
HAL Id: hal-00658848
https://hal.science/hal-00658848

Submitted on 11 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building a RTOS for MPSoC Dataflow Programming
Yaset Oliva, Maxime Pelcat, Jean François Nezan, Jean-Christophe Prévotet,

Slaheddine Aridhi

To cite this version:
Yaset Oliva, Maxime Pelcat, Jean François Nezan, Jean-Christophe Prévotet, Slaheddine Aridhi.
Building a RTOS for MPSoC Dataflow Programming. 2011 International Symposium on System on
Chip (SoC), Oct 2011, Finland. pp.143. �hal-00658848�

https://hal.science/hal-00658848
https://hal.archives-ouvertes.fr


Building a RTOS for MPSoC Dataflow
Programming

Yaset Oliva, Maxime Pelcat, Jean-Francois Nezan,
Jean-Christophe Prevotet

IETR, INSA Rennes, CNRS UMR 6164, UEB
20, Av. des Buttes de Coesmes, 35708 Rennes

Email: yaset.oliva, maxime.pelcat, jean-francois.nezan,
jean-christophe.prevotet@insa-rennes.fr

Slaheddine Aridhi
Texas Instruments

06271 Villeneuve Loubet, France
Email: saridhi@ti.com

Abstract— Multiprocessor Systems-on-Chip (MPSoC) are be-
coming the standard high performance Digital Signal Processing
(DSP) systems. Hardware complexity abstraction is needed to
enable efficient MPSoC programming. A major challenge of
MPSoC programming is efficiently handling the combination
of new features necessary in a MPSoC operating system: load
balancing and efficient use of the parallel resources, with the more
traditional features of Real-Time Operating Systems (RTOS): re-
source sharing between applications, task priorities and reactivity
to events. This paper presents a method to combine dataflow
methods and RTOS features. The resulting system prototypes
an RTOS for symmetric multiprocessing MPSoCs whose inputs
are dataflow graphs of applications. The prototype is built on
the µC/OS-II RTOS. Experimental results are given on a 3GPP
Long Term Evolution algorithm executed on a 4-core MPSoC.

I. INTRODUCTION

In [1], Edward Lee shows that programming with threads
is an error-prone operation and proposes several alternatives,
including using process networks, to make software behavior
more predictable. The dataflow process network [2] Model
of Computation (MoC) models an algorithm by concurrent
and independent modules known as actors which commu-
nicate ordered tokens (data quanta) through First-In First-
Out channels. A set of firing rules defines when an actor
executes. Dataflow models have been shown to favor parallel
algorithm description as they favor data locality and reduce
multi-core scheduling constraints to data dependencies [3].
Thus, dataflow models are well suited for use with signal
processing algorithms

MPSoC systems used for signal processing are increasingly
complex to program. Tools that ease MPSoC programming
are thus more and more needed. This paper outlines a method
of using dataflow graphs instead of thread declarations as
inputs to an RTOS. In this case, the RTOS is then able to
dispatch the actors which compose the dataflow graph to the
cores of an MPSoC. These actors are directly executed by
the MPSoC RTOS, instead of requiring the programmer to
program primitives for task migration and synchronization.
This method ensures the synchronization of actors and the
management of actor input and output data.

This paper presents experiments performed with a MPSoC
RTOS prototype incorporating dataflow model management

into the µC/OS-II kernel. The first target application is the
uplink data decoding algorithm executed in base stations
supporting the 3GPP Long Term Evolution (LTE) telecom-
munication standard.

Section II presents related works on multi-core runtime
management and dataflow MoCs. Section III introduces the
MPSoC RTOS structure. Section IV explains the dataflow
management part and Section V considers the multi-core
scheduling part. Experimental results of the prototype are
shown in Section VI.

II. RELATED WORKS

A. RTOS and Runtime Management Systems

In [4], Nollet, et al. present an overview of runtime manage-
ment systems for MPSoCs. The overview covers both indus-
trial and academic systems. Commonalities between systems
are identified: their structure can be divided into two parts,
the quality manager and the resource manager. The quality
manager tries to optimize the Quality of Service (QoS) of
the system, i.e. to find the best application configuration;
the resource manager offers mechanisms to allocate cores,
communication media and memory.

The runtime systems reviewed in [4] consider only se-
quential applications which share cores of an MPSoC. The
MPSoC RTOS presented in this paper differs, as it partitions
each application between available cores. Parallelism of each
application is explicitly stated using a dataflow graph. Such
partitioning aims at ensuring good load balancing between
cores and at reducing the computation latency of each ap-
plication. In this way, the MPSoC RTOS may be considered
to be equivalent to a quality manager of low granularity.
The StreamIt [5] runtime system has similar goals than the
MPSoC RTOS. However, it processes a specific streaming
language while the MPSoC RTOS reuses C/C++ legacy code
for the actors and combines it with a parameterized dataflow
coordination language.

The MPSoC RTOS prototype is built on an existing kernel:
µC/OS-II [6]. This choice was made through consideration of
the small footprint, the simplicity and the available source code
for this kernel. Since the original µC/OS-II doesn’t implement



any multiprocessor mechanism, its sources are modified to
manage MPSoCs.

B. Modeling Applications with a Parameterized Dataflow
Model

Many dataflow MoCs have been introduced in the literature,
each offering a tradeoff between compile-time predictability
and capacity to model dynamic run-time variability. It may
be seen that the most obvious difference is their firing rules.
Signal processing applications, such as telecommunication or
video processing, are based on a loop which repeats a pattern
of execution on a sequence of input data. Describing the
repeated pattern with a dataflow MoC consists of dividing the
computation into actors that exchange data only through input
and output data queues without sharing any state.

In this paper, applications are described using parameterized
dataflow modeling [7]. The chosen model of Parameterized
Cyclo-Static Directed Acyclic Graph (PCSDAG) states that
the graph can be totally reconfigured once before starting a
new execution. This model is a parameterized and acyclic
version of the Cyclo-Static Dataflow (CSDF) model [8]. The
reconfiguration enables dynamic behavior of the algorithm,
i.e. computation strongly depending on the input data. The
PCSDAG model has been shown to be suitable for describing
uplink and downlink data processing algorithms of 3GPP LTE
base stations [9].

III. STRUCTURE OF THE MPSOC MODEL-BASED RTOS

The RTOS obtained is divided into two modules: dataflow
management and RTOS scheduling (Figure 1). The dataflow
graph is described with C++ objects and compiled within the
dataflow management module. At each OS clock tick, the
dataflow graph is parameterized, i.e. new parameter values
are retrieved, and a temporary graph of execution is obtained.
For each actor within the temporary graph, an RTOS task is
created. The task corresponding to an actor must manage actor
data and call actor code. Flags are automatically generated
to synchronize actors based on their dependencies. RTOS
scheduling is completed by assigning each actor to a core.

Core

Core

Core

Core

SMP

Dataflow Graph 
Management

Parameterized 
Dataflow

Graph

RTOS
Scheduling

MPSoC RTOS

Parameters Clock Tick

tasks

tasks

Fig. 1. Structure of the MPSoC Model-Based RTOS

Next sections detail the dataflow management and RTOS
scheduling modules.

IV. DATAFLOW GRAPH MANAGEMENT

The test application used is the uplink decoding of 3GPP
LTE base stations. The PCSDAG model was specifically

designed for this application but is likely to be also suitable for
video encoding and decoding algorithms. Managing the graph
consists of performing an expansion. This is the process where
the dataflow graph is transformed into the temporary graph in
which each actor is executed only once in a graph iteration.
The temporary graph depends strongly on parameter values
that fluctuate between consecutive iterations.

Figure 2 illustrates the application and the expansion. Up-
link decoding consists of retrieving data sent simultaneously
by nbuser users. This data is divided into Code Blocks (CB) of
variable size. Both the number of users nbuser and the number
of code blocks nbCB for each user vary every millisecond.
nbCB is different for each user and may be represented
by a cyclic pattern nbCB = nbCBuser0 , nbCBuser1 , .... The
computation is divided into four phases: Multiple Input Mul-
tiple Output (MIMO) decoding, symbol to bit conversion, bit
processing, and Cyclic Redundancy Check (CRC) [9]. Each
millisecond, the graph is parameterized and transformed into a
single rate directed acyclic temporary graph (srDAG) in which
production and consumption rates of each FIFO queue are
equal. Figure 2 shows 4 possible configurations. The expansion
phase has been demonstrated to be executable in real-time
while respecting the 3GPP LTE constraints in [9].

x nb_user reps x nb_CB reps x nb_user
reps

Multiple antenna
decoding

x1 rep

Symbol to bit Bit processing CRC

1
10

10

3

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 10 1 1 1 1

1

10

10

10

1

1

1

1

1

1

1

1

1

1

1

1

srDAG: 1 user - 1 CB

srDAG:
2 users - 5 CBs

srDAG: 3 users - 3 CBs

1
10

10

9

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

srDAG:
2 users - 10 CBs

PCSDAG

Fig. 2. Expanding the input dataflow model.

After the expansion phase, an RTOS task is created for each
actor in the srDAG graph. These tasks are then scheduled on
the multiple cores of the MPSoC architecture. It may be noted
that an alternate algorithm model to PCSDAG can be chosen
provided that the srDAG graph can still be produced.

V. MULTI-CORE SCHEDULING

RTOS scheduling is divided into two phases: the mas-
ter/slave phase and the symmetric phase. In the master/slave
phase, the core designated as master executes the dataflow
graph management and posts actors to the slave cores and
to itself. When the scheduling enters the symmetric phase ,
each core is part of a pair and calls successively the common
µC/OS-II scheduler to execute the highest priority task. The
objective of this division is to limit the master/slave phase that
naturally puts the master in the position of the bottleneck. The



symmetric phase also enables preemptions and passive wait of
events.

A. Master/Slave Phase

The master/slave phase is illustrated in Figure 3. Each core
has a 1-place queue to receive an order of task execution.
After an OS timer tick, the previously described dataflow
graph management is performed and one task per actor is
created. The master processor then dispatches the ready tasks
with highest priority to the available slave processors. The
dispatching process is performed by adding a message into
the 1-place queue of the selected slave. The message contains
the address of the shared memory location where the code
of the task has been placed as well as input/output buffer
management information. The dispatching process finishes
when all ready tasks have been mapped or when there are no
more available slave processors. When all slave processors are
busy and there are still ready tasks, then the master processor
executes the next task itself.

At the same time as the master executing, each slave
processor waits for a message to be placed into its 1-place
queue. When the message arrives, the slave processor places
its program counter to the designed address and executes the
task. After this first task dispatching is done, the symmetric
phase starts and all cores become pairs.

B. Symmetric Phase

During the symmetric phase (Figure 4), each core can
access the schedule function. This common access requires
the use of mutex semaphores provided within the architecture
support library. As in a typical RTOS, the scheduler function
consists of identifying the highest-priority task that is ready
and running it. The scheduler is called if either the task
execution is preempted by a higher execution task or if the
task execution is completed.

After the execution of the schedule function, and if no task
is ready to be executed by the core, the scheduler saves the
current task’s context state and gets returned to its private
memory. The slave is now ready to receive another message
from the master processor.

Using RTOS scheduling, several independent applications
can share the MPSoC with each actor with its own priority.
Moreover, passive wait of events is allowed. This is very
important in the case of systems with co-processors. In the
cases where a programmer wishes to offload a costly operation
such as turbo-coding on a co-processor, an actor can wait
for turbo-coding completion passively on a core and can
be preempted by another ready actor while turbo-coding is
running.

The next section gives experimental results of the prototype.

VI. EXPERIMENTAL RESULTS

The experimental prototype is executed on an Altera Cy-
clone II FPGA integrating 4 NIOS cores [10] and a shared
memory. The memory footprint of the system is shown in
Figure 5. As can be seen, the operating system data occupies

Task execution code
Manage actor input data
Execute actor
Manage actor output data
Set successor task flags as ready
Call scheduler

Core

Core

Core

Core

Shared Memory

MPSoC RTOS 
scheduling code

Concurrently accessed scheduler

Find highest priority ready task T
If  T is not the current task
    Switch context 
Execute the task

preempted?

called from all cores

Fig. 4. Symmetric Scheduling Phase: Self-Organizing Execution

more than 50% of the 510kb of total system memory. This
expensive cost is largely due to the size and number of task
stacks statically allocated by the kernel (64 in this case).

Fig. 5. Memory Usage

The prototype has been run for six iterations. At the end of
each iteration, the application parameter values are modified
to generate a different number of actors, as shown in Table I.

Iterations 1 2 3 4 5 6
nbuser 10 3 6 8 10 2
max nbCB per user 5 4 3 1 2 5
max nbCB 14 10 13 5 8 14
nbactors 39 31 43 27 30 36

TABLE I
ITERATION PARAMETERS

Figure 6 shows the system performance in terms of exe-
cution time, against the number of cores. The iterations corre-
spond to the ones presented in Table I. These curves confirm
that the system performances improve as the number of cores
increases. However, the concurrent shared memory accesses
also increase and become a bottleneck. This is a limitation of
the current system. The performance improvement naturally
depends on the shape of the srDAG because the exposed
parallelism depends on the graph parameters.



Core

Core

Core

Core

Shared Memory

Dataflow graph management

Pend OS Timer Tick
Get graph parameters
Expand dataflow graph
Create 1 task per actor
Call  dispatcher

MPSoC RTOS
Scheduling code

Slave Code

Pend task in queue
Execute task

While(there is a ready core, including self) 
    Post the highest priority ready task
 to this core
end

Graph first tasks dispatcher

Local Memory

Dataflow Graph
Management Code

called from
master core
only

called from all cores

Timer

Hardware
Mutexes

Fig. 3. Master/Slave Scheduling Phase: Expanding Dataflow Graph and Launching Slave Cores.

Fig. 6. Execution time performances

VII. FUTURE WORKS

The current prototype may be improved both in terms
of latency and in terms of memory. Speed can be gained
by exploiting quiescent points [11] of the single rate DAG.
Quiescent points are points between two actors’ execution
when no context needs to be maintained during rescheduling.
This case corresponds to the scheduler call at the end of the
”Task execution code” in Figure 4. This call does not require
context switch and the task stack can even be flushed.

From a memory viewpoint, the task stacks can be signif-
icantly reduced. µC/OS-II associates independent stacks to
each task. Having a pool of tasks and reusing tasks associated
to finished actors will automatically reduce task creation time
and stack memory. It is planned to test the code on a Texas
Instruments TMS320TCI6486, a 6-core SMP DSP with a
500MHz clock. Each core of this platform also has a private
memory. Thus, application data and code can be removed
from the shared memory and managed automatically using
dataflow graph information. The TMS320TCI6486 enables
research towards a RTOS for non-SMP MPSoC architectures.

VIII. CONCLUSION

In this paper, we detailed an RTOS for Symmetric Multi-
processing MPSoC combining ideas from dataflow models and
from commonly-used RTOS. The advantages of such a system
are numerous. Dataflow graphs bring automatic parallelization
and ease of application description. The traditional difficulty of

manually synchronizing tasks disappears. Moreover, the actors
themselves can be written in C or C++ code, so legacy code
can be easily reused. The system obtained is portable to SMP
architecture with considerable number of cores.

The MPSoC RTOS obtained goes successively through a
master/slave phase that parameterizes the dataflow graph and
a symmetric phase that permits any core to access the RTOS
scheduler. This allows the reactivity to events of an RTOS to
be combined with the automatic partitioning and portable exe-
cution of an algorithm described in a parameterized dataflow
graph. Experimental results are shown on a 3GPP Long Term
Evolution algorithm running on a 4-core MPSoC. The MPSoC
RTOS prototype is built on the µC/OS-II RTOS.

Based on the present prototype of the MPSoC RTOS, further
research will be conducted to identify the dataflow models best
suited to signal processing applications. Additional scheduling
methods and architectures will also be tested to exploit a prior
knowledge on graph execution.

REFERENCES

[1] E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5, p.
33–42, 2006.

[2] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings
of the IEEE, vol. 83, no. 5, p. 773–801, 1995.

[3] W. B. Ackerman, “Data flow languages,” Computer, vol. 2, 1982.
[4] V. Nollet, D. Verkest, and H. Corporaal, “A safari through the MPSoC

Run-Time management jungle,” Journal of Signal Processing Systems,
vol. 60, no. 2, p. 251–268, 2010.

[5] W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong, H. Hoffmann,
M. Brown, and S. Amarasinghe, “StreamIt: a compiler for streaming
applications,” Technical Report MIT , Cambridge, MA, 2001.

[6] J. J. Labrosse, MicroC/OS-II: the real-time kernel. Newnes, 2002.
[7] B. Bhattacharya and S. Bhattacharyya, “Consistency analysis of re-

configurable dataflow specifications,” in Embedded processor design
challenges, 2002, p. 308–311.

[8] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-
static data flow,” in icassp, 1995, p. 3255–3258.

[9] M. Pelcat, J. F. Nezan, and S. Aridhi, “Adaptive multicore scheduling
for the LTE uplink,” in Adaptive Hardware and Systems (AHS), 2010
NASA/ESA Conference on, 2010, p. 36–43.

[10] Altera, “Literature on NIOSII software embedded processor,”
http://www.altera.com/devices/processor/nios2/ni2-index.html.

[11] S. Neuendorffer and E. Lee, “Hierarchical reconfiguration of dataflow
models,” in Formal Methods and Models for Co-Design, 2004., 2004.


