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Introduction

Understanding the relations between various omics data (such as metabolomics or genomics

data) and phenotypes of interest is one of the current major challenges in biology. This ques-

tion can be addressed by trying to predict the phenotype value from the omic from joint ob-

servations of the omic and of the phenotype. In this paper, we focus on the prediction of a

phenotype from metabolomic data. Metabolomic data usually are high dimensional data. The

number of observations is often reduced, model selection methods are a way both to obtain

a relevant solution to the prediction problem but also to select the most important metabo-

lites related to the phenotype under study. In this paper, the number of observations and of

metabolomic discretized variables are of the same order; model selection is nevertheless use-

ful to solve the prediction problem.

During the past years, model selection has known a growing interest in the statistical commu-

nity: the first - and also probably the mostly used - selection method has been introduced by

Tibshirani (1996) under the name of LASSO. Several variants of this original approach have

then been proposed such as, recently, a bootstraped LASSO, named BOLASSO, introduced

by Bach (2009).

The aim of this paper is to combine a wavelet representation of the metabolome spectra (see

Mallat (1999) and Antonini et al. (1992) for a complete introduction to wavelets) with the BO-

LASSO approach. We compare this methodology to more classical methods using either the

original spectra as predictors (instead of the wavelet representation) or the original LASSO to

select the model.

Material and methods

The purpose is to predict a given phenotype, real-valued, from metabolomic data. As shown

in Figure 1, metabolomic data are spectra observed on a discrete sampling grid of size q. To
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learn how the phenotype can be predicted from the metabolomic spectra, n i.i.d. observations

of these variables are available. In the following, Y will denote the vector of the n observations

of the phenotype to predict and X = (X1, . . . , Xq) will refer to the matrix of the n discrete

observations of the metabolomic data on the sampling grid (hence, each Xi is a vector in R
n).

In this paper, we focus on a linear relation between X and Y :

Y = Xβ + ǫ, (1)

where β ∈ R
q are the parameters to estimate and ǫ are i.i.d. Gaussian random variables with

variance σ2.

Wavelet Analysis

The metabolomic data consisted in 508 spectra, each of dimension 375. One of these spectra

is plotted in Figure 1.
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Figure 1: Spectrum of one individual

Following the idea of Villa-Vialaneix and Hernandez-Gonzalez (2009), each spectrum has

been decomposed onto a Haar basis. The corresponding wavelet coefficients have been thresh-

olded with a soft-thresholding method (see Mallat (1999) for details). In the following, X̃ will

denote the n × p matrix of thresholded wavelet coefficients where, in general, the number of

wavelets p is smaller than the original dimension of the data, q. In the data set described in the

next section, p is equal to 367. Finally, note that this preprocessing leads to a change in the

original model (1); the new linear model is written as:

Y = X̃β̃ + ǫ̃. (2)

LASSO and BOLASSO

Basically, the LASSO is a penalized least squares approach used to solve ill-posed or badly

conditioned linear regressions. The parameter β of (1) is estimated by:

β̂lasso = arg min
β∈Rq

‖Y −Xβ‖2
2
+ µ‖β‖1 (3)



where µ ≥ 0 is the regularization parameter, and ‖.‖k the Lk norm (in a straightforward

way, the same method can be applied to find the parameters β̃ in Equation (2)). A complete

description of the LASSO method for linear regression can be found in Tibshirani (1996).

The great interest of this approach comes from the fact that the solution leads to a restricted

number of non zero βi, this number depending on the value of the regularization parameter.

Therefore, LASSO is both a shrinkage and a selection method at the same time. However,

Bach (2009) showed that LASSO lacks of stability: only small changes in the data bring

some variables selected by the LASSO to disappear and some others to appear. Hence, Bach

(2009) proposed to combine it with bootstraping to improve its stability: several independent

bootstrap samples are generated and the LASSO is performed on each of them. This approach

is proved to make the irrelevant variables asymptotically disappear.

A modification is applied to BOLASSO to adapt it to a non-asymptotic framework. An ap-

pearance frequency is calculated for each variable Xi by counting the number of times the

variable Xi is selected over the bootstrap samples. A high frequency denotes a good predition

ability of the variable Xi.

Estimation of the performances

The parameters of each model are estimated first on a part of data set (learning set), then-

the performances are calculated on the other part of the data set (test set). Moreover, in the

LASSO method, a single parameter has to be tuned: the regularization parameter, µ. In the

BOLASSO method, two parameters have to be tuned: the regularization parameter µ and

the appearance frequency threshold. Indeed each variable has a appearance frequency, so a

frequency threshold is introduced to select important variables only.

Those parameters have been tuned by cross validation on the learning set. The global proce-

dure (learning with cross validation on the learning set and performances estimation on the

test set) was repeated 50 times on several random split on the whole data set. This leads to a

collection of performance values that can be displayed through a boxplot in order to evaluate

the level of accuracy of each method as well as its variability.

Results and discussion

The chosen phenotype to predict was the “Daily Feed Consumption” and four approaches

have been compared to predict this variable: the LASSO and the BOLASSO on the original

data (discrete sampling of the spectra) and the LASSO and the BOLASSO on the thresholded

wavelet coefficients. The performances were evaluated through the mean squared errors of

prediction (MSEP) and the number of selected variables on the 50 test sets (Figure 2). The

best prediction is provided by BOLASSO on the wavelet transformed data, using a limited

number of predictive variables.

Two conclusions can be driven from this experiment: firstly, BOLASSO improves the accu-

racy of LASSO and secondly, the wavelet preprocessing leads to better performances than the

original data.

This paper focussed on methodological aspects of phenotype prediction based on metabolomic

data. A phenotype was chosen for the sake of illustration. Further work is needed to give an



Figure 2: Comparison of LASSO and BOLASSO on original and wavelet transformed

data on MSEP (left) and number of selected coefficients (right)

overview on the performance of metabolomic data on the prediction of a large set of quantita-

tive production phenotypes.

Conclusion

Our objective was to predict a phenotype based on metabolomic data. We have shown results

about prediction ability of four methods: LASSO or BOLASSO used either on the original

data or on thresholded wavelet coefficients. On this data set, the BOLASSO method applied on

the wavelet coefficients gave the best results. For prediction purpose in general, a well adapted

method of data denoising, coupled with a robust and sparse prediction approach should be

recommended.
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