Joris Van Der Hoeven

On the complexity of polynomial reduction

Keywords: sparse reduction, complexity, division, Groebner basis, algorithm A.M.S. subject classification: 68W30, 13P10, 12Y05, 68W40

In this paper, we present a new algorithm for reducing a multivariate polynomial with respect to an autoreduced tuple of other polynomials. In a suitable sparse complexity model, it is shown that the execution time is essentially the same (up to a logarithmic factor) as the time needed to verify that the result is correct. This is a first step towards making advantage of fast sparse polynomial arithmetic for the computation of Gröbner bases.

Introduction

Let K[x] = K[x 1 , , x n] be a polynomial ring over an effective field K with an effective zero test. Given a polynomial P = i∈N n P i x i = i 1 , ,i n ∈N P i 1 , ,i n x 1 i 1

x n i n , we call supp P = {i ∈ N n : P i 0} the support of P .

The naive multiplication of two sparse polynomials P , Q ∈ K[x] requires a priori O(|supp P | |supp Q|) operations in K. This upper bound is sharp if P and Q are very sparse, but pessimistic if P and Q are dense.

Assuming that K has characteristic zero, a better algorithm was proposed in [START_REF] Canny | Solving systems of non-linear polynomial equations faster[END_REF] (see also [START_REF] Ben-Or | A deterministic algorithm for sparse multivariate polynomial interpolation[END_REF][START_REF] Grigoriev | The matching problem for bipartite graphs with polynomially bounded permanents is in NC[END_REF] for some background). The complexity of this algorithm is expressed in the size s = |supp P Q| of the output. It is shown that P and Q can be multiplied using only O(M(s) log s) operations in K, where M(s) = O(s log s log log s) stands for the complexity of multiplying two univariate polynomials in K[z] of degrees <s. Unfortunately, the algorithm in [START_REF] Canny | Solving systems of non-linear polynomial equations faster[END_REF] has two drawbacks:

1. The algorithm leads to a big growth for the sizes of the coefficients, thereby compromising its bit complexity (which is often worse than the bit complexity of naive multiplication).

2. It requires supp P Q to be known beforehand. More precisely, whenever a bound supp P Q ⊆ S is known, then we really have a multiplication algorithm of complexity O(M(|S |) log |S |).

In practice, the second drawback is of less importance. Indeed, especially when the coefficients in K can become large, then the computation of supp P + supp Q is often cheap with respect to the multiplication P Q itself, even if we compute supp P + supp Q in a naive way.

Recently, several algorithms were proposed for removing the drawbacks of [START_REF] Canny | Solving systems of non-linear polynomial equations faster[END_REF]. First of all, in [START_REF] Van Der Hoeven | On the bit-complexity of sparse polynomial multiplication[END_REF] we proposed a practical algorithm with essentially the same advantages as the original algorithm from [START_REF] Canny | Solving systems of non-linear polynomial equations faster[END_REF], but with a good bit complexity and a variant which also works in positive characterisic. However, it still requires a bound for supp P Q and it only works for special kinds of fields K (which nevertheless cover the most important cases such as K = Q and finite fields). Even faster algorithms were proposed in [START_REF] Van Der Hoeven | The truncated Fourier transform and applications[END_REF][START_REF] Van Der Hoeven | Multi-point evaluation in higher dimensions[END_REF], but these algorithms only work for special supports. Yet another algorithm was proposed in [START_REF] Van Der Hoeven | Relax, but don't be too lazy[END_REF][START_REF] Van Der Hoeven | On the complexity of blockwise polynomial multiplication[END_REF]. This algorithm has none of the drawbacks of [START_REF] Canny | Solving systems of non-linear polynomial equations faster[END_REF], but its complexity is suboptimal (although better than the complexity of naive multiplication).

At any rate, these recent developments make it possible to rely on fast sparse polynomial multiplication as a building block, both in theory and in practice. This makes it natural to study other operations on multivariate polynomials with this building block at our disposal. One of the most important such operations is division.

The multivariate analogue of polynomial division is the reduction of a polynomial

A ∈ K[x] with respect to an autoreduced tuple B = (B 1 , , B b) ∈ K[x] b of other polynomials.
This leads to a relation

A = Q 1 B 1 + + Q b B b + R, (1)
such that none of the terms occurring in R can be further reduced with respect to B. In this paper, we are interested in the computation of R as well as Q 1 , , Q b . We will call this the problem of extended reduction, in analogy with the notion of an "extended g.c.d.". Now in the univariate context, "relaxed power series" provide a convenient technique for the resolution of implicit equations [START_REF] Van Der Hoeven | Lazy multiplication of formal power series[END_REF][START_REF] Van Der Hoeven | Relax, but don't be too lazy[END_REF][START_REF] Van Der Hoeven | Relaxed multiplication using the middle product[END_REF][START_REF] Van Der Hoeven | New algorithms for relaxed multiplication[END_REF]. One major advantage of this technique is that it tends to respect most sparsity patterns which are present in the input data and in the equations. The main technical tool in this paper (see section 3) is to generalize this technique to the setting of multivariate polynomials, whose terms are ordered according to a specific admissible ordering on the monomials. This will make it possible to rewrite (1) as a so called recursive equation (see section 4.2), which can be solved in a relaxed manner. Roughly speaking, the cost of the extended reduction then reduces to the cost of the relaxed multiplications

Q 1 B 1 , , Q b B b .
Up to a logarithmic overhead, we will show (theorem 6) that this cost is the same as the cost of checking the relation [START_REF] Ben-Or | A deterministic algorithm for sparse multivariate polynomial interpolation[END_REF].

Our main theorem 6 immediately raises a new question: is it possible to use the new reduction algorithm for speeding up Gröbner basis computations? Indeed, starting with Faugère's F 4 algorithm [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases (F4)[END_REF], the most efficient implementations for the computation of Gröbner bases currently rely on linear algebra. This is not surprising, since classical implementations of Buchberger's algorithm [START_REF] Buchberger | Ein Algorithmus zum auffinden der Basiselemente des Restklassenringes nach einem null-dimensionalen Polynomideal[END_REF][START_REF] Buchberger | Multidimensional Systems Theory , chapter Gröbner bases: an algorithmic method in polynomial ideal theory[END_REF] do not make use of efficient arithmetic on multivariate polynomials anyway. Hence, rewriting these classical algorithms in terms of linear algebra should be at least as efficient, while removing a lot of overhead and potentially taking advantage of fast linear algebra libraries. Now fast arithmetic for multivariate polynomials potentially changes this picture. In section 5 we will describe a variant of Buchberger's algorithm in the particular case of homogeneous ideals. In this algorithm, we have made all polynomial reductions explicit, thereby making it clear where we may hope for potential gains, although we have not performed any detailed complexity analysis yet. It would also be interesting to study the affine case in detail. One particular interesting question is whether the half g.c.d. algorithm [START_REF] Moenck | Fast computation of gcds[END_REF] can also be extended using the techniques from section 3. Unfortunately, we fear that the sizes of the required transformation matrices (which are 2 × 2 matrices in the half g.c.d.) might become too large for this approach to be efficient.

In order to simplify the exposition, we will adopt a simplified sparse complexity model throughout this paper. In particular, our complexity analysis will not take into account the computation of support bounds for products or results of the extended reduction. Bit complexity issues will also be left aside in this paper.

Notations

Let K be an effective field with an effective zero test and let x 1 , , x n be indeterminates. We will denote

K[x] = K[x 1 , , x n] P i = P i 1 , ,i n x i = x 1 i 1 x n i n i j ⇔ i 1 j 1 ∧ ∧ i n j n ,
for any i, j ∈ N n and P ∈ K[x]. In particular, i j ⇔ x i O x j . For any subset E ⊆ N n we will denote by Fin(E) = {j ∈ N n : ∃i ∈ E , i j } the final segment generated by E for the partial ordering .

Let be a total ordering on N n which is compatible with addition. Two particular such orderings are the lexicographical ordering lex and the reverse lexicographical ordering rlex :

i < lex j ⇔ ∃k, i 1 = j 1 ∧ ∧ i k -1 = j k-1 ∧ i k < j k i < rlex j ⇔ ∃k, i k < j k ∧ i k+1 = j k+1 ∧ ∧ i n = j n .
In general, it can be shown [START_REF] Robbiano | Term orderings on the polynominal ring[END_REF] that there exist real vectors λ 1 , , λ n ∈ R m with m n, such that

i j ⇔ (λ 1 • i, , λ m • i) lex (λ 1 • j , , λ m • j). (2)
In what follows, we will assume that λ 1 , , λ n ∈ N n and gcd ((λ i) 1 , , (λ i) n) = 1 for all i.

We will also denote

λ • i = (λ 1 • i, , λ n • i).
For instance, the graded reverse lexicographical ordering grlex is obtained by taking

λ 1 = (1, , 1), λ 2 = (0, , 1), λ 2 = (0, , 0, 1, 0), , λ n = (0, 1, 0, , 0). Given P ∈ K[x],
we define its support by supp P = {i ∈ N n : P i 0}.

If P 0, then we also define its leading exponent l P and coefficient c P by l P = max supp P c P = P l P .

Given a finite set E, we will denote its cardinality by |E |.

Relaxed multiplication

Relaxed power series

Let us briefly recall the technique of relaxed power series computations, which is explained in more detail in [START_REF] Van Der Hoeven | Relax, but don't be too lazy[END_REF]. In this computational model, a univariate power series

f ∈ K[[z]
] is regarded as a stream of coefficients f 0 , f 1 , . When performing an operation g = Φ(f 1 , , f k) on power series it is required that the coefficient g n of the result is output as soon as sufficiently many coefficients of the inputs are known, so that the computation of g n does not depend on the further coefficients. For instance, in the case of a multiplication h = f g, we require that h n is output as soon as f 0 , , f n and g 0 , , g n are known.

In particular, we may use the naive formula

h n = i=0 n f i g n-i
for the computation of h n . The additional constraint on the time when coefficients should be output admits the important advantage that the inputs may depend on the output, provided that we add a small delay. For instance, the exponential g = exp f of a power series f ∈ z K[[z]] may be computed in a relaxed way using the formula

g = f ′ g.
Indeed, when using the naive formula for products, the coefficient g n is given by

g n = 1 n (f 1 g n-1 + 2 f 2 g n-2 + + n f n g 0)
, and the right-hand side only depends on the previously computed coefficients g 0 , , g n-1 . More generally, equations of the form g = Φ(g) which have this property are called recursive equations and we refer to [START_REF] Van Der Hoeven | From implicit to recursive equations[END_REF] for a mechanism to transform fairly general implicit equations into recursive equations.

The main drawback of the relaxed approach is that we cannot directly use fast algorithms on polynomials for computations with power series. For instance, assuming that K has sufficiently many 2 p -th roots of unity and that field operations in K can be done in time O(1), two polynomials of degrees < n can be multiplied in time M(n) = O(n log n), using FFT multiplication [START_REF] Cooley | An algorithm for the machine calculation of complex Fourier series[END_REF]. Given the truncations f ;n = f 0 + + f n-1 z n-1 and g ;n = g 0 + + g n-1 z n-1 at order n of power series f , g ∈ K[[z]], we may thus compute the truncated product (f g) ;n in time M(n) as well. This is much faster than the naive O(n 2) relaxed multiplication algorithm for the computation of (f g) ;n . However, the formula for (f g) 0 when using FFT multiplication depends on all input coefficients f 0 , , f n-1 and g 0 , , g n-1 , so the fast algorithm is not relaxed (we will say that FFT multiplication is a zealous algorithm). Fortunately, efficient relaxed multiplication algorithms do exist: Theorem 1. [START_REF] Van Der Hoeven | Lazy multiplication of formal power series[END_REF][START_REF] Van Der Hoeven | Relax, but don't be too lazy[END_REF] Let M(n) be the time complexity for the multiplication of polynomials of degrees < n in K[z]. Then there exists a relaxed multiplication algorithm for series in K

[[z]] at order n of time complexity R(n) = O(M(n) log n).
Remark 2. In fact, the algorithm from theorem 1 generalizes to the case when the multiplication on K is replaced by an arbitrary bilinear "multiplication"). In practice, the existence of a 2 p+1 -th root of unity with 2 p n suffices for multiplication up to order n.

M 1 × M 2 → M 3 ,

Relaxed Laurent series and polynomials in several variables

Let A be an effective ring. A power series f ∈ A[[z]] is said to be computable if there is an algorithm which takes n ∈ N on input and produces the coefficient f n on output. We will denote by A[[z]] com the set of such series. Then A[[z]] com is an effective ring for relaxed addition, subtraction and multiplication.

A computable Laurent series is a formal product f z k with f ∈ A[[z]] com and k ∈ Z. The set A((z)) com of such series forms an effective ring for the addition, subtraction and multiplication defined by

f z k + g z l = f z k-min(k,l) + g z l-min(k,l) z min(k,l) f z k -g z l = f z k-min(k,l) -g z l-min(k,l) z min(k,l) (f z k) (g z l) = (f g) z k+l .
If A is an effective field with an effective zero test, then we may also define an effective division on A((z)) com , but this operation will not be needed in what follows.

Assume now that z is replaced by a finite number of variables z = (z 1 , , z n). Then an element of

A((z)) com 6 A((z n)) com ((z 1)) com
will also be called a "computable lexicographical Laurent series". Any non zero

f ∈ A((z)) has a natural valuation v f = (v 1 , , v n) ∈ Z n , by setting v 1 = val z 1 f , v 2 = val z 2 ([z 1 v 1] f), etc.
The concept of recursive equations naturally generalizes to the multivariate context. For instance, for an infinitesimal Laurent series ε ∈ A((z)) com (that is, ε = f z k , where v f > lex -k), the formula g = 1 + ε g allows us to compute g = (1ε) -1 using a single relaxed multiplication in A((z)) com . Now take A = K[x] and consider a polynomial P ∈ A. Then we define the Laurent polynomial P ˆ∈ K[x z -λ] ⊆ A((z)) com by

P ˆ= i∈N n P i x i z -λ•i .
Conversely, given f ∈ K[x z -λ], we define f ˇ∈ K[x] by substituting z 1 = = z n = 1 in f . These transformations provide us with a relaxed mechanism to compute with multivariate polynomials in K[x], such that the admissible ordering on N n is respected. For instance, we may compute the relaxed product of two polynomials P , Q ∈ K[x] by computing the relaxed product P ˆQ ˆand substituting z 1 = = z n = 1 in the result.

Complexity analysis

Assume now that we are given P , Q ∈ K[x] and a set R ⊆ N n such that supp (P Q) ⊆ R. We assume that SM(s) is a function such that the (zealous) product P Q can be computed in time SM(|R|). We will also assume that SM(s)/s is an increasing function of s. In [START_REF] Canny | Solving systems of non-linear polynomial equations faster[END_REF][START_REF] Kaltofen | Improved sparse multivariate polynomial interpolation algorithms[END_REF], it is shown that we may take SM(s) = O(M(s) log s).

Let us now study the complexity of sparse relaxed multiplication of P and Q. We will use the classical algorithm for fast univariate relaxed multiplication from [START_REF] Van Der Hoeven | Lazy multiplication of formal power series[END_REF][START_REF] Van Der Hoeven | Relax, but don't be too lazy[END_REF], of time complexity R(s) = O(M(s) log s). We will also consider semi-relaxed multiplication as in [START_REF] Van Der Hoeven | Relaxed multiplication using the middle product[END_REF], where one of the arguments P ˆor Q ˆis completely known in advance and only the other one is computed in a relaxed manner.

Given X ⊆ N n and i ∈ {1, , n}, we will denote

δ i (X) = max {λ i • k: k ∈ X } + 1 δ(X) = δ 1 (X) δ n (X).
We now have the following: Theorem 4. With the above notations, the relaxed product of P and Q can be computed in time O(SM(|R|) log δ(R)).

Proof. In order to simplify our exposition, we will rather prove the theorem for a semirelaxed product of P ˆ(relaxed) and Q ˆ(known in advance). Our proof will be easy to adapt to the case of a full relaxed multiplication. We will prove by induction over n that the relaxed product can be computed using at most 3 SM(|R|) log δ(R) operations in K if R is sufficiently large. For n = 0, we have nothing to do, so assume that n > 0.

Let us first consider the semi-relaxed product of P ˆand Q ˆwith respect to z 1 . Setting l = ⌈log 2 δ 1 (R)⌉, the computation of this product corresponds (see the right-hand side of figure 1) to the computation of 2 zealous 2 l-1 × 2 l-1 products (i.e. 2 products of polynomials of degrees <2 l-1 in z 1), 4 zealous 2 l-2 × 2 l-2 products, and so on until 2 l zealous 1 × 1 products. We finally need to perform 2 l semi-relaxed 1 × 1 products of series in z 2 , , z n only.

More precisely, assume that P ˆand Q ˆhave valuations p resp. q in z 1 and let P ˆi stand for the coefficient of z 1 i in P . We also define

R ˆ= {(a 1 , , a n , b 1 , , b n) ∈ N n × Z n : (a 1 , , a n) ∈ R ∧ (∀i, b i = -λ i • a)}.
Now consider a block size 2 k . For each i, we define

P ˆ[i] = P ˆp+2 k i z 1 p+2 k i + + P ˆp+2 k (i+1)-1 z 1 p+2 k (i+1)-1 Q ˆ[i] = Q ˆq+2 k i z 1 q+2 k i + + Q ˆq+2 k (i+1)-1 z 1 q+2 k (i+1)-1 R ˆ[i] = (a 1 , , a n , b 1 , , b n) ∈ R ˆ: 2 k i a 1 -p -q 2 k (i + 1) -1 ,
and notice that the R ˆ[i] are pairwise disjoint. In the semi-relaxed multiplication, we have to compute the zealous

2 k × 2 k products P ˆ[i] Q ˆ[1] for all i ⌊(δ 1 (R) + 1)/2 k ⌋. Since supp P ˆ[i] Q ˆ[1] ⊆ R ˆ[i+1] ∐ R ˆ[i+2] ,
we may compute all these products in time

SM R ˆ[1] ∐ R ˆ[2] + + SM R ˆ[2 l -k] ∐ R ˆ[2 l-k +1] = R ˆ[1] ∐ R ˆ[2] SM R ˆ[1] ∐ R ˆ[2] R ˆ[1] ∐ R ˆ[2] + + R ˆ[2 l-k] ∐ R ˆ[2 l -k +1] SM R ˆ[2 l-k] ∐ R ˆ[2 l-k +1] R ˆ[2 l -k] ∐ R ˆ[2 l -k +1] R ˆ[1] ∐ R ˆ[2] + + R ˆ[2 l -k] ∐ R ˆ[2 l -k +1] SM R ˆ R ˆ = 2 SM R ˆ = 2 SM(|R|).
The total time spent in performing all zealous 2 k × 2 k block multiplications with 2 k < 2 l is therefore bounded by 2 SM(|R|) log δ 1 (R).

Let us next consider the remaining 1 × 1 semi-relaxed products. If n = 1, then these are really scalar products, whence the remaining work can clearly be performed in time

SM(|R|) log δ 1 (R) if R is sufficiently large. If n > 1, then for each i, we have supp P ˆ[i] Q ˆ[0] ⊆ R ˆ[i] .
By the induction hypothesis, we may therefore perform this semi-relaxed product in time 3 SM R ˆ[i] (log δ(R) -log δ 1 (R)). A similar argument as above now yields the bound 3 SM(|R|) (log δ(R) -log δ 1 (R)) for performing all 1 × 1 semi-relaxed block products. The total execution time (which also takes into account the final additions) is therefore bounded by 3 SM(|R|) log δ(R). This completes the induction.

Q ˆq+2 Q ˆq+1 Q ˆq P ˆp+2 P ˆp+1 P ˆp P ˆp P ˆp+1 P ˆp+2 Q ˆq Q ˆq+1 Q ˆq+2 Figure 1.
Illustration of a fast relaxed product and a fast semi-relaxed product.

Polynomial reduction

Naive extended reduction

Consider a tuple B = (B 1 , , B b) ∈ K[x] b .
We say that B is autoreduced if B i 0 for all i and l B i l B j and l B j l B i for all i j. Given such a tuple B and an arbitrary polynomial

A ∈ K[x],
we say that A is reduced with respect to B if l B i k for all i and k ∈ supp A. An extended reduction of A with respect to B is a tuple

(Q 1 , , Q b , R) with A = Q 1 B 1 + + Q b B b + R, (3)
such that R is reduced with respect to B. The naive algorithm extended-reduce below computes an extended reduction of A.

Algorithm extended-reduce

Input: A ∈ K[x] and an autoreduced tuple B ∈ K[x] b
Output: an extended reduction of A with respect to B

Start with Q 6 (0, , 0) and R 6 A While R is not reduced with respect to B do Let i be minimal and such that l

B i k for some k ∈ supp R Let k ∈ supp R be maximal with l B i k Set Q i 6 Q i + (R k /c B i) x k-l B i and R 6 R -(R k /c B i) x k-l B i B i Return (Q 1 , , Q b , R) Remark 5.
Although an extended reduction is usually not unique, the one computed by extended-reduce is uniquely determined by the fact that, in our main loop, we take i minimal with l B i k for some k ∈ supp R. This particular extended reduction is also characterized by the fact that

supp Q i + l B i ⊆ Fin({l B i }) \ Fin({l B 1 , , l B i-1 })
for each i.

In order to compute Q 1 , , Q b and R in a relaxed manner, upper bounds

supp Q i ⊆ Q i supp Q i B i ⊆ Q i + supp B i supp R ⊆ R
need to be known beforehand. These upper bounds are easily computed as a function of A = supp A, B 1 = supp B 1 , , B b = supp B b by the variant supp-extended-reduce of extendedreduce below. We recall from the end of the introduction that we do not take into account the cost of this computation in our complexity analysis. In reality, the execution time of supp-extended-reduce is similar to the one of extended-reduce, except that potentially expensive operations in K are replaced by boolean operations of unit cost. We also recall that support bounds can often be obtained by other means for specific problems.

Algorithm supp-extended-reduce

Input: subsets A and B 1 , , B b of N n as above

Output: subsets Q 1 , , Q b and R of N n as above Start with Q 6 (∅, , ∅) and R 6 A While R ∩ Fin({max B 1 , , max B b }) ∅ do Let i be minimal and such that l max B i k for some k ∈ R Let k ∈ R be maximal with l max B i k Set Q i 6 Q i ∪ {k -max B i } and R 6 R ∪ (B i + (k -max B i)) \ {k} Return (Q 1 , , Q b , R)

Relaxed extended reduction

Using the relaxed multiplication from section 3, we are now in a position to replace the algorithm extended-reduce by a new algorithm, which directly computes Q 1 , , Q b , R using the equation [START_REF] Buchberger | Multidimensional Systems Theory , chapter Gröbner bases: an algorithmic method in polynomial ideal theory[END_REF]. In order to do this, we still have to put it in a recursive form which is suitable for relaxed resolution.

Denoting by e i the i-th canonical basis vector of K[x] b+1 , we first define an operator Φ:

x 1 N x n N → K[x] b+1 by Φ(x k) = c B i -1 x k-l B i e i if k ∈ Fin({l B i , , l B b }) and i is minimal with l B i k e b+1 x k otherwise
By linearity, this operator extends to K[x]

Φ(P) = i∈supp P P i Φ(P i).
In particular, Φ(c A x l A) yields the "leading term" of the extended reduction (Q 1 , , Q b , R).

We also denote by Φ ˆthe corresponding operator from K[x z -λ] to K[x z -λ] b+1 which sends P ˆto Φ(P).

Now let B i * = B i -c B i x l B i for each i. Then (Q i B i) k = (Q i B i *) k + (Q i) k-l B i c B i
for each i ∈ {1, , b} and k ∈ N n . The equation

(Q 1 B 1 + + Q b B b + R) k = A k
can thus be rewritten as

(Q 1) k-l B 1 c B 1 + + (Q i) k-l B b c B b = (A -Q 1 B 1 * --Q b B b *) k
Using the operator Φ this equation can be rewritten in a more compact form as

(Q 1 , , Q b , R) = Φ(A -Q 1 B 1 * --Q b B b *).
The corresponding equation

Q ˆ1, , Q ˆb, R ˆ = Φ ˆ A ˆ-Q ˆ1 B ˆ1 * --Q ˆb B ˆb *
is recursive, whence the extended reduction can be computed using b multivariate relaxed multiplications Q ˆ1 B ˆ1 * , , Q ˆb B ˆb * . With A, B i , Q i and R as in the previous section, theorem 4 therefore implies: Theorem 6. We may compute the extended reduction of A with respect to B in time

O(SM(|B 1 + Q 1 |) log δ(B 1 + Q 1) + + SM(|B b + Q b |) log δ(B b + Q b) + |R|).
Remark 7. Following remark 2, we also notice that A, the Q i and R may be replaced by vectors of polynomials in K[x] m (regarded as polynomials with coefficients in K m), in the case that several polynomials need to be reduced simultaneously.

Application to Gröbner basis computations

It is natural to examine whether we can use our relaxed extended reduction algorithm in order to speed up Gröbner basis computations. We will restrict ourself to homogeneous ideals. In this case we may reformulate Buchberger's algorithm in an incremental way which will simplify the discussion and illustrate more clearly the interest of the new algorithms.

In what follows, we will assume that (λ 1) i > 0 for all i. A polynomial P ∈ K[x] will said to be homogeneous, if λ 1 • i is constant for all i ∈ supp P , and we will denote by deg P that constant (if P 0). Given a set E of homogeneous polynomials in K[x] and d ∈ N, we will also write E d (resp. E d) for the subset of polynomials of degree d (resp. d). Given two polynomials P , Q ∈ K[x], we will write S P ,Q = c Q P x l Qc P Q x l P for the S-polynomial of P and Q.

Assume now that we are given a set S ⊆ K[x] of homogeneous polynomials and let B be the reduced Gröbner basis for S. For each degree d ∈ N, we observe that B d can be computed as a function of S d only. Indeed, the reduction of a homogeneous polynomial of degree d ′ > d with respect to B d is again of degree d ′ . Similarly, a non zero S-polynomial of two homogeneous polynomials of degrees d ′ > d and d ′′ > d is of degree > max (d ′ , d ′′) > d.

We may thus compute B d as a function of S d by induction over d. Given B d-1 and S d , all elements of B d are obtained as reductions of elements in S d or reductions of S-polynomials of degree d of elements in B d-1 . These reductions are either done with respect to B d-1 (and we will use our relaxed algorithm for this step) or with respect to other elements of degree d (in which case we are really doing linear algebra in K[x] d).

Apart from unnecessary reductions to zero of S-polynomials, the above incremental scheme for the computation of B contains no redundant operations. As in optimized versions of Buchberger algorithm, we will therefore assume that a predicate reject-criterion has been implemented for rejecting such critical pairs. More precisely, whenever reject-criterion(P , Q) holds, then we are sure that S P ,Q will reduce to zero. We may for instance use the classical Buchberger criteria [START_REF] Buchberger | Multidimensional Systems Theory , chapter Gröbner bases: an algorithmic method in polynomial ideal theory[END_REF], or more sophisticated criteria, as used in F 5 [START_REF] Faugère | A new efficient algorithm for computing gröbner bases without reduction to zero (f5)[END_REF].

The algorithm Gröbner-basis below makes the above informal discussion more precise. We have used the notation reduce(P , B) for the reduction of a polynomial P ∈ K

 where M 1 , M 2 and M 3 are effective modules over an effective ring A. If M(n) denotes the time complexity for multiplying two polynomials P ∈ M 1 [z] and Q ∈ M 2 [z] of degrees <n, then we again obtain a relaxed multiplication for series f ∈ M 1 [[z]] and g ∈ M 2 [[z]] at order n of time complexity O(M(n) log n). Theorem 3. [16] If K admits a primitive 2 p -th root of unity for all p, then there exists a relaxed multiplication algorithm of time complexity R(n) = O(n log n e 2 log 2log log n √

B 6 ∅, d 6 0Remark 8 .

 668 [x] with respect to an autoreduced set B ⊆ K[x]. Here we notice that we may associate a unique autoreduced tuple B = (B 1 , , B b) to an autoreduced set B = {B 1 , , B b } by requiring that l B 1 < < l B b . Then reduce(P , B) just stands for the last entry of extended-reduce(P , B). Algorithm Gröbner-basis Input: a set S of homogeneous polynomials in K[x] Output: the reduced Gröbner basis B for S While S ∅ do Let R 6 {reduce(P , B): P ∈ S d } Let S 6 S \ S d Autoreduce R Let B 6 B ∪ R For all pairs P ∈ B and Q ∈ R with l P < l Q do If ¬reject-criterion(P , Q) and S P ,Q 0 then S 6 S ∪ {S P ,Q } Set d 6 d + 1Return B According to remark 7, the reduction of the elements P ∈ S d with respect to B can optionally be performed vectorwise.

On the complexity of polynomial reduction

Joris van der Hoeven

Remark 9. If the criterion reject-criterion for rejection is sufficiently powerful, then the cardinality of R after autoreduction is exactly equal to the cardinality of S d at the start of the loop. In that case, the execution time of the algorithm is therefore the same as the time needed to verify the reduction steps, up to a logarithmic overhead.

* . This work has been supported by the ANR-09-JCJC-0098-01 MaGiX project, the Digiteo 2009-36HD grant and Région Ile-de-France.