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ABSTRACT

Context. Weak gravitational lensing is an ideal probe of the dark universe. In recent years, several linear methods have
been developed to reconstruct the density distribution in the Universe in three dimensions, making use of photometric
redshift information to determine the radial distribution of lensed sources.
Aims. In this paper, we aim to address three key issues seen in these methods; namely, the bias in the redshifts of detected
objects, the line of sight smearing seen in reconstructions, and the damping of the amplitude of the reconstruction
relative to the underlying density. We also aim to detect structures at higher redshifts than have previously been
achieved, and to improve the line of sight resolution of our reconstructions.
Methods. We consider the problem under the framework of compressed sensing (CS). Under the assumption that the
data are sparse or compressible in an appropriate dictionary, we construct a robust estimator and employ state-of-the-
art convex optimisation methods to reconstruct the density contrast. For simplicity in implementation, and as a proof
of concept of our method, we reduce the problem to one-dimension, considering the reconstruction along each line of
sight independently. We also assume an idealised survey in which the redshifts of sources are known.
Results. Despite the loss of information inherent in our one-dimensional implementation, we demonstrate that our
method is able to accurately reproduce cluster haloes up to a redshift of zcl = 1.0, deeper than state-of-the-art linear
methods. We directly compare our method with these linear methods, and demonstrate minimal radial smearing and
redshift bias in our reconstructions, as well as a reduced damping of the reconstruction amplitude as compared to
the linear methods. In addition, the CS framework allows us to consider an underdetermined inverse problem, thereby
allowing us to reconstruct the density contrast at finer resolution than the input data.
Conclusions. The CS approach allows us to recover the density distribution more accurately than current state-of-the-art
linear methods. Specifically, it addresses three key problem areas inherent in linear methods. Moreover, we are able to
achieve super-resolution and increased high-redshift sensitivity in our reconstructions.

Key words. Gravitational lensing: weak, Methods: statistical, Techniques: image processing, Cosmology: observations,
Galaxies: clusters: general, Cosmology: large scale structure of Universe

1. Introduction

Weak gravitational lensing has become a powerful tool to
study the dark universe, allowing us to place constraints on
key cosmological parameters, and offering the possibility to
place independent constraints on the dark energy equation
of state parameter, w (Levy & Brustein 2009; Hoekstra &
Jain 2008; Munshi et al. 2008; Albrecht et al. 2006; Peacock
et al. 2006; Schneider 2006; Van Waerbeke & Mellier 2003).

Until recently, weak lensing studies considered the shear
signal, and recovered the mass distribution, in two dimen-
sional projection (see Schneider 2006, for a review of weak
lensing). However, with improved data quality and wide-
band photometry, it is now possible to recover the mass dis-
tribution in three dimensions by using photometric redshift
information to deproject the lensing signal along the line of
sight (Simon et al. 2009; Massey et al. 2007a,b; Taylor et al.
2004).

Under the assumption of Gaussian noise, various linear
methods have been developed to recover the 3D matter
distribution, which rely on the construction of a pseudo-
inverse operator to act on the data, and which include a
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penalty function encoding the prior that is to be placed on
the signal (VanderPlas et al. 2011; Simon et al. 2009; Castro
et al. 2005; Taylor et al. 2004; Bacon & Taylor 2003; Hu &
Keeton 2002).

These methods produce promising results; however,
they show a number of problematic artefacts. Notably,
structures detected using these methods are strongly
smeared along the line of sight, the detected amplitude
of the density contrast is damped (in some cases, very
strongly), and the detected objects are shifted along the
line of sight relative to their true positions. Such effects
result from the choice of method used; Simon et al. (2009)
note that their choice of filter naturally gives rise to a biased
solution, and VanderPlas et al. (2011) suggest that linear
methods might be fundamentally limited in the resolution
attainable along the line of sight as a result of the smearing
effect seen in these methods.

Furthermore, these methods are restricted to deal solely
with the overdetermined inverse problem. In other words,
the resolution obtainable on the reconstruction of the den-
sity is limited to be, at best, equal to that of the input
data. Thus, the resolution of the reconstruction is entirely
limited by the quality of the data and its associated noise
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levels, with no scope for improvement by judicious choice
of inversion or denoising method.

In this paper, we consider the deprojection of the lensing
signal along the line of sight as an instance of compressed
sensing, where the sensing operator models the line-of-sight
integration of the matter density giving rise to the lensing
signal. For simplicity in implementation, and as a proof of
concept of our method, we consider only the line of sight
transformation, reducing the 3D weak lensing problem to a
one-dimensional inversion, with each line of sight in an im-
age treated as independent. We note, however, that the al-
gorithm presented here can be cheaply generalised to three
dimensions.

We adopt a sparse prior on our reconstruction, and use
a state-of-the art iterative reconstruction algorithm drawn
from convex analysis, optimisation methods and harmonic
analysis set within a compressed sensing framework. This
enables us to find a robust estimator of the solution without
requiring any direct prior knowledge of the statistical dis-
tribution of the signal. We note that the compressive sens-
ing framework allows us to consider an underdetermined
inverse problem, thereby allowing us to obtain higher res-
olution on our reconstructions than that provided by the
input data.

This method produces reconstructions with minimal
bias and smearing in redshift space, and with reconstruc-
tion amplitudes ∼ 75% of the true amplitude (or better, in
some cases). This is a significant improvement over current
linear methods, despite the adoption of a simplified, one-
dimensional algorithm. In addition, our method exhibits an
apparent increased sensitivity to high redshift structures,
as compared with linear methods. Our reconstructions do
exhibit some noise, with false detections appearing along a
number of lines of sight. However, these tend to be localised
to one or two pixels, rather than coherent structures, and we
expect improved noise control with a full three-dimensional
implementation.

We note that we do not include photometric redshift
errors in our simulations and, consequently, the simulations
shown here should be considered to be idealised. Ma et al.
(2006) have presented a method to account for such errors
in lensing measurements. This method has been used by
various authors in studies on real data (see, e.g. Simon et al.
2011), and is straightforward to implement in the algorithm
presented here. A full treatment of photometric redshift
errors, which is essential in order for the method to be useful
on real data, will be presented in an upcoming work.

This paper is structured as follows. In § 2, we out-
line the weak lensing formalism in three dimensions, and
outline several linear inversion methods to solve the 3D
weak lensing problem. We introduce our compressed sens-
ing framework and describe our proposed algorithm in § 3.
In § 4, we discuss practical considerations in implement-
ing the method, and describe our simulated dataset. In § 5
we demonstrate the performance of our algorithm in recon-
structing simulated cluster haloes at various redshifts. We
conclude with a discussion of our results and future appli-
cations in § 6.

Throughout the text, we assume ΛCDM cosmology,
with ΩΛ = 0.736, ΩM = 0.264, h = 0.71, σ8 = 0.801,
consistent with the WMAP-7 results (Larson et al. 2011).

2. 3D Weak Lensing

The distortion of galaxy images due to the weak lensing ef-
fect is described, on a given source plane, by the Jacobian
matrix of the coordinate mapping between source and im-
age planes:

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
, (1)

where κ is the projected dimensionless surface density, and
γ = γ1 + ifl2 is the complex shear. The shear is related to
the convergence via a convolution in two dimensions:

γ(θ) =
1

π

∫
d2θ′D(θ − θ′)κ(θ′) , (2)

where

D(θ) =
1

(θ∗)2
, (3)

θ = θ1 + iθ2, and an asterisk ∗ represents complex conjuga-
tion.

The convergence, in turn, can be related to the three-
dimensional density contrast δ(r) ≡ ρ(r)/ρ− 1 by

κ(θ, w) =
3H2

0ΩM
2c2

∫ w

0

dw′
fK(w′)fK(w − w′)

fK(w)

δ[fK(w′)θ, w′]

a(w′)
,

(4)

where H0 is the hubble parameter, ΩM is the matter den-
sity parameter, c is the speed of light, a(w) is the scale
parameter evaluated at comoving distance w, and

fK(w) =


K−1/2 sin(K1/2w), K > 0

w, K = 0

(−K)−1/2sinh([−K]1/2w) K < 0

, (5)

gives the comoving angular diameter distance as a func-
tion of the comoving distance and the curvature, K, of the
Universe.

If the shear (or convergence) data is divided into Nsp

redshift bins, and the density contrast reconstruction is di-
vided into Nlp redshift bins (where Nsp is not necessarily

equal to Nlp), we can write the convergence κ(i) on each
source plane as

κ(i)(θ) '
Nlp∑
`=1

Qi`δ
(`)(θ) , (6)

where

Qi` =
3H2

0 ΩM
2c2

∫ w`+1

w`

dw
W

(i)
(w)fK(w)

a(w)
, (7)

and

W
(i)

(w) =

∫ w(i)

0

dw′
fK(w − w′)
fK(w′)

(
p(z)

dz

dw

)
z=z(w′)

. (8)

Thus, for each line of sight, equation (6) describes a
matrix multiplication, encoding a convolution along the line
of sight. It is the inversion of this transformation:

κ(z) = Qδ(z) , (9)

that is the focus of this paper. We note that the inversion
of equation (2) can be straightforwardly performed on each
source plane in Fourier space.



A. Leonard et al.: A Compressed Sensing Approach to 3D Weak Lensing 3

2.1. Linear Inversion Methods

We focus here on the methods presented in Simon et al.
(2009) and VanderPlas et al. (2011). For a review of other
linear methods, the reader is referred to Hu & Keeton
(2002).

The three dimensional lensing problem is effectively one
of observing the density contrast convolved with the linear
operator R, and contaminated by noise, which is assumed
to be Gaussian. Formally, we can write

d = Rs+ ε, ε ∼ N (0, σ2) , (10)

where d is the observation, s the real density and ε the
Gaussian noise.

The general idea behind linear inversion methods is to
find a linear operator H which acts on the data vector to
yield a solution which minimises some functional, such as
the variance of the residual between the estimated signal
and the true signal, subject to some regularisation or prior-
based constraints.

The simplest instance of such a linear operation is an
inverse variance filter (Aitken 1934), which weights the data
only by the noise covariance, and places no priors on the
signal itself:

ŝIV = [R†Σ−1R]−1R†Σ−1d , (11)

where Σ ≡
〈
nn†

〉
gives the covariance matrix of the noise.

This method proves problematic when the matrices in-
volved are non-invertible, such as when there are degenera-
cies inherent in the allowed solution. In order to make the
problem invertible, some regularisation must be introduced.
Simon et al. (2009) opt to use a Saskatoon filter (Tegmark
1997; Tegmark et al. 1997), which combines a Wiener fil-
ter and an inverse variance filter, with a tuning parameter
α introduced that allows switching between the two. This
gives rise to a minimum variance filter, expressed as:

ŝMV = [α1 + SR†Σ−1R]−1SR†Σ−1d , (12)

where S ≡
〈
ss†
〉

encodes prior information about the signal
covariance, and 1 is the identity matrix.

VanderPlas et al. (2011) have recently proposed a filter
based on the singular value decomposition (SVD) of the in-
verse variance filter of Equation (11). Under this formalism,
we can write

ŝIV = VΛ−1U†Σ−1/2d , (13)

where we have decomposed the matrix R̃ ≡ Σ−1/2R =
UΛV†, U†U = V†V = 1 and Λ is the square diagonal
matrix of singular values λi = Λii.

Their filtering consists in defining a cutoff value σcut,
and truncating the matrices to remove all singular values
with σi < σcut. This effectively reduces the noise by re-
moving the small singular values, which translate into large
values in the inversion.

VanderPlas et al. note that the SVD decomposition is
computationally intensive, and while they do describe a
method to speed up the process, it may not be practical
to use this method on large images.

Similar considerations must be made when using any
of the linear methods described above, as these all involve
matrix inversion, which is an O(N3) process. While opti-
misations can be found, these methods become excessively

time- and computer-intensive when large datasets are con-
sidered. This, in effect, limits the resolution attainable using
these methods.

Moreover, as discussed extensively in Simon et al. (2009)
and VanderPlas et al. (2011), these linear methods give rise
to a significant bias in the location of detected peaks, damp-
ing of the peak signal and a substantial smearing of the den-
sity along the line of sight. The Compressed Sensing (CS)
theory, described below, allows us to address the lensing in-
version problem under a new perspective, and we will show
that these three aspects are significantly improved using a
non-linear CS approach.

3. Compressed Sensing Approach

Linear methods are easy to use, and the variance of each
estimator is rather direct to compute. Furthermore, these
methods generally rely on very common tools with efficient
implementation. However, they are not the most power-
ful, and including non-Gaussian priors is difficult, especially
when such priors imply non-linear terms. Obviously, using
better-adapted priors is required for building a more robust
estimator. In this paper, we adopt a compressed sensing ap-
proach in order to construct an estimator that exploits the
sparsity of the signal that we aim to reconstruct. The esti-
mator is modelled as a optimisation problem that is solved
using recent developments from convex analysis and split-
ting methods.

3.1. Compressed sensing theory

We consider some data Yi ( i ∈ [1, ..,m]) acquired through
the linear system

Y = ΘX , (14)

where Θ is anm×nmatrix. Compressed Sensing (Candès &
Tao 2006; Donoho 2006) is a sampling/compression theory
based on the sparsity of the observed signal, which shows
that, under certain conditions, one can exactly recover a
k-sparse signal (a signal for which only k pixels have values
different from zero, out of n total pixels, where k < n) from
m < n measurements.

Such a recovery is possible from undersampled data only
if the sensing matrix Θ verifies the Restricted Isometry
Property (RIP) (see Candès & Tao 2006, for more details).
This property has the effect that each measurement Yi con-
tains some information about all of the pixels of X; in other
words, the sensing operator Θ acts to spread the informa-
tion contained in X across many measurements Yi.

Under these two constraints – sparsity and a transfor-
mation meeting the RIP criterion – a signal can be recov-
ered exactly even if the number of measurements m is much
smaller than the number of unknown n. This means that,
using CS methods, we will be able to far outperform the
well-known Shannon sampling criterion.

The solution X of (14) is obtained by minimizing

min
X
‖X‖1 s.t. Y = ΘX (15)

where the `1 norm is defined by ‖X‖1 =
∑
i | Xi |. The `1

norm is well-known to be a sparsity-promoting function; i.e.
minimisation of the `1 norm yields the most sparse solution
to the inverse problem. Many optimisation methods have
been proposed in recent years to minimise this equation.
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Further details about CS and `1 minimisation algorithms
can be found in Starck et al. (2010).

In real life, signals are generally not “strictly” sparse,
but are compressible; i.e. we can represent the signal in a
basis or frame (Fourier, Wavelets, Curvelets, etc.) in which
the curve obtained by plotting the obtained coefficients,
sorted by their decreasing absolute values, exhibits a poly-
nomial decay. Note that most natural signals and images
are compressible in an appropriate basis.

We can therefore reformulate the CS equation above
(Equation (15)) to include the data transformation matrix
Φ:

min
α
‖α‖1 s.t. Y = ΘΦα (16)

where X = Φ∗α, and α are the coefficients of the trans-
formed solution X in Φ, which is generally referred to as
the dictionary. Each column represents a vector (also called
an atom), which ideally should be chosen to match the fea-
tures contained in X. If Φ admits a fast implicit transform
(e.g. Fourier transform, Wavelet transform), fast algorithms
exist to minimise Equation (16).

One problem we face when considering CS in a given ap-
plication is that very few matrices meet the RIP criterion.
However, it has been shown that accurate recovery can be
obtained as long the mutual coherence between Θ and Φ,

µΘ,Φ = maxi,k |
〈
Θi,Φk,

〉
|, is low (Candes & Plan 2010).

The mutual coherence measures the degree of similarity be-
tween the sparsifying basis and the sensing operator. Hence,
in its relaxed definition, we consider a linear inverse prob-
lem Y = ΘΦX as being an instance of CS when:

1. the problem is underdetermined,
2. the signal is compressible in a given dictionary Φ,
3. The mutual coherence µΘ,Φ is low. This will happen ev-

ery time the matrix A = ΘΦ has the effect of spreading
out the coefficients αj of the sparse signal on all mea-
surements Yi.

Most CS applications described in the literature are based
on such a soft CS definition. CS was introduced for the
first time in astronomy for data compression (Bobin et al.
2008; Barbey et al. 2011), and a direct link between CS and
radio-interferometric image reconstruction was recently es-
tablished in Wiaux et al. (2009), leading to dramatic im-
provement thanks to the sparse `1 recovery (Li et al. 2011).

3.1.1. CS and Weak Lensing

The 3D weak lensing reconstruction problem can be seen
to completely meet the soft-CS criteria above. Indeed,

1. the problem is undetermined as we seek a higher resolu-
tion than initially provided by the observations, which
are noise-limited,

2. the matter density is seen to be sparsely distributed,
showing clusters connected by filaments surrounding
large voids,

3. the lensing operator encoded by the matrix Q in
Equation (9) (or equivalently, the combination PγκQ,
where Pflˇ encodes the convolution in Equation (2))
spreads out the information about the underlying den-
sity in a compressed sensing way.

To highlight point (3) above, Figure 1 shows the rows
(top panel) and columns (bottom panel) of the transfor-
mation matrix, Q, encoding weak lensing along the line

Fig. 1. Top Panel : Lensing efficiency kernel for given
source planes as a function of lens redshift. Bottom Panel :
Lensing efficiency of a given lens plane as a function of
source redshift.

of sight. The top panel shows the lensing efficiency ker-
nel, which reflects the sensitivity of a given source plane to
the shearing effects of lenses at various redshifts. This is
the broad convolution kernel of Equation (4). The bottom
panel shows the effect of a discrete lens at a given redshift
on source planes, and demonstrates that localised lenses
give rise to effects that are non-local and affect all sources
at redshifts greater than the lens redshift.

3.1.2. Sparsity prior

Sparse priors have been shown to be very useful in regular-
ising ill-posed inverse problems (see Fadili & Starck 2009,
and references therein). In addition, a sparse prior using a
wavelet basis has been used in many areas of signal pro-
cessing in astronomy, such as denoising, deconvolution and
inpainting to recover missing data in images (Starck et al.
2010) . The idea underlying such priors is that there exists a
dictionary in which a given dataset is sparsely represented.
The dictionary used should therefore match as closely as
possible the shapes of the structures that we aim to detect.

Many experiments, such as N-body simulations, have
shown that the matter density in the universe is largely dis-
tributed in localised clusters, which are connected by thin
filaments. Because structures in the Universe appear to be
physically sparse, we may therefore assume that the matter
density is sparse in a domain adapted for cluster- and curve-
like structures. Such domains exist and can be constructed
by gathering several well chosen transforms inside a dictio-
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nary (e.g. a combination of wavelets and curvelets). The
dictionary should be chosen in order to match as closely
as possible the type of structure we aim to recover (e.g.
isotropic structures for wavelets, filaments for curvelets),
and may be adapted to include structures that are not
sparse in the direct domain, but which may be sparsely
represented in an appropriate dictionary.

Regularisation using a sparsity constraint can be under-
stood through a Bayesian framework. We assume that the
distribution of the solution in the sparsifying dictionary has
a Laplacian distribution. This is equivalent to constraining
the `1 norm, which promotes sparsity. A Gaussian assump-
tion, in contrast, constrains the `2 norm, and leads to the
standard Wiener filtering, a Tikhonov solution or an SVD
solution, depending on the way we constrain the solution.

For specific classes of inverse problem, it has even been
shown that the sparse recovery leads to the exact solution of
the problem (compressed sensing). Such a behaviour does
not exist with any other prior than sparsity. Obviously, the
sparse recovery will be optimal when the signal is sparse,
in the same way that the Wiener filter is optimal when
the signal (and noise) is Gaussian. Because the Laplacian
assumption (in a appropriate space such as wavelets) is
more applicable than the Gaussian distribution, restoration
of astronomical data is generally much more efficient using
sparsity.

This explains why wavelets have been so successful for
astronomical image restoration/detection. For the recon-
struction of clusters along the line of sight, we are in a
perfect situation for sparse recovery since clusters are not
resolved due to the bin size, and they can therefore be mod-
elled as Dirac δ−functions. We therefore take Φ to be a
δ−function dictionary. Clearly, in this case, the pixel do-
main is especially appropriate for sparse recovery. We be-
lieve that the sparse prior is a much better model for this
kind of data compared to previous methods with implicit
Gaussian assumptions. Our results in this paper appear to
support this claim.

We note that the method presented here is somewhat
similar to the point-source reconstruction method described
in Hu & Keeton (2002), though they use `2 minimisa-
tion combined with a strict prior on the number of haloes
present along a line of sight. Our method, in contrast, places
no priors on the number of structures along the line of sight.

3.2. Problem statement

Under the CS framework, the reconstruction of the matter
density amounts to finding the most sparse solution that
is consistent with the data. There are many different ways
to formulate such an optimisation problem, and we opt for
the following:

min
s∈Rn

‖Φ∗s‖1 s.t. 1
2 ‖d−Rs‖2Σ−1 ≤ ε s ∈ C , (17)

where the term to minimise is a sparsity-penalty func-
tion over the dictionary coefficients. The second term in
Equation (17) above is a data fidelity constraint, with Σ
being the covariance matrix of the noise and ε the allowed
distance between the estimation and the observation, while
the final term forces the solution to have values inside a
given interval, usually C = [−1,+∞[n for matter overden-
sity.

Note that this latter constraint, encoding a hard min-
imum on the signal to be recovered, is not possible with
linear methods, and is therefore an additional strength of
our method. Enforcing such physical constraints on our so-
lution helps to ensure the recovery of the most physically
compelling solution given the data.

In the compressed sensing literature, we can find equiv-
alent writing of the problem (17), but with a focus on the
data fidelity. We prefer to directly seek for the sparsest so-
lution for a given freedom (i.e. ε) on the distance to the
observation, as such distance is usually easier to tune than
an equilibrium between a regularization and the data fi-
delity terms.

Note this optimisation problem can be equivalently ex-
pressed in a Bayesian framework, assuming Gaussian noise
and a Laplacian distribution of the dictionary coefficients.

In order to solve (17), we use the primal-dual splitting
method of Chambolle & Pock (2011), and is described in
full in Appendix A. The algorithm is iterative, and effec-
tively splits the problem into two parts, applying the two
constraints in equation (17) separately.

On each iteration, the estimate of the reconstruction
is compared with the data, and the data fidelity con-
straint (the second constraint in equation (17)) is applied
by projection of the residual onto an `2 ball of radius ε.
Independently, the estimate of the solution is projected
onto the sparsifying basis, and sparsity is imposed through
soft-thresholding, which minimises the `1 norm of the basis
coefficients. The threshold level is set by the parameter λ,
which aids in controlling the noise. The noise modelling is
discussed in section 4.3, whilst the algorithm, and all prac-
tical considerations related to its implementation, are dis-
cussed in detail in Appendix B. Figure 2 shows a simplified
schematic of the algorithm used.

4. Implementation of the Algorithm

We first consider the simulated data to be used in the re-
mainder of this paper, before discussing some practical con-
siderations important when implementing the algorithm.

4.1. Cluster Simulations

In order to test our method, we need to simulate a realistic
data set. To this end, we consider here a fiducial survey with
a background galaxy number density ng = 100 arcmin−2

distributed in redshift according to

p(z) ∝ z2e−(1.4z/z0)1.5 , (18)

with z0 = 1.0 (Taylor et al. 2007; Kitching et al. 2011), and
the distribution truncated at a maximum redshift of zmax =
2. Figure 3 shows this probability distribution, normalised
arbitrarily.

We take the intrinsic dispersion in shear measurements
to be σγ = 0.2, and consider a field of 1◦ × 1◦ divided
into a grid of 60 × 60 pixels. These parameters are chosen
to mimic the data quality expected from next-generation
surveys such as Euclid (Refregier et al. 2010) and LSST
(Ivezic et al. 2008; LSST Science Collaboration et al. 2009).

In each simulated image, one or more clusters are gen-
erated following an NFW density profile with M200 =
1015M�, c = 3 binned into Nsp redshift bins. The effec-
tive convergence and shear are computed by integrating the
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Initialise parameters

Split solution esti-
mate into two parts

Project solution estimate
onto sparsifying basis

Apply soft threshold at level λ.

Apply the inverse basis transform

Apply transform Σ−1/2Q
to solution estimate.

Apply data fidelity constraint:
mean square error < ε.

Apply transpose
transform Q†Σ1/2.

Add the two components;
apply positivity constraint.

Has the algorithm
converged?

Max.
iterations
reached?

Output the solution

yes

no

yes

no

Fig. 2. Simplified schematic of the reconstruction algo-
rithm described in the text.

Fig. 3. Redshift probability distribution p(z) of the sources
as a function of source redshift z for the simulations de-
scribed in the text.

lensing signal within each source redshift bin, and Gaussian
noise is added, scaled appropriately by the number density
of galaxies within that bin.

4.2. Reconstructions in 1D

As noted in § 2, the 3D weak lensing problem can be
reduced to a one-dimensional problem, by taking as our
data vector the (noisy) lensing convergence along each line
of sight, which is related to the density contrast through
Equation (9). Therefore, we take d = κij(z) and R = Q,

and consider each line of sight in our images independently.
Further, as discussed previously, we take Φ to be a δ-
function dictionary.

In our simulations, clusters are placed into a region
where the mean density in the absence of the cluster is
equal to the mean density of the Universe at that redshift.
In other words, δ is constrained to be greater than zero in
all our simulations. Therefore, the projection onto the con-
vex set C in algorithm 2 applies a positivity constraint at
each iteration.

Clearly, a one-dimensional implementation throws away
information, as we do not account at all for the correlation
between neighbouring lines of sight that will arise in the
presence of a large structure in the image; however, reduc-
ing the problem to a single dimension is fast and easy to
implement, and allows us to test the efficacy of the algo-
rithm using a particularly simple basis function through
which we impose sparsity. A fully three-dimensional treat-
ment of the problem, with more accurate noise modelling
(see below) will be the subject of a future work.

However, the algorithm used is entirely general; there-
fore, with appropriate choice of a three-dimensional basis
set and taking d = γ(θ, z) and R = PflˇQ, one can imple-
ment this algorithm as a fully three-dimensional treatment
of the data with no modification to the algorithm itself.

4.3. Noise Modelling and Control

Noise Model for the Data

We assume that the redshifts of the sources are known ex-
actly, so there is no correlation between the noise in each
source bin. Therefore, the covariance matrix of the noise
along the line of sight is diagonal, with

Σii = σ2
g(zi) =

σ2
γ

ng(zi)Apix
, (19)

where Apix is the pixel area, ng(zi) is the number density
of sources in the bin at redshift zi, and σγ is the intrinsic
dispersion in galaxy ellipticity, taken throughout to be 0.2.

This covariance matrix is used in the evaluation of the
data fidelity constraint in our algorithm above. Note that
the covariance matrix is only diagonal if the galaxy red-
shifts are known exactly. In practice, photometric redshift
errors mean that each redshift slice in the data is likely to
be contaminated with a few galaxies whose redshift error
bars overlap with neighbouring redshift bins. In this case,
the covariance matrix will have additional, non-diagonal el-
ements that are non-zero. This is straightforward to model,
however, for the chosen method of photometric redshift es-
timations, and our algorithm is entirely general regarding
the form of the covariance matrix. Therefore, the problem
of photometric redshift errors is readily tractable in our
method, and will be presented in a future work.

Noise Control in the Algorithm

The noise in the reconstruction is controlled and suppressed
by two parameters in the algorithm described in Figure 2
and Appendix B. The first, and most important of these
parameters is the data fidelity control parameter, ε.

This parameter controls how well the data are fit by
the reconstruction, with ε = 0 implying a perfect fit to the
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data, which is not possible in the presence of noise. Figure
4 demonstrates the effect of varying ε in the reconstruction
of two lines of sight from our simulations.

Fig. 4. Reconstructions for two lines of sight obtained with
varying ε. The top row shows the input data and recon-
structed convergence vector, while the bottom row shows
the reconstructed density contrast.

Clearly, when ε is small, the algorithm attempts to fit
each data point more closely which, in the presence of noise,
can result in overfitting of the data (as seen in line of sight
1) and hence false detections along the line of sight. On the
other hand, a large ε may result in a solution that is not a
good fit to the data (as seen in line of sight 2).

The second parameter used to control the noise is the
soft threshold parameter λ, which is used in the algorithm
to impose the sparsity prior. A threshold set excessively
high will result in a null solution, whilst a threshold set
fairly low will allow for more false detections of noise peaks
along a given line of sight. The appropriate value for this
threshold should be related to the expected fluctuations in
the density contrast resulting from noise variations, and
should scale with the signal to noise in the image.

Note that while ε strongly affects the accuracy of the
estimation in reproducing the underlying density contrast,
λ simply affects the sparsity of the solution. In other words,
changing λ will not greatly affect the reconstructions of true
density peaks, but may affect the number of false detections
and noise peaks seen. Also note that a thresholding λ does
not imply that density peaks with δ < λ will not be de-
tected, as soft thresholding is only applied to one part of
the estimate of the solution.

5. Results

5.1. Comparison with Linear Methods

Firstly, to demonstrate the effectiveness of our method, we
compare our method directly with the linear methods of
Simon et al. (2009) and VanderPlas et al. (2011). As these
linear methods are only defined for Nlp ≤ Nsp, we consider
the case of Nlp = Nsp = 20, and generate a single cluster
halo at a redshift of zcl = 0.25 following an NFW halo
profile with M200 = 1015M� and c = 3.

In the SVD method of VanderPlas et al. (2011), we take
vcut = 1−

∑n
i=1 σ

2
i /
∑nmax

i σ2
i = 0.01, and in the transverse

and radial Wiener filtering methods of Simon et al. (2009),
we take the tuning parameter to be α = 0.05 in both cases.
For our CS approach, we take the soft threshold parameter
λ = 8, and the data fidelity control parameter ε = 3.

Note that while the linear methods take d =
γ(θ, z), R = PflˇQ, our method takes d = κ(θ, z), R = Q
as before. The noise levels in each case are identical.

The results are presented in figures 5 and 6. Figure 5
presents the 2D projections of the reconstructions, com-
puted by integrating the reconstruction along each line of
sight, and the 1D reconstructions along the four central
lines of sight. In the 3D renderings of Figure 6, the re-
constructions from our method, the SVD method and the
radial Wiener filter method are thresholded at δ = 3 (i.e.
the plot only shows δrec ≥ 3), and each is smoothed with a
Gaussian of width σ = 0.7 pix in all three directions. The
reconstruction from the transverse Wiener filter method is
heavily damped with respect to the amplitude of the den-
sity contrast; a threshold of δ = 5 × 10−6 is chosen in this
case, and no smoothing is applied as the reconstruction al-
ready shows a very smooth distribution.

The SVD method appears, in the 1D plots, to identify
the correct redshift of the cluster, with a small amount of
line of sight smearing, but the plots show a prominent high-
redshift peak along the line of sight. We note that it may be
possible to remove this false detection by raising vcut, but at
the cost of increased line of sight smearing (see VanderPlas
et al. 2011). The two-dimensional projection consisting of
the integrated signal along each line of sight is seen to be
more noisy than our results. The three-dimensional render-
ing shows that the SVD method does well at identifying
and localising the cluster, but the resulting reconstruction
does suffer from widespread noise at a moderate level.

The radial and tangential Wiener filter methods show
very little noise in the 2D projections, and the radial Wiener
filter shows very little smearing of the reconstruction along
the line of sight. However, neither Wiener method recovers
correctly the redshift of the cluster. While the transverse
Wiener filter shows very little noise, it exhibits a broad
smearing in both the radial and transverse directions, and
a heavy damping of the amplitude of the reconstruction.
The results obtained using the radial Wiener filter are con-
siderably better, with very little noise seen in the recon-
struction, and with the cluster seen to be well-localised in
the radial direction. However, the amplitude of the cluster
reconstruction is a factor of ∼ 2.5 smaller than the input
density.

Our results are seen to suffer from several prominent,
pixel-scale false detections along noisy lines of sight not
associated with the cluster. However, along the four cen-
tral lines of sight an excellent correlation between the in-
put density contrast and our reconstruction is seen. One
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Fig. 6. 3D rendering of the reconstruction of a zcl = 0.25 cluster using our method (top), the SVD method (2nd row,
vcut = 0.01), radial Wiener filter method (3rd row, α = 0.05) and the transverse Wiener filter method (bottom, α = 0.05)
as described in the text.
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Fig. 5. Comparison of our method with the linear meth-
ods as labelled. The left column shows the 2D projection
of the reconstruction, while the right column shows the 1D
reconstructions along the four central lines of sight (dashed
lines). Note that, due to the amplitude damping effect in
SVD and Wiener reconstructions, the y-axis scaling is dif-
ferent in each of the line of sight plots.

line of sight exhibits a prominent high-redshift false detec-
tion; however this does not appear in the remaining three
lines of sight and the overall amplitude of the reconstruc-
tion is around 75% of the true value. The three-dimensional
rendering demonstrates that the noise in our reconstruc-
tion shows very little coherent structure (i.e. tends to
be restricted to isolated pixels), and is largely low-level.
Moreover, the cluster is incredibly well-localised in redshift

Fig. 7. Reconstructions of a cluster at reshift z = 0.25 us-
ing noisy data with ng = 30 galaxies per square arcminute.
Shown above are the 2D projection of the reconstruction
(top left), 1D line of sight plots for the four central lines of
sight (top right) and smoothed 3D rendering of the recon-
struction, as before.

space, with the smearing seen in the figure primarily arising
from the applied smoothing.

Reconstruction with Noisier Data

The simulations described in § 4.1 represent a rather opti-
mistic set of data. Realistically, one might expect a much
smaller number density of galaxies, so it is important to
consider how our method fares with noisier data. To this
end, weak lensing data were simulated for the same cluster
as described above, but with ng = 30 galaxies per square
arcminute. This represents a factor of ∼ 1.8 reduction in
the signal to noise of our data. In order to account for this
reduction in signal to noise, we increased our soft threshold
parameter λ by a similar factor, taking λ = 15, whist we
again used ε = 3.

The projections and 3D reconstruction obtained using
this noisier data is shown in Figure 7. The 2D projection
shows a noisier reconstruction, with more false detections,
and the central cluster appears less extended. This is to be
expected, given the lower signal to noise in the data. The
line of sight plots again show more noise, with the peaks
of some lines of sight being shifted slightly from the true
redshift. However, they are well localised around the true
peak, and their amplitudes match quite well with the true
underlying density.

The 3D rendering again shows a well-localised peak at
the location of the cluster, albeit slightly extended along
the line of sight. Note also that the false detections con-
tinue to appear as single pixel-scale detections, rather than
as extended objects. As before, we believe that a fully three-
dimensional implementation of our algorithm will reduce
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the number of such false detections by searching for coher-
ent structures of larger angular extent than a single pixel.

While improvements can be made to the noise model
used, it is clear that, with appropriate choice of param-
eters, effective noise control can be obtained with noisy
data, and a very clean reconstruction obtained using our
method. Here again, our method is seen to improve on the
bias, smearing and amplitude damping problems seen in
the linear methods presented above, and the results at this
noise level are of a comparable or better standard than the
results from linear methods at higher signal to noise, as
presented above.

5.2. Improving the Line of Sight Resolution

Given the success of our method at reconstructing lines of
sight at the same resolution as the input data, it is inter-
esting to consider whether we are able to improve on the
output resolution of our reconstructions. It is also worth-
while to test our ability to detect clusters at higher redshifts
than that considered above, given that compressed sensing
is specifically designed to tackle underdetermined inverse
problems. Indeed, noise-free simulations suggest that a res-
olution improvement of up to a factor of 4 in the redshift
direction may be possible with this method.

Therefore, we generate clusters as before, with our data
binned into Nsp = 20 redshift bins, but aim to reconstruct
onto Nlp = 25 redshift bins. We further consider clusters
at redshifts of zcl = 0.2, 0.6, and 1.0. Given the changed
reconstruction parameters, we modify our noise control pa-
rameters slightly and, for all the results which follow, take
λ = 7.5, ε = 2.8.

Figure 8 shows the two-dimensional projection of the
reconstruction and the 1D reconstruction of the four central
lines of sight as before. Figure 9 shows the reconstructions
of these haloes using our method as a three-dimensional
rendering. The three-dimensional rendering is, as before,
thresholded at δrec = 3 and smoothed with a Gaussian of
width σ = 0.7 pix.

Several features are immediately apparent. Firstly, all
three clusters are clearly identified by our method. This is
particularly impressive in the case of the zcl = 1.0 cluster,
as linear methods have, thus far, been unable to recon-
struct clusters at such a high redshift (see, e.g. Simon et al.
2009; VanderPlas et al. 2011). We note that such a detec-
tion is dependent on the redshift distributions of sources,
however, and the lack of detection in Simon et al. (2009)
and VanderPlas et al. (2011) may be due, in part, to their
choice of probability distribution. However, we also note
that the background source density in our sample is highly
diminished behind the zcl = 1.0 cluster (32.5 arcmin−2).

Again, the three-dimensional renderings indicate that
there is very little smearing of the reconstruction along
the line of sight, in contrast with linear methods. This is
further evidenced by the line-of-sight plots, in which the
unsmoothed reconstructions show very localised structure.
Furthermore, the reconstructions exhibit minimal redshift
bias, and some lines of sight are seen to recover the ampli-
tude of the density contrast without any notable damping.

However, again we see several prominent “hot pixels” or
false detections along noisy lines of sight. Such detections
are more evident as the cluster moves to high redshift, and
may be significantly larger than the expected density con-

Fig. 8. Reconstructions of single clusters located at a red-
shift of zcl = 0.2 (top row), zcl = 0.6 (middle row) and
zcl = 1.0 (bottom row). As before, the left column shows
the two dimensional integrated projection of the reconstruc-
tion, while the right panel shows the input density contrast
along the line of sight (solid line) and the 1D reconstruction
along each of the four central lines of sight (dashed lines).

trast of the cluster. This is expected, as the number density
of sources behind the lens diminishes.

We note that these false detections often manifest at
high redshift, arising out of the overfitting effect seen in
Figure 4. We also note that the false detections are very
well localised in both angular and redshift space, and do not
form coherent large structures, making them easily identi-
fiable as false detections; they tend to be localised to iso-
lated pixels. Because of this lack of coherence, we expect
that a fully three-dimensional implementation would sup-
press many of these false detections by aiming to detect
coherent structure in three dimensions, and thereby seek-
ing structures of larger extent than a single pixel.

5.3. More Complex Line-of-Sight Structure

Given the ability of our method to localise structure in red-
shift space, it is interesting to consider whether the algo-
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rithm is able to disentangle the lensing signal from two clus-
ters located along the same line of sight. We consider three
different cluster pairings – zcl = [0.2, 0.6], zcl = [0.2, 1.0],
and zcl = [0.6, 1.0] – and the results obtained by our method
are shown in three-dimensional rendering in Figure 10. We
find that the reconstructions of individual lines of sight in
this case is significantly more noisy than before.

The figure shows the zcl = [0.2, 0.6] cluster pairing to
be reconstructed as a single, coherent structure smeared
out between the two redshifts. In the other two cases, two
distinct clusters are observed, but their redshifts are slightly
biased, and a moderate amount of smearing in the redshift
direction is seen. This smearing arises from the fact that
individual lines of sight detect the structures at different
redshifts; the aggregate effect is an elongation along the
line of sight.

While these results are by no means as clean as the
results obtained for single clusters, it is promising to note
that we are able to detect the presence of more complex line
of sight structure, despite the reconstruction of individual
lines of sight being fairly noisy. It seems clear that in this
case, a fully three-dimensional treatment of the data which
takes into account the correlations between neighbouring
lines of sight and which seeks to reconstruct coherent struc-
tures would offer improvements in this area.

6. Summary and Conclusions

Current approaches to 3D weak lensing involve linear inver-
sion, where a pseudo-inverse operator is constructed incor-
porating prior constraints on the statistical distribution of
the measurement noise and the underlying density. These
methods are straightforward to construct and implement,
make use of common tools, and are usually fairly fast. This
makes them a convenient choice when approaching the 3D
weak lensing problem.

However, reconstructions obtained in this way suffer
from line-of-sight smearing, bias in the detected redshift of
structures, and a damping of the reconstruction amplitude
relative to the input. It has further been noted (VanderPlas
et al. 2011) that the reconstructions obtained using these
techniques may be fundamentally limited regarding the res-
olution attainable along the line of sight, due to smearing ef-
fects resulting from these linear methods. In addition, such
methods are unable to treat an underdetermined inversion,
and therefore are limited in their output resolution by the
resolution of the input data which, in turn, is limited by
the measurement noise.

We have presented a new approach to 3D weak lensing
reconstructions by considering the weak lensing problem to
be an instance of compressed sensing, where the underlying
structure we aim to reconstruct is sparsely represented in
an appropriate dictionary. Under such a framework, we are
able to consider underdetermined transformations, thereby
relaxing the constraints on the resolution of the reconstruc-
tion obtained using our method.

We have reduced the problem to that of one-dimensional
reconstructions along the line of sight. Whilst this is clearly
not optimal, as it throws away a lot of information, it al-
lows us to simplify the problem and to employ a particu-
larly simple basis through which we impose sparsity. We
employ techniques recently developed in the area of con-
vex optimisation to construct a robust reconstruction al-
gorithm, and demonstrate that our method closely repro-

duces the position, radial extent and amplitude of simu-
lated structures, with very little bias or smearing. This is
a significant improvement over current linear methods. In
addition, we have shown that our method produces clean
results that demonstrate an improvement over linear meth-
ods, even when the signal to noise in our data is reduced
by a factor of ∼ 2 in line with that expected from current
lensing surveys.

Furthermore, we demonstrate an ability to reconstruct
clusters at higher redshifts than has been attainable using
linear methods. Although our reconstructions exhibit false
detections resulting from the noise, these noisy peaks do not
form coherent structures, and are therefore well-localised
and easily identifiable as noise peaks.

We have also tested the ability of our method to recon-
struct multiple clusters along the line of sight. Whilst the
reconstructions are noisy, and exhibit a stronger redshift
bias, damping and smearing than that seen in the single
cluster case, our method is seen to be sensitive enough to
detect the presence of more than one structure along the
line of sight. It is hoped that by improving our method, we
will be able to more accurately reproduce these structures.

It is clear from our results that this method holds a lot of
promise; even in the one dimensional implementation pre-
sented here, our results clearly show improvements to the
bias, normalisation and smearing problems seen with linear
methods. There is much room for improvement, however,
and a fully three-dimensional implementation of the algo-
rithm described here (which, as written, is entirely general)
will be presented in future work. Such a treatment is ex-
pected to reduce the incidences of false detection in our re-
constructions, the key to this improvement being the choice
of an appropriate three-dimensional dictionary with which
to sparsify the solution.

In addition, we note that the simulations presented here
are idealised as compared to real data. Most notably, we do
not take any account of photometric redshift errors, which
will be present in any real dataset. This is an important
source of error in lensing measurements, and in order for
the method presented above to have any real value in re-
constructing the matter distribution in a lensing survey, it
must include treatment of these errors. This will be pre-
sented in a future work, included in the three-dimensional
implementation of the algorithm presented here.

The quality of data available for weak lensing measure-
ments continues to improve, and the methods by which we
measure the weak lensing shear are becoming ever more so-
phisticated. So, too, must the methods we use to analyse the
data in order to reconstruct the underlying density. While
linear methods appear to be limited in resolution, and offer
biased estimators, it is clear that a nonlinear approach such
as ours does not, and – in a fully three-dimensional imple-
mentation – may therefore allow us to map the cosmic web
in far greater detail than has previously been achieved.
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Appendix A: Solving the optimization problem

In this section, we explain the development of the recon-
struction algorithm. First, we will present an overview
of some key concepts and results from convex optimisa-
tion, before introducing the primal-dual scheme chosen
to solve Equation (17), and finally discussing the con-
vergence criterion for the algorithm. For a complete in-
troduction to convex analysis, the reader is referred to
Rockafellar (1970); Lemaréchal & Hiriart-Urruty (1996);
Boyd & Vandenberghe (2004).

Notation and terminology

Let H a real Hilbert space; in our case, a finite dimensional
vector subspace of Rn. We denote by ‖.‖ the norm associ-
ated with the inner product in H, I is the identity operator
on H, and ‖.‖p (p ≥ 1) is the `p norm. A real-valued func-

tion f is coercive if lim‖x‖→+∞ f(x) = +∞, and is proper
if its domain is non-empty:

dom f = {x ∈ H | f(x) < +∞} 6= ∅ .

Lastly, Γ0(H) represents the class of all proper lower semi-
continuous (lsc) convex functions from H to (−∞,+∞].

A.1. Convex optimisation

The theory of convex optimisation aims to solve problems
of the form

x̂ ∈ argmin
x∈H

F (x) , (A.1)

where F : H → R is a convex function. If F represents
a potential function, for example, then (A.1) will seek for
the state of equilibrium, i.e. the state that minimises the
potential.

Many algorithms exist for solving such problems, and
an excellent introduction can be found in (Boyd &
Vandenberghe 2004). Recently, methods have been devel-
oped which exploit the decomposition of f into a sum of
smaller convex functions. This can be very helpful if these
functions show properties that are not preserved when the
functions are summed.

For example, if we assume that F can be decomposed
into a sum of K functions all in Γ0(H), then solving (A.1)
is equivalent to solving

argmin
x∈H

K∑
k=1

Fk(x) . (A.2)

Such formulation is interesting when the Fk functions show
properties that are lost while considering the sum F , di-
rectly. In our case, we seek a formulation such that the
functions we seek to minimise have proximal operators that
are simple, and have closed form. While the sum F may not
have this property, the functions Fk can be chosen such that
they satisfy this condition.

A.2. Proximity operator

We may now begin to describe the proximal splitting al-
gorithm used in this work. At the heart of the splitting
framework is the notion of the proximity operator :

Definition 1 (Moreau (1962)). Let F ∈ Γ0(H). Then,

for every x ∈ H, the function y 7→ F (y) + ‖x− y‖22 /2
achieves its infimum at a unique point denoted by proxF x.
The operator proxF : H → H thus defined is the proximity
operator of F .

Therefore, the proximity operator of the indicator func-
tion of a convex set C:

ıC : x 7→
{

0 if x ∈ C ,
∞ otherwise ,

is merely its orthogonal projector. Some key properties are
presented in the following lemma:

Lemma 2 (Combettes & Wajs (2005)).

– Separability: Let Fk ∈ Γ0(H), k ∈ {1, · · · ,K} and
let G : (xk)1≤k≤K 7→

∑
k Fk(xk). Then proxG =

(proxFk
)1≤k≤K .

– Translation: Let F ∈ Γ0(H) and G ∈ Γ0(H) such
that ∀x ∈ H, G(x) = F (x − y), y ∈ H. Then ∀x ∈
H, proxG x = y + proxF (x− y).

A.3. Primal-dual scheme

Consider the optimization problem:

x̂ ∈ argmin
x∈H

G ◦U(x) +B(x) , (A.3)

where G and B are two convex, proper and lower semi-
continuous functions and U is a linear bounded operator.
Equation (A.3) can be see as a special case of Equation
(A.2) where K = 2 and one of the functions contains a
linear bounded operator. Then the Algorithm 1, proposed
in Chambolle & Pock (2011), will converge to the solution
of (A.3), assuming that the proximity operators of G and
B are easy to compute or known in closed form.

Algorithm 1: Primal-dual scheme for solving .

Parameters: The number of iterations Niter, proximal
steps σ > 0 and τ > 0.
Initialization:
x0 = x̄0 = 0 ξ0 = 0.
Main iteration:
For t = 0 to Niter − 1,

– Dual step: ξt+1 = (I − σ proxG/σ)(ξt/σ + Ux̄t).

– Primal step: xt+1 = proxτB
(
xt − τU∗ξt+1

)
.

– Update the coefficients estimate: x̄t+1 = 2xt+1 − xt

End main iteration
Output: Final solution x? = xNiter .

Adapting the arguments of (Chambolle & Pock
2011), convergence of the sequence (xt)t∈N generated by
Algorithm 1 is ensured.

Proposition 3. Suppose that G and B are two convex,
proper and lower semi-continuous functions. Let ζ = ‖U‖2,
choose τ > 0 and σ such that στζ < 1, and let (xt)t∈R be
that defined by Algorithm 1. Then, (xt)t∈N converges to a
(non-strict) global minimiser of Equation (A.3) .
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A.4. Application to solution of Equation (17)

First, we must rewrite the problem in Equation (17) in
an unconstrained form by replacing the constraints by the
indicator functions of the corresponding constraint sets:

min
s∈Rn

‖Φ∗s‖1 + ı`2(ε)

(
Σ−

1
2d−Σ−

1
2 Rs

)
+ ıC(s) , (A.4)

where ı`2(ε) is the indicatrice function of the `2-ball of radius
ε and ıC the indicatrice function of a closed convex set C.

Notice that (A.4) can be expressed in the form of (A.3)
with,

G(x,y) = ‖x‖1 + ı`2(ε)(y −Σ−
1
2 d) , (A.5)

B(x) = ıC(x) , (A.6)

U =

(
Φ∗

Σ−
1
2 Q

)
. (A.7)

We now need only to apply Algorithm 1 in order to compute
the solution. This requires computation of the three prox-
imity operators, which are given by the following proposi-
tion:

Proposition 4. Let F ∈ Γ0(H). Then,

– if F : x 7→ ‖x‖1, then its associated proximity operator,
proxλF , is the component-wise soft-thresholding opera-
tor with threshold λ as defined by Equation (B.1);

– if F : x 7→ ıC(x) =

{
0 if x ∈ C ,
∞ else ,

then its associated proximity operator, proxF , is the
Euclidian projector to the convex set C, PrjC;

– if F : x 7→ ı`2(ε)(x) =

{
0 if ‖x‖2 ≤ ε ,
∞ else ,

then its associated proximity operator, proxF , is the pro-
jector onto the `2-ball with radius ε defined as:

proxF x =

{
x if ‖x‖2 ≤ ε ,
ε
‖x‖2

x else .

The application of Proposition 4 and Lemma 2 to the
optimization problem in Equation (A.4), using the the
primal-dual scheme in Algorithm 1, yields the reconstruc-
tion algorithm expressed in Algorithm 2.

Appendix B: Practical Considerations

Application of the method described in Appendix A to the
specific case of 3D lensing leads us to Algorithm 2, where
one can note the projection over the two constraints de-
scribed above (data fidelity and minimum value of the solu-
tion), and the operator Stλ, which imposes a soft threshold
at a level of λ/ω as:

Stλ : α 7→ (gλ(αi))1≤i≤L, (B.1)

gλ : η 7→
{

(|η| − λ)sign(η) |η| > λ

0 otherwise
.

Algorithm 2: Nonlinear iterative algorithm for solv-
ing Equation (17).

Parameters: Choose ω, τ > 0 such that ωτΘ2 ≤ 1 where

Θ ≡
∥∥∥∥Σ− 1

2 R

∥∥∥∥
2

+ ‖Φ∗‖2, where ‖R‖2 is the spectral

norm of the operator R.
Initialization:
y0
1 = y0

2 = 0, ŝ0 = 0, x0 = 0 .
N = number of elements in d .

d̂ = Σ−
1
2 d .

Choose λ > 0 .
Main iteration:
For n = 0 to Niter − 2,

– Initialise auxiliary variables:

tn1 = yn1 + ωΦ∗ŝn.

tn2 = yn2 + ωΣ−
1
2 Rŝn.

– Sparsity-promoting penalty:

yn+1
1 = t1 − ωStλ/ω (tn1 /ω).

– Data fidelity term:

yn+1
2 = tn2 − ω

(
d̂+ ζ

)

ζ =


tn2 /ω − d̂/ω if

∥∥∥tn2 /ω − d̂/ω∥∥∥
2
< ε
√
N ,

ε
√
N(tn2 /ω−d̂/ω)∥∥∥∥tn2 /ω−d̂/ω∥∥∥∥

2

otherwise.

– Projection on the convex set C:

xn+1 = PrjC

[
xn − τ

(
Φyn+1

1 + R†Σ
1
2 yn+1

2

)]
.

– Update current estimate:

ŝn+1 = 2xn+1 − xn.

End main iteration

B.1. Convergence criteria

The main difficulty with the primal-dual scheme described
above – indeed, with any iterative algorithm – is to define
an appropriate convergence criterion. In this case, the dif-
ference between two successive iterates xt and xt+1 is not
bounded. However, the partial primal-dual gap Gpd, defined
by:

Gpd(x,y) = max
y′
〈y′,Ux〉 −G∗(y′) +B(x)−

min
x′
〈y,Ux′〉 −G∗(y) +B(x′) ,

(B.2)

(when solving (A.3)) is bounded. Here, G∗ is the convex
conjugate of convex function G:

G∗ : x 7→ max
y
〈x,y〉 −G(y) . (B.3)

Let us define two variables from the sequences (xt)t and
(ξt)t produced by Algorithm 1:

xN = 1
N

N−1∑
t=0

xt and ξN = 1
N

N−1∑
t=0

ξt ,
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which are the accumulation variables at iteration N − 1.
Chambolle & Pock (2011) have shown that the sequence

defined by
(
Gpd(x

N , ξN )
)
N∈N

is bounded, and decreases

at a rate of O(1/t), where t is the iteration number.
In order to use (B.2) in our context, the two indicatrice

functions inside (A.4) are not considered, as they play little
role. Therefore, in our case, we may rewrite Gpd(x,y) as:

Gpd(x,y) ≈ max
y′
〈y′,Ux〉 −G∗(y′)−G∗(y) , (B.4)

≈ G(Ux)−G∗(y) , (B.5)

≈ λ ‖Φ∗x‖1 . (B.6)

We determine the algorithm to have converged when

∆GNpd ≡
Gpd(x

N , ξN )−Gpd(x
N−1, ξN−1)

Gpd(xN−1, ξN−1)
< α, (B.7)

where the appropriate α can be determined from simula-
tions, and is dependent on a tradeoff between the desired
level of accuracy of the reconstructed data and the time
taken to complete the reconstruction. Choosing α to be
large will result in an estimate of the solution that may be
some distance away from the solution that would be ob-
tained if absolute convergence were reached, but which is
obtained in a small number of iterations.

Fig. B.1. The function ∆GNpd, as defined in the text, as a
function of iteration number.

Figure B.1 shows a characteristic example of the func-
tion ∆GNpd as a function of iteration number N for the sim-
ulations described in § 5. This function is clearly a smooth,
largely steadily decreasing function of iteration number,
and thus an appropriate choice for defining convergence.
Note that the curve shows some oscillations with itera-
tion number. Such oscillations arise on lines of sight where
the noise results in the algorithm having difficulty fitting
the data within the constraints. With appropriate choice of
parameters, these oscillations are relatively small and the
curve eventually becomes smooth.

We find from experimentation that α = 10−6 yields a
solution that is sufficiently accurate for our purposes, and
is sufficient to largely remove the oscillations, thus we set
this to be our threshold for all reconstructions presented
above. In addition, we require that each line of sight under-
goes at least 1500 iterations, to avoid misidentification of

convergence due to early oscillations of ∆GNpd, specifically
a strong dip seen in this curve at the start of iteration.

It is possible, along certain lines of sight, for the estimate
of the solution to remain constant at zero due to the soft
thresholding while ∆GNpd still varies. To account for this, if

the current cumulative estimate xN does not vary for 200
iterations, we assume that convergence has been reached
for that line of sight.

We now consider several practical issues involved in the
implementation of this algorithm.

B.2. Choice of Step Sizes ω, τ

ω and τ control the step size in the evolution of the algo-
rithm, and are required to be positive and to satisfy the
inequality

ωτΘ2 ≤ 1 (B.8)

where Θ ≡
∥∥∥∥Σ− 1

2 Q

∥∥∥∥
2

+ ‖Φ∗‖2 is the sum of the `2 norms

of the operators used in the algorithm. This sum is domi-
nated by the second term, as the elements of the Q lensing
efficiency matrix are small. We have chosen a δ-function
dictionary, therefore the application of the transformation
Φ∗ represents a multiplication by the identity matrix.

Thus we have Θ ∼ ‖Φ∗‖2 ∼ 1, which implies that
ωτ ∼ 1 is appropriate. For all the results that follow, we
choose ω = τ = 1. Smaller values of these parameters may
be used with little effect on the resulting solution. However,
the smaller the values chosen, the smaller the steps taken in
each iteration of the algorithm. This results in a slower con-
vergence than seen with larger values of ω and τ . Choosing
larger values than implied by Equation (B.8) is not advised,
as convergence of the algorithm is not guaranteed in this
case; the algorithm may give rise to a strongly oscillating
estimator, and the resulting solution may not be the one
that best fits the data given the prior constraints.
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Fig. 9. Reconstructions of single clusters located at a redshift of zcl = 0.2 (top), zcl = 0.6 (middle) and zcl = 1.0
(bottom). The reconstructions are thresholded at δ = 3 and smoothed with a Gaussian of width σ = 0.7 pix.
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Fig. 10. Reconstructions of two clusters along the line of sight, located at a redshift of zcl = [0.2, 0.6] (top), zcl = [0.2, 1.0]
(middle) and zcl = [0.6, 1.0] (bottom). The reconstructions are thresholded at δ = 3 and smoothed with a Gaussian of
width σ = 0.7 pix.


	1 Introduction
	2 3D Weak Lensing
	2.1 Linear Inversion Methods

	3 Compressed Sensing Approach
	3.1 Compressed sensing theory
	3.1.1 CS and Weak Lensing
	3.1.2 Sparsity prior

	3.2 Problem statement

	4 Implementation of the Algorithm
	4.1 Cluster Simulations
	4.2 Reconstructions in 1D
	4.3 Noise Modelling and Control

	5 Results
	5.1 Comparison with Linear Methods
	5.2 Improving the Line of Sight Resolution
	5.3 More Complex Line-of-Sight Structure

	6 Summary and Conclusions
	7 Acknowledgments
	A Solving the optimization problem
	A.1 Convex optimisation
	A.2 Proximity operator
	A.3 Primal-dual scheme
	A.4 Application to solution of Equation (17)

	B Practical Considerations
	B.1 Convergence criteria
	B.2 Choice of Step Sizes "7121 , "711C 


