopic studies of DNA helices present specific difficulties which are not 

encountered in the experiments carried out with monomeric chromophores
24

. Indeed, the close 

proximity of the bases within a helix favors photoreactions leading to dimeric products, such 

as cyclobutane dimers and (6-4) adducts 
25-27

. Moreover, base stacking increases their 

propensity to loose an electron upon photon absorption 
28-30

. Thus, laser pulses are likely to 

provoke two-photon ionization of both the aqueous solvent as well as of the DNA helices. 

The produced radicals 
31-33

 are very reactive and they lead to oxidation products, such as 6-

hydroxy-5,6-dihydrocytosine or 8-oxo-7,8-dihydroguanine. Further reactions may be induced 

by the hydrated electrons which can attack the studied nucleic acids. 

The various photoproducts may affect fluorescence measurements in two ways. On the 

one hand, some of them emit light. This is typically the case of the (6-4) adducts whose 

fluorescence quantum yield is higher by two order of magnitudes than that of DNA 

components
34

. On the other, formation within a helix may alter its conformation which, in 

turn, may modify the electronic coupling. Consequently, excited state relaxation in damaged 

duplexes should be different compared to that of the initial duplexes which are the objects 

under study. For example, we found that accumulation of photoproducts in (dA)n·(dT)n, 

shortens its fluorescence lifetime recorded by FU and increases that determined by TCSPC 
24

.  

Analysis of the thymine dimers formed upon continuous irradiation at 267 nm of 

(dA)20·(dT)20 using high performance liquid chromatography coupled to mass spectrometry 

brought an important insight into the relation between spectral changes and photodamage
35

. It 

was demonstrated that changes in the steady-state absorption spectra result from two 
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antagonistic effects: on the one hand, a decrease in the absorbance due to disappearance of the 

thymines which reacted and, on the other, an increase in the absorbance due to local 

denaturation of the adenines. Consequently, the decrease in the absorption maximum 

observed after a time-resolved measurement
36, 37

 is not directly  proportional to the actual 

photodamage. To be more specific, the formation of one cyclobutane dimer within 

(dA)20(dT)20 corresponds to a destruction of 5% of the bases of the duplex but leads to only 

0.6% decrease in the absorption maximum 
35

.  

In order to avoid contamination of the fluorescence signals with photons emitted from 

damaged helices it is important to follow a few rules: keep the laser intensity as low as 

possible, use a sufficiently large ratio of molecules compared to that of the photons absorbed 

during the measurement and avoid local accumulation of photoproducts. In practice, FU 

experiments were performed using a flow cell allowing circulation of 20 ml of solution (ca. 

2x10
-3

 M per base), the laser intensity at the surface of sample being 2x10
8
 W/cm

2
. Much 

lower laser intensities (10
4
 W/cm

2
) were used in TCSPC measurements which gave the 

possibility to work with smaller volumes: 0.3 ml (ca. 2x10
-4

 M per base) in a moving cell. 

However, the ultimate test is to check if successive signals recorded with the same solution 

are reproducible. Experimental procedures similar to ours were also followed by Schwalb and 

Temps
38

. 

Besides the above mentioned cautions related to UV excitation of DNA helices, further 

problems are associated specifically with double strands. Polymers are produced 

biochemically, which insures efficient base-pairing, whereas oligomers are prepared by 

annealing of the parent single strands. In the latter case, duplex formation depends both on the 

annealing conditions and on the base sequence. In particular, when repetitive simple base 

sequences are used, such as (dA)n·(dT)n or (dAdT)n·(dAdT),n, slipping between the two 
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complementary strands is possible. The degree of hyperchromism observed upon melting of a 

duplex should used as a quality test for base pairing 
24

.  

 

4 Franck-Condon excited states 

4.1 Monomeric chromophores 

The absorption spectra of the nucleosides (dA: 2’-deoxyadenosine; dT: thymidine; dG: 

2’-deoxyguanosine; dC: 2’-deoxycytidine), identical to those of the nucleotides (dAMP: 2’-

deoxyadenosine 5'-monophosphate; TMP thymidine 5'-monophosphate; dGMP: 2’-

deoxyguanosine 5'-monophosphate; dCMP: 2’-deoxycytidine 5'-monophosphate) which 

constitute the monomeric DNA chromophores are shown in Figure 1. The cytosine and 

thymine derivatives belong to the pyrimidine family while adenines and guanines are denoted 

as purines. 

The lowest in energy absorption band of dA/dAMP and dG/dGMP corresponds to two 

close lying electronic transitions. This is suggested by a shoulder present in the dG spectrum. 

In the case of the adenine derivatives, the existence of two transitions was evidenced 

experimentally by means of linear dichroism and magnetic circular dichroism 
39

. These 

observations are corroborated by quantum chemistry calculations which have shown the 

existence of two close-lying * states, denoted La and Lb 
40, 41

, in accordance with the Platt 

nomenclature
42

. Even if their relative ordering in gas phase is under debate, it is relatively safe 

to assume that for chromophores in aqueous solution, the more polar La is the first excited 

state. For the pyrimidines, the La and Lb are much further apart, so the first absorption band 

corresponds essentially to only one strong * transition.  

In addition to the spectra of the nucleosides corresponding to the four major bases, we 

also present in Figure 1 that of 5-methylcytidine (5MedC). Methylation and demethylation at 

the 5 position of cytosine are natural processes playing an important biological role 
43

. 
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Methylated sites are strongly correlated with the occurrence of carcinogenic mutations 
44

. The 

absorption spectrum of 5MedC is red-shifted with respect to that of dC 
12

. This observation 

together with the fact that the intensity of the solar radiation reaching the earth increases with 

increasing wavelength could be a hint for the involvement of this rare base to the appearance 

of UV-induced DNA lesions. 

4.2 DNA helices  

When going from monomeric chromophores to the DNA double strands, the absorption 

spectra are altered (Figure 2). The most striking change concerns the oscillator strength. The 

DNA hypochromism is used to characterize the stability of double strands via their melting 

curves, obtained by following the absorbance at 260 nm as a function of temperature. Despite 

the extensive application of this phenomenological property the underlying modifications of 

the electronic transitions remained unclear until recently. The study of base pairs and dimers 

of base pairs by quantum chemistry methods shed light on this question attributing the DNA 

hypochromism to charge transfer transitions between different bases 
45, 46

 It was also shown 

that simple coupling between bright and dark transitions, due to orbital overlap may lead to 

the same effect 
47

.  

It can be seen in Figure 2 that the change in the molar absorption coefficient observed 

for the duplex with respect to an equimolar mixture of the constitutive nucleotides is not 

uniform over the whole spectrum and depends on the base sequence. Interestingly, an increase 

in the oscillator strength is observed at the red edge of the spectra of duplexes composed of 

homopolymeric adenine-thymine (dA)n·(dT)n and alternating guanine-cytosine 

(dCdG)n·(dCdG)n sequences. This is also known to occur in the case of four-stranded 

structures formed by self-association of guanines via Hoogsteen bonds (Figure 3) called G-

quadruplexes 
48-50

. 
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In addition to orbital overlap interactions, another type of electronic interactions is also 

operative within double strands: coupling between dipolar transitions of the monomeric 

chromophores which gives rise to Frenkel excitons. According to the exciton theory the 

excited states of a multichromophoric system are linear combinations of the excited states 

localized on each monomeric constituent 
51, 52

. The calculated properties of the eigenstates 

highly depend on the way that the exciton matrix is constructed. Recent calculations 

performed in this frame for duplexes composed of ten base-pairs marked a significant 

progress with respect to older studies 
53, 54

. The diagonal terms of the Hamiltonian matrix 

(dipolar coupling) were calculated using atomic transition charges derived from quantum 

chemistry data 
55

 and taking into account various conformations determined by molecular 

dynamics simulations 
56-58

. These theoretical studies showed that, even in the presence of 

conformational disorder, the dipolar coupling alone is capable of inducing delocalization of 

the excitation over several bases. The number of coherently coupled bases, calculated by the 

participation ratio PR=1/Lk, 
59, 60

 where Lk is given by: 

  







m  monomer i  

i

mk,(C

2

states

2

k )L
. 

The sum within the square brackets represents the contribution to the eigenstate <k> of 

different electronic states (i) belonging to the same monomer (m). The participation ratio was 

determined for two limiting cases (Figure 4). First, in the absence of spectral broadening, 

considering that each electronic transition of the monomeric chromophores is a delta function. 

Then, spectral broadening was taken into account. As the homogeneous width is not known, 

diagonal disorder was represented by the inhomogeneous width derived from decomposition 

of the experimental spectra in solution (Figure 1) using lognormal functions 
55

. Even in the 

latter case, where the diagonal disorder is overestimated, many of the excited states, in 

particular those located near the absorption maximum, remain delocalized over several bases 
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57, 58
. The same theoretical studies showed that delocalization of the excitation does not induce 

large spectral shifts with respect to the spectra of non interacting monomers 
57, 58

. Burin et al. 

showed that the dipolar coupling within DNA hairpins 
61

 composed of adenine-thymine pairs 

can be deduced from their absorption spectra 
62

.  

Finally, theoretical calculation performed by quantum chemical methods for smaller 

systems than those studied by the exciton theory, also reported delocalization of the * 

transitions over two or more bases as well as mixing among * and charge transfer excitons 

63-67
.  

5 Fluorescence of monomeric chromophores 

5.1 Steady-state measurements 

Few studies have been consecrated to the steady-state fluorescence properties of the 

natural DNA bases in recent years. In 2002, we published refined room-temperature 

fluorescence spectra of the eight natural DNA nucleosides and nucleotides in water 
5
. Those 

of dA, dG, dT, dC and 5MedC in water are shown in Figure 1 and the corresponding peak 

positions are given in Table 1. In contrast to the spectra published up to 2000, which were 

restricted to the near UV and blue region, the spectra in Figure 1 are extended further into the 

visible.  

We determined the quantum yields using the fluorescence spectra recorded over the 

whole visible spectral region and compared their values with earlier ones 
5
. The fluorescence 

quantum yield values thus obtained were systematically higher than earlier ones and are given 

in Table 1. It is worth noting that the fluorescence quantum yields are nearly the same for the 

purine nucleosides and nucleotides. In the case of the pyrimidines, nucleotides have clearly 

higher quantum yields than the corresponding nucleosides. This shows that the phosphate 

moieties affect the excited state deactivation processes to a certain extent, but the exact details 

remain unknown. 
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Covalent substitutions have strong effects on the fluorescence properties. This is shown 

in a striking manner by methylation of the various bases. For 5MedC, the fluorescence peak 

value was found to be shifted by 14 nm to the red and the fluorescence quantum yield 

increased by a factor of six compared to dC 
12

. The effect of methylation, as well as other 

subsitutions, were also reported in a systematic study of various uracils in reference 
68

. Uracil 

itself has the lowest fluorescence quantum yield of all DNA/RNA bases. For 5-methyluracil 

(thymine), the quantum yield increases by a factor of 3 and for 5-fluorouracil (5FUra) it 

increases by another factor of two. Furthermore, the maxima of the emission spectra are 

correlated with the quantum yields; for uracil it is blue-shifted with regard to thymine, while 

for 5FUra it is red-shifted. This indicates that the emitting state is deactivated faster than its 

energetic relaxation 
68

. 

5.2 Time-resolved measurements 

5.2.1 Natural DNA bases 

Since 2000, numerous ultrafast spectroscopic studies in solution have contributed 

largely to characterize the fluorescence decays of the DNA monomeric chromophores. These 

studies have established that the excited state decays are globally sub-picosecond, even 

though there are differences from one system to another. In the large majority of cases, the 

decays have been measured close to the fluorescence maximum, i.e. 330 nm in spite of the 

fact that, as mentioned above, the steady-state fluorescence extends well into the visible 

region. Visible wavelengths have only been probed in a few cases, showing that the 

fluorescence decays are ultrafast all over the spectral domain. 

Peon and Zewail were the first to publish femtosecond fluorescence measurements of 

DNA/RNA nucleosides and nucleotides in room-temperature water solution using 

fluorescence upconversion 
9
. They reported that all fluorescence decays are sub-picosecond 

and monoexponential. The latter fact that was later revised 
69

. 
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We have, in a series of papers, refined the study of fluorescence from DNA 

monomeric constituents using femtosecond fluorescence upconversion 
5, 8, 17, 68, 70, 71

. A 

general feature for all molecules is that the fluorescence decay is strongly non-exponential. 

This is exemplified in Figure 5, where the fluorescence decay of dTMP at 330 nm is shown 

over 7 ps, covering three decades in intensity. Also shown in this figure are the resulting 

curves from fitting with mono- and bi-exponential model functions.  

Normalized fluorescence decays for the four mononucleotides at 330 nm are shown in 

Figure 6. All these siglals were obtained with an apparatus function of 325 fs (fwhm). 

Regarding the two pyrimidine chromophores, there are only small variations between 

the fluorescence decays of the base, the nucleoside and the nucleotide 
5, 18, 68, 70, 71

. The non-

exponential decays are all dominated by an ultrafast component, between 150 and 300 

femtoseconds and a slower one of ca. 1 ps having much lower amplitude (Table 1). In their 

broadband femtosecond Kerr-gate study of thymidine, Kwok et al. evoked the existence of a 

"doorway" state facilitating excited state deactivation 
18

. This "doorway" state should mainly 

be 
1
n but mix with the close-lying 

1
* states. 

The fluorescence decay of adenine is characterized by an exceptionally long 

component of about 8 ps and a faster one of about 0.2 ps 
5, 8, 72

. The long component was 

assigned to the 7H tautomer, while the fast component was assigned to the canonical 9H 

tautomer. The simultaneous presence of two tautomers has only been observed in the case of 

adenine but not for dA and dAMP. The latter exist only in their 9H form and displays much 

faster fluorescence decays. Temps and coworkers studied adenine and adenosine by 

fluorescence upconversion using a tunable excitation source 
72

. For the 9H-adenine tautomer, 

they found the decays to vary significantly with the excitation wavelength. This was 

explained by the opening of an additional non-radiative decay channel with decreasing 

excitation wavelength, possibly involving a near-lying n* state. For adenosine, on the other 
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hand, they found a mono-exponential decay for all excitation wavelengths. Kwok et al. 

studied the adenosine fluorescence by a broadband femtosecond Kerr-gated technique 
11

. 

Analysis of the fluorescence decays gave two components with lifetimes of ~0.13 ps and 

~0.45 ps which were associated these with the La and Lb 
1
* excited states, respectively. The 

0.13 ps time constant was proposed to correspond to the La - Lb internal conversion. This is in 

line with an interpretation based on the Strickler-Berg equation, suggesting that both 
1
* 

excited states contribute to the fluorescence of these chromophores 
73

. However, the very low 

initial value (0.25) and the lack of any rapid decay of fluorescence anisotropy 
5
 clearly shows 

that the La - Lb relaxation is too fast (<< 100 fs) to contribute to the emission of dA/dAMP. 

This is corroborated by the fact that the steady-state emission spectra are independent of the 

excitation wavelength 
5
. 

Regarding the guanine chromophore, there are only data for the nucleoside and the 

nucleotide since guanine itself is not soluble enough in water. As their steady-state 

fluorescence spectra are by far the broadest, extending beyond 700 nm 
5
, we performed an 

extensive study of the dGMP fluorescence at various emission wavelengths 
17

. The 

fluorescence decays were found to depend strongly on the wavelength, indicating important 

spectral shifts (Figure 7). Incompatible with solvation dynamics, a global analysis revealed 

that the spectral evolution can be explained by an ultrafast red-shift and broadening, in 

accordance with a recent theoretical study 
74

. As in the case of dAMP, dGMP emission 

originates only from the first excited state. 

The non-exponentiality of the fluorescence decays was rationalized as arising from 

two different "regions" of the potential energy surface of the first * state 
68, 74

. The fast 

component should then correspond to the Franck-Condon region while the longer one should 

be correlated with a “relaxed” geometry along the reaction coordinate towards a conical 

intersection.  



03/04/2013 

14 

On Table 2, we have assembled fitted time constants from recent measurements of 

fluorescence decays at 330 nm of the four nucleotides.  

5.2.2 Role of substituents 

In addition to the natural DNA bases mentioned above, the fluorescence of various 

substituted bases has been studied by ultrafast spectroscopy. The objective was to elucidate 

conformational and electronic changes occurring during excited state relaxation in close 

connexion with theoretical studies. Among the possible substitutions the most important one 

is without doubt methylation, which also occurs naturally. For example, thymine is just the 5-

methylated form of the RNA base uracil. 

The average fluorescence lifetime of 5MedC is longer about one order of magnitude 

compared to that of dC 
12

 (Figure 8b). Contrary to dC, the fluorescence decays of 5MedC 

depend strongly on the wavelength, indicating important spectral shifts. 

We have paid special attention on the fluorescence of uracil and its derivatives 
68, 75-77

. 

The effect of methylation, halogenation as well as that of other substituents on the first 

excited * and n singlet states were investigated by combining femtosecond fluorescence 

spectroscopy and quantum chemistry calculations 
78

. The analysis relied heavily on TD-DFT 

calculations, described below. Uracil itself has the fastest fluorescence decay observed for any 

nucleic acid. It is shorter than the time resolution (100 fs) of the FU setup. In contrast to 

methylation at the 5 position, methylation of uracil at positions 1, 3, 6 does not induce any 

observable change on the fluorescence decays 
78

. An example is given in Figure 8a, where the 

fluorescence decays of uracil and thymine are compared. These results, obtained with 

femtosecond resolution, contrast with those obtained for a "blocked" uracil (5,6-

trimethyleneuracil) by a TCSPC study combined with quantum chemistry calculations 
79, 80

  

indicating that the 6-substituent is also involved in the internal conversion mechanism. 
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According to these studies, the 5 and 6 substituents flip out of the molecular plane in opposite 

directions forming a biradical state.  

Focusing on the 5 substituent, it was found that the fluorescence lifetime depends on 

its chemical nature 
78

. The longest lifetime was observed for 5-fluorouracil. A particular 

behavior was observed in the case of the amino group 
81

. While amino substitution on the 6 

position has no effect at all, amino substitution on the 5-position (5-aminouracil, 5AUra) 

causes a drastic increase in lifetime. The fluorescence decays of 5AUra depend strongly on 

the emission wavelength.  

As noted in the preceding sub-section, the adenine chromophore has the shortest 

fluorescence lifetime of the natural DNA constituents. However, slight structural changes may 

have enormous consequences on the electronic structure and thus the fluorescence properties. 

A striking example is provided by 2-aminopurine, which contrary to adenine (6-aminopurine) 

is highly fluorescent with a lifetime of about 12 ns 
82, 83

. Being a structural analog to adenine, 

it can replace the latter in stacked structures and form Watson-Crick base pairs with thymines 

allowing incorporation in the DNA double helix. Zewail and coworkers studied 2-

aminopurine in water and in ethanol by fluorescence upconversion, focusing on the early time 

evolution
69

. They observed important dynamical spectral shifts assigned to solvation 

dynamics.  

Schwalb and Temps have published detailed FU studies of DMAdenine 
84, 85

. This 

molecule presents dual fluorescence, covering the whole visible region. A global analysis of 

fluorescence decays between 290 and 650 nm enabled the authors to distinguish 5 different 

time constants from below 100 fs to 62 ps. 

On Table 3, we have assembled fluorescence lifetimes of substituted DNA bases. 

5.2.3 Solvent effects 
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Until recently, the solvent effects on the excited state dynamics of DNA and its 

constituents were described as quite modest 
3
. This statement was based on the fact that the 

excited state lifetimes are actually faster than the solvent response. This may be true for 

"slower" solvents such as alcohols, but for water, the solvation dynamics is actually too fast 

for the time resolution available with existing experimental setups. For many modified bases, 

on the other hand, important spectral shifts have been observed. However, the role of the 

solvent is not limited to its dynamical response. It can also influence the energetic ordering of 

the excited states, and thus the intramolecular dynamics. 

We studied solvent effects on the fluorescence properties of chosen uracils 
75-77, 86

. An 

example is given in Figure 9, where the fluorescence decays of 5-fluorouracil in acetonitrile, 

methanol and water are compared. The fastest decays are observed in acetonitrile and the 

slowest in aqueous solution while those observed in alcohols are intermediate. 

In a FU study of isolated guanosine-cytosine basepairs in chloroform solution after 283 

nm excitation, Schwalb and Temps also gave lifetimes of the individual chromophores 
87

. 

Since these "nucleosides" were modified with a tert-butyldimethylsilyl group instead of the 

deoxyribose group, some caution has to be made when comparing with aqueous solution data. 

The measured decays are dominated by a sub-picosecond component followed by a small 

amplitude longer component. The sub-picosecond components, 0.67 ps for dC and 0.84 ps for 

dG are fairly close to the fluorescence lifetimes measured in water solution. The longer 

components were assigned to n* state emission, since this state is less destabilized in 

chloroform than in aqueous, and thus may be on the same level as or below the directly 

excited * state. In a subsequent study of DMAdenine 
84, 85

, they found that the lifetime of 

the intermolecular excited charge transfer state is much longer for dioxane solutions (1.4 ns) 

than that in aqueous solutions (62 ps). 

5.3 The nonradiative deactivation mechanism 
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The ultrafast fluorescence decays of the DNA bases are due to highly efficient 

nonradiative processes occurring in the first excited singlet state. The detailed understanding 

of these nonradiative relaxation processes constitutes a major challenge from a theoretical 

point of view, and an increasing number of quantum chemistry calculations have addressed 

this problem for uracil/thymine 
68, 78, 80, 88-96

, cytosine
79, 91, 97-105

, adenine 
65, 89, 106-121

 and 

guanine 
74, 122-132

. 

The picture emerging is that the ultrafast decay of the excited state is due to highly 

efficient conical intersections (CI) between the first singlet * state and the ground state. 

These CI are related to important geometrical changes occurring in the fluorescent 
1
* state, 

but the actual geometries involved differ from one molecule to the other. Complicating the 

picture even more is the fact that fluorescence only probes the first excited 
1
* state, but the 

calculated deactivation processes often involve near-lying dark states of 
1
n* character. Most 

theoretical work has been performed for molecules in vacuo, while this Chapter focuses on 

fluorescence of solutions. Evidently, the relative energy ordering of the 
1
* and 

1
n* states 

is very sensitive to the environment, wherefore it is not always possible to compare theory 

and experiment. In general the 
1
n* states are strongly destabilized in aqueous solution and 

contribute less to the excited state dynamics. An instructive comparison, from a theoretical 

point of view, of the nonradiative processes involved in the excited state deactivation for the 

five DNA/RNA bases has recently been given by Serrano-Andres and Merchán 
133

. 

Finally, it should be mentioned that transient absorption experiments probing from the 

UV to the IR spectral domains have provided complementary information on the excited state 

relaxation 
4, 134-137

. 
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6 Fluorescence of DNA helices 

The fluorescence properties change dramatically when we go from monomeric 

chromophores to multichromophoric systems. This is reflected both in the fluorescence 

decays and the fluorescence anisotropies. The latter were used to evidence transfer of the 

excitation energy among the bases of duplexes occurring before conformational changes. 

Therefore, we first describe this aspect, taking place on the femtosecond time-scale, and we 

continue with the fluorescence decays which extend up to the nanosecond time-scale.  

6.1 Energy transfer  

We have seen in Section 4 that the electronic coupling is capable of inducing delocalisation of 

the Frank-Condon excited states within DNA double helices. According to this model, each 

eigenstate has its own spatial characteristics determined by the electronic transitions of the 

bases participating to the eigenstate. In the studies performed in the frame of exciton theory
55-

58
, the eigenstate topography was given by the square of the coefficients (C

i
k,m). The latter 

depend on the conformation of the duplex which determines the strength of the electronic 

coupling. As an example, Figure 10 shows the topography corresponding to one eigenstate of 

(dCdG)5·(dCdG)5 averaged over 100 conformations
58

. Different eigenstates have different 

topographies
56-58

. Therefore, it is expected that population of an upper eigenstate and 

subsequent internal conversion will result in a transfer of the excitation energy within the 

helix, which is known as intraband scattering.  

As the polarization of the electronic transitions associated with the various eigenstates 

of a duplex are also different, intraband scattering should lead to a loss of fluorescence 

anisotropy. But molecular motions may produce the same effect. Therefore, in order to detect 

energy transfer one has to probe fluorescence anisotropy on early times, when molecular 

motions have not the time to occur, in particular for large systems. 
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We determined the fluorescence anisotropy decays of DNA duplexes and G-

quadruplexes using fluorescence upconversion (Section 2) and compared them with the 

anisotropy decays corresponding to a stoichiometric mixture of non interacting nucleotides
13-

16, 20
. Table 5 shows some typical anisotropy values obtained from these experiments. We 

found that the fluorescence anisotropy of all the studied duplexes decays more rapidly than 

that of non-interacting chromophores whose size is much smaller. These results reveal that 

energy transfer takes indeed place within the helices on the sub-picosecond time-domain. 

More important, the anisotropy values detected for double helices are lower than that of 

the nucleotide mixture already at zero time which means that the onset of energy transfer 

occurs at times shorter than the 100 fs, time-resolution of our setup. Such an ultrafast energy 

transfer cannot take place via Förster transfer considering, in particular, the very large Stokes 

shift associated with the monomeric chromophores (Figure 1). 

Ultrafast energy transfer takes also place in the case of self-associated guanines
50

. 

Figure 11 shows the anisotropy decay determined for self-associated triguanosine 

monophosphates, likely to form four-stranded structures
49

 composed of only one type of 

chromophore. Their fluorescence anisotropy is already lower than that of dGMP at zero time. 

Moreover, at 1 ps it dwindles down to 0.02 whereas that of the mononucleotides remains 

higher than 0.10.  

Energy transfer, possibly assisted by conformational motions, may continue on longer 

time-scales, until the whole population of the excited states relaxes to the ground state. 

6.2 Fluorescence decays  

The fluorescence decays of DNA helices recorded by FU slow down upon increasing 

the emission wavelength. At least two time constants, whose values vary with the emission 

wavelength, are necessary in order to fit the decays with exponential functions. This is not 

surprising for such multichromophoric systems, knowing that even the fluorescence decays of 
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the monomeric chromophores cannot be described by single exponentials (Section 5). Again 

here, the average lifetime <> is used in order to evaluate the sequence effect on the 

fluorescence decays. Table 4 shows the <> values determined for various model systems.  

The lifetimes of the single strands containing only one type of base are all longer than 

those of the corresponding nucleotides. The most important lengthening is encountered in the 

case of adenine and, even more, of guanine strands. For these systems, the fluorescence 

decays slow down with increasing the number of bases
38

. We recall that guanine single 

strands have the propensity to self-associate but so far only one system characterized by a 

well-defined quadruplex structure was studied. This is formed by association of four single 

strands d(TGGGGT); its FU decay is presented in Figure 12 together with those of TMP and 

dGMP
50

.  

A noticeable size effect is also reported for homopolymeric duplexes composed of 

adenine-thymine pairs, the oligomer (dA)20·(dT)20 and the polymer poly(dA)·poly(dT) (ca. 

2000 base pairs)
13

. Not only is the lifetime at the fluorescence maximum longer when going 

from the oligomer to the polymer, but the fluorescence anisotropy also decays faster 

indicating a more efficient energy transfer. Moreover, the changes in the oscillator strength 

become larger and the maxima of the steady-state absorption and emission spectra shift to 

slightly higher energies. All these effects are the fingerprints of a collective behavior 

becoming more pronounced as structural disorder diminishes with increasing size. The size 

effect on the fluorescence decays of alternating adenine-thymine duplexes is less pronounced 

14
. However, even here the fluorescence anisotropy decays more rapidly for the polymer 

compared with the oligomer. For the latter, a combined broad-band time-resolved 

fluorescence and transient absorption study suggested the existence of an intermediate weakly 

emitting species
19

. 
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Focusing on the polymeric duplexes, the FU decays recorded at 330 nm, which 

corresponds to the maximum of their spectra recorded at 0.2 ps, exhibit a clear sequence 

effect
138

. The decays of poly(dA)·poly(dT), poly(dAdT)·poly(dAdT) and 

poly(dGdC)·poly(dGdC) are successively longer, equal and shorter than those of an 

equimolar mixture of the constitutive nucleotides. An acceleration of the excited state 

dynamics was also found upon formation of isolated Watson-Crick guanine-cytosine pairs 

dissolved in chloroform
87

. These data were correlated with theoretical calculations which 

pointed out the role of interbase proton transfer
139-141

.  

The introduction of guanine-cytosine pairs in homopolymeric purine-pyrimidine 

oligomeric duplexes leads to a decrease of the FU lifetimes
38

. Nevertheless, when the 

guanine/adenine ratio increases a more complex behavior is observed, assigned to important 

structural changes.  

In contrast to the monomeric chromophores, fluorescence emission of DNA helices 

contains long-lived components. Already described in earlier studies
27, 142

, they have been 

revisited recently in combination of FU and TCSPC measurements. As in the case of FU, 

TCSPC signals exhibit strong wavelength and sequence dependence 
15, 21

. This is also true for 

the double strand poly(dG5MedC).poly(dG5MedC)
22

. For all the studied systems, fits of the 

fluorescence decays with multi-exponential functions gave time constants amounting up to a 

few nanoseconds and contributing to the signal with weak amplitude.  

Extended time-resolved investigations were carried out for the duplex 

poly(dA)·poly(dT). A non-linear fitting/deconvolution procedure was performed by merging 

the data obtained by FU and TCSPC. Then, using the parameters derived from this global fit, 

the percentage of the emitted photons per decade of time was calculated for various 

wavelengths. Figure 13 shows the time distribution of the photons emitted at 330 and 420 nm 

up to 10 ns together with the steady-state fluorescence spectrum. We remark that near the 
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emission maximum most of the photons are emitted between 1 and 10 ps whereas the red tail 

of the spectrum is dominated by photons emitted at times longer than 1ns. 

The identification of the various emitting states of DNA helices is an intricate problem. 

The time constants derived from the fits with multi-exponential functions, used in order to 

quantify the fluorescence decays, are not necessarily associated with precise excited states. As 

mentioned previously, a large multitude of excited states may exist for a given DNA helix, 

governed by electronic coupling and associated with the various conformations: * states 

localized on a single base, Frenkel excitons delocalized over a few bases, charge transfer 

states, n* states
135, 143

, as well as combinations among them. The situation becomes even 

trickier due to the excitation energy transfer processes. In this respect, it is important to stress 

that, when energy transfer takes place within a low dimensional multichromophoric system, 

the time-constants derived from fits with multi-exponential functions do not have physical 

meaning.
144

 However, the change of the fluorescence anisotropy decays as a function of the 

emission wavelength observed for the same excitation wavelength
13, 14

 clearly shows the 

existence of a variety of bright emitting states. 

The great complexity of the fluorescence decays and fluorescence anisotropy decays 

observed for DNA helices contrasts with the relative simplicity of the transient absorption 

signals. In the latter case, only two time-constants, assigned to localized * excited states 

intrastrand excimers
4, 36, 37

 were determined in most studies. Yet, the fingerprint of Frenkel 

excitons, living a few ps and depending of the size of the helix, was reported in a transient 

absorption study 
145

.  

 

7 Concluding remarks 

We have described above how sophisticated spectroscopic measurements have been 

performed during the past few years for DNA components despite the extremely weak 
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fluorescence quantum yields. By following specific and rigorous experimental protocols, 

these measurements have started to unravel the very complex mechanisms which govern the 

excited state dynamics.  

Evidently, the experimental work has to be supported by theoretical calculations. This 

is relatively easier for the monomeric chromophores, even if modeling solvent effects 

correctly is not an easy task and more efforts are still needed. Modeling excited state 

relaxation gets much trickier in the case of model helices for which two different approaches 

have been followed so far. On the one hand, quantum chemical calculations performed for 

small systems taking into account orbital overlap and solven 
65

 
66

. On the other, calculations in 

the frame of the exciton theory, neglecting orbital overlap but studying larger systems 
146

. 

Ideally, the combination of both methods is necessary and can be done properly only in close 

connection with the experiments.  

Collecting detailed experimental data such as fluorescence decays, fluorescence 

anisotropy decays and time-resolved fluorescence spectra recorded over several decades of 

time will be a decisive step. Needless to say this has not yet been realized for any DNA 

strand, but we are fairly optimistic that this is now within reach. Modification of various 

parameters such as the ionic strength, the size of the helix or the base sequence, known to 

induce conformational changes, are expected to provide precious additional information. 

Finally, investigation of nucleosomes (DNA - histones complexes) will provide certainly a 

more biologically relevant picture. This poses many problems from experimental point of 

view and constitutes a real challenge. 
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TABLE 1: Fluorescence maxima (fl) and quantum yields () of monomeric chromophores in 

aqueous solution. 

 

compound fl
 
 (nm)

 a
 ×10

4
 r0 ref. 

dA  307  0.86  0.15  5 

dAMP 306 0.68  0.10 0.24  0.01 5 

dG 334 0.97  0.08  5 

dGMP 334 1.09  0.10 0.15  0.04 5 

Thy  329 1.02 0.4 68 

dT  330 1.32  0.07  5 

TMP 330 1.54  0.11 0.36  0.01 5 

dC 328 0.89  0.10  5 

dCMP 328 1.15  0.06 0.34  0.01 5 

5MedC 342 5.6  0.1  12 

Ura 312 0.35 0.4 68 

5FUra 335 2.21 0.4 68 

d: 2’-deoxy, MP: 5’-monophosphate, Me: methyl, F: fluoro; 
a 
error:  1 nm 
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TABLE 2: Fluorescence lifetimes (ps) determined at 330 nm of DNA monomeric 

chromophores in aqueous solution. They were obtained from fits with mono-exponential 

(exp(-t/0)) or bi-exponential functions (exp(-t/1) + (1-)exp(-t/2))  

compound 0 1 2  <>
 a
 ref. 

Thy  0.200.02 0.630.02 0.560.02 0.39  0.02 68 

T 0.700.12     9 

dT 0.470.01 0.150.02 0.720.03 0.700.02 0.32  0.01 5 

dT  0.15 0.76   11 

TMP 0.980.12     9 

TMP 0.680.02 0.210.03 1.070.06 0.670.02 0.50  0.02 5 

Cyt 0.500.02 0.200.02 1.300.07 0.850.02 0.37  0.01 71 

C 0.760.12     9 

dC 0.400.01 0.180.02 0.920.06 0.830.02 0.30  0.01 5 

CMP 0.950.12     9 

dCMP 0.530.02 0.270.02 1.380.11 0.840.02 0.45  0.02 5 

Ade  0.230.05 8.00.3 0.65  0.05 2.95 8 

Ade  0.340.07 -

0.670.14 
b
 

8.40.8   10 

A 0.530.12     9 

A 0.310.02     10 

A  0.13 0.45   11 

dA 0.170.01 0.10 
c
 0.42  0.10 0.91  0.01 0.13  0.01 5 

AMP 0.520.16     9 

dAMP 0.160.01 0.10 
c
 0.52  0.10 0.94  0.02 0.13  0.01 5 

G 0.690.10     9 

dG 0.460.01 0.160.02 0.780.05 0.730.02 0.33  0.01 5 

GMP 0.860.10     9 

dGMP 0.470.01 0.200.02 0.890.06 0.790.02 0.34  0.01 5 

dGMP  0.160.02 -

0.290.08 
d
 

0.940.09 -

4.01.0 
d
 

  17 

a)
<> = 1+(1-)2, 

b)
 depending on the excitation wavelength (245 – 280 nm) 

c)
 limited by the 

time-resolution of the system, 0.10 ps after deconvolution 
d)

 depending on the emission wavelength 

(310 - 600 nm). 
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TABLE 3: Fluorescence lifetimes (ps) of modified monomeric chromophores in aqueous 

solution. They were obtained from fits with mono-exponential or multi-exponential functions. 

 

compound 1 2 3 <>
 a
 ref. 

Ura  0.100.01    68 

5FUra 0.690.06 1.740.06  1.32  0.05 68 

5AUra 
b
 0.150.01 0.660.07 2.780.05  81 

5MedC 
c
 1.00.1 5.40.3  2.8 12 

DMAde 
d
 0.520.03  3.00.2 62.01.0  85 

a) 
<> is the average lifetime 

b)
 based on a global fit 330-465 nm. 

c)
 at 330 nm. 

d)
 based on a global fit 

350-510 nm. 
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TABLE 4 Average fluorescence lifetimes <> (in ps) determined for various DNA strands 

from fluorescence upconversion measurements 

 

compound 310 nm 330 nm 350 nm 360 nm 380 nm 420 nm 

(dG)10·(dC)10   2.07
38

    

(dG)20·(dC)20   3.29
38

    

poly(dGdC)·poly(dGdC) 0.16
16

 0.2
16

  0.25
16

   

(dA)20·(dT)20 0.75
13

 1.26
13

 2.73
38

  1.27
13

 1.57
13

 

(dAdT)10·(dAdT)10  0.50
14

     

poly(dA)·poly(dT)  2.1
15

   2.48
15

 2.99
15

 

poly(dAdT)·poly(dAdT)  0.50
14

   1.14
14

 3.75
14
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TABLE 5: Fluorescence anisotropy of DNA strands r(t) determined at time t (in ps) from 

the fits of the experimental decays using mono-exponential functions 

compound (nm) r(0) r(0.5) r(1) r(3) 

(dA)20·(dT)20 
13

  

310 0.37 0.29 0.26 0.24 

330 0.31 0.29 0.27 0.23 

380 0.31 0.28 0.26 0.18 

420 0.28 0.24 0.21 0.12 

poly(dA)·poly(dT) 
13, 20

 330 0.28 0.24 0.20 0.18 

(dAdT)10·(dAdT)10 
14

 330 0.28 0.24 0.20 0.18 

poly(dAdT)·poly(dAdT) 
14

 

330 0.28 0.25 0.23 0.18 

380 0.31 0.25 0.21 0.17 

420 0.22 0.16 0.1 -0.1 

poly(dGdC)·poly(dGdC) 
16

 330 0.25 0.15   

d(TG4T)4 
50

 

330 0.26 0.16 0.11 0.07 

360 0.25 0.16 0.11 0.07 

420 0.22 0.15 0.11 0.06 
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Figure 1 

 

 
 

Steady-state absorption (dashed) and fluorescence (solid) spectra of dA, dG, dT, dC and 

5MedC spectra in water. Arrows designate the Stokes-shift. Vertical bars indicated the two 

lowest transitions of dA and dG; exc = 255 nm. 
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Figure 2 

 

 

 
Comparison of the absorption spectra obtained for duplexes [D in solid lines: 

poly(dGdC)·poly(dGdC) (a); poly(dA)·poly(dT) (b); poly(dAdT)·poly(dAdT) (c)] and an 

equimolar mixture of the constitutive nucleotides (M in dashed lines). The shaded area in the 

lower part corresponds to (D-M)/M. 
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Figure 3 

 

 

 
 
Schematic representation of (a) guanine-cytosine and adenine-thymine Watson-Crick base 

pairs and (b) a tetrad where guanines are linked via Hoogsteen hydrogen bonds and stabilized 

by a metal cation (grey circle) 
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Figure 4 
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Average participation ratios calculated for the thirty eigenstates of (dCdG)5·(dCdG)5 within 

the frame of the exciton theory. Two extreme cases are shown: the diagonal terms are 

represented either by delta functions (grey) or by Gaussian curves whose width corresponds to 

the inhomogeneous width of the experimental absorption spectra of nucleotides in aqueous 

solution (black).  



03/04/2013 

41 

Figure 5 
 

 

 

Fluorescence decay of TMP recorded by fluorescence upconversion at 330 nm. Also shown 

the apparatus function ( grey) and the fits with  mono- and bi-exponential functions. 
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Figure 6 

 

 

 

 
 

Fluorescence decays of a) dCMP (circles), TMP (triangles) b) dAMP (triangles) and dGMP 

(circles) recorded by fluorescence upconversion at 330 nm. 
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Figure 7 

 

 

 

 
 

Fluorescence decays of dGMP recorded by fluorescence upconversion at 330 (squares), 450 

(circles) and 600 nm (triangles). 
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Figure 8 

 

 

 

 

 

 

 

Fluorescence decays of a) uracil (circles), thymine (triangles) b) cytidine (circles) and 5-

methylcytidine (triangles) recorded by fluorescence upconversion at 330 nm. 
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Figure 9 

 

 
 

 
Fluorescence decays of 5-fluorouracil in acetonitrile (squares) methanol (circles) and water 

(triangles) recorded by fluorescence upconversion at 330 nm. 
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Figure 10 

 

 
Topography of the eigenstate <10> determined for (dCdG)5·(dCdG)5. The coefficients (C

i
10,m) 

represent the contribution of the chromophore m in its i
th

 excited stated to the eigenstate 

<10>. The upper and lower parts of each histogram refer to chromophores located on each 

one of the strands. Average values obtained for 100 different conformations of the duplex in 

the absence of diagonal disorder. 
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Figure 11 

 

 

 
 

 

 

 
Fluorescence anisotropy determined for dGMP (circles) and self-associated triguanosine 

diphosphates (trianges) at 350 nm 
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Figure 12 
 

 

 

 

Fluorescence decays of dGMP (dashed line), TMP (dotted line) and (TG4T)4 (solid line) 

recorded by fluorescence upconversion at 360 nm.  
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Figure 13 

 

 

 
 
 

Fluorescence spectrum of poly(dA).poly(dT). The inset shows the percentage of emitted 

photons per decade of time at 330 and 420 nm, resulting from a combined fit of the 

fluorescence decays recorded by FU and TCSPC using multi-exponential functions. 

 

 

 


