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Abstract 

When some entropy is transferred, by means of a reversible engine, from a hot heat source to a colder one, we have the 

maximum of efficiency, i.e. we obtain the maximum available work. Similarly the reversible heat pumps transfer entropy 

from a cold heat source to a hotter one with the minimum expense of energy. On the contrary if we are faced with non 

reversible devices there is some Lost Work for heat engines, and some Extra Work for heat pumps. These quantities are 

both related to the Entropy production. The Lost Work, i.e. 
IrrevRevLost WWW −=  , is also called ‘degraded energy’ or 

‘Energy unavailable to do work’. The Extra Work, i.e. 
RevExtra WWW Irrev −=  , is the excess of work performed on the 

system in the irreversible process with respect to the reversible one (or the excess of heat given to the hotter source in the 

irreversible process). In this paper, which follows two previous ones on the Lost Work [Phil. Mag. 87, 569 (2007), Phil. 

Mag. 88 4177-4187 (2008)] both quantities are analyzed in deep and are evaluated for a process with complexity, i.e. the 

stepwise Circular Cycle which is similar to the stepwise Carnot cycle. The stepwise Circular Cycle is a cycle performed 

by means of N small weights dw which are first added and then removed from the piston of the vessel containing the gas 

or vice versa. The work performed by the gas can be found as increase of the potential energy of the dw’s. We identify 

each single dw and thus evaluate its rising i.e. its increase in potential energy. In such a way we find how the energy 

output of the cycle is distributed among the dw’s. The size of the dw’s affects the Entropy production and therefore the 

Lost and Extra work. The rising distribution depends on the removing process we choose. 

 

 

1 - Introduction 

. 

As pointed out in a previous paper [1], entropy production and its relation to the available energy are 

fascinating subjects which in last years have attracted many physics researches [5-11]. It is well 

known [1-10] that for some elementary irreversible process, like the irreversible isothermal 

expansion of a gas in contact with a heat source at temperature T , the work done by the gas 

outIrrev WW ≡  is related to the reversible isothermal work RevW  (i.e. the work performed by the gas in 

the corresponding reversible process) by the relation 

USTWW ∆−= Revout                                                                   (1) 

where US∆  is the total entropy change of the universe (system + environment). The degraded energy 

UST∆  is usually called ‘the Lost work’ LostW  

outRevLost WWW −=                                                                   (2) 

 

The latter can be interpreted as the missing work: i.e. the additional work that could have been done 

in the related reversible process (here the reversible isothermal expansion); it is also called ‘energy 

unavailable to do work’. 

On another hand in the irreversible isothermal compression 
UST∆ is called 

ExtraW  i.e. the excess of 

work performed on the system in the irreversible process with respect to the reversible one. 

RevinExtra WWW −=                                                                   (3) 

where now
inIrrev WW ≡ . Due to the energy balance, the same relation holds for the amounts of heat 

given to the source T , i.e. we have 

USTQQ ∆+= Revout
                                                                 (4) 

Therefore 
UST∆  is also called the ‘Excess of heat’ (

ExtraQ ), i.e. the additional heat that has been 

given to the source [8, 9]. 
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 2 

The total variation of Entropy US∆  is usually called ‘Entropy production’; we shall call the 

latter Uπ . The second Law claims that 0≥Uπ and the entropy is an extensive quantity which in 

the transfers between systems can only increase or stay unchanged. Here we apply these already 

known concepts to the study of step-wise Circular cycle.  This requires the evaluation of entropy 

production for an isobaric process, which is a new result and is reported in section 2.2. In section 

2.1 we deal with the entropy production in the isothermal expansion and compression, results 

already known, reported here only for completeness. In section 3 is illustrated the step-wise ideal 

gas Circular cycle and is evaluated the dissipated energy. Observe that at each step an isothermal 

process is followed by an isobaric process: this is an isobaric volume reduction in the first N/2 

steps and an isobaric expansion in the following N/2 steps. The reverse happens in the N 

removing steps 

 

 

 

2.1 - Entropy production, Lost Work and Extra Work in isothermal irreversible processes. 
 

Let us first consider the isothermal irreversible expansion (A→B) of an ideal gas in contact with a 

heat source at temperature T  where VVV AB ∆+=  and PPP AB ∆−=  with 0>∆P , 0>∆V . In such 

a simple process some heat 
1
 ( ) VPPVPWQ AB ∆∆−=∆=≡ outin  goes from the heat source T  to the 

ideal gas. There is an increase of entropy of the ideal gas, 
T

Q

T

Q
S

B

A

RevRev
gas ==∆ ∫

δ
 and a decrease of 

the entropy of the heat source 






−
T

Qin , where 












+







 ∆
−

∆
=







 ∆
+===== ∫∫ K

2

RevRevRev
2

1
1lnln

AAA

B

A A

B

B

A
V

V

V

V
RT

V

V
RT

V

V
RTPdVWQQ δ  

therefore the entropy production is 

0inRev >−=∆≡
T

Q

T

Q
SUUπ                                                                (5) 

Since inRev QQ >  we find in the ideal gas an amount of entropy greater than that taken from the heat 

source T . If, for example, 
A

VV 3=∆  we have RRRU 636.0
4

3
4ln =−=π . On the other hand for the 

isothermal irreversible compression of the ideal gas (B→A) some heat outQ  goes from the gas to the 

source at temperature T . We have a decrease of the gas entropy 
T

Q

T

Q
S

A

B

RevRev
gas −==∆ ∫

δ
 and an 

increase of the source entropy, 







T

Qout , where ( ) VPVVPWQ AABA ∆=−== inout . Therefore the 

entropy production in the compression is 

0Revout >−=∆≡
T

Q

T

Q
SUUπ        (since 

Revout QQ > ),                                         (6) 

which, for 
AVV 3=∆  gives RRR

V

V
R

T

VP

A

A
U 614.14ln31ln =−=







 ∆
+−

∆
=π . 

Observe that in the compression the entropy production is much bigger than in the expansion; here 

we will show how this is related to the wasting of energy. In order to find how the previous entropy 

productions affects the dissipation of energy, we have to remark that the irreversibility of a generic 

                                                 
1
 The quantities inQ , outQ , RevQ  are positive. 
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process (A→B) is due, in general, to internal and external irreversibility, therefore, as shown in [1, 2, 

5] the related entropy production Uπ  can be expressed as a sum of two terms: the internal entropy 

production, 0int ≥π  and the external entropy production, 0ext ≥π  i.e. 

extint πππ +=U                                                                            (7)    

This result is not trivial since sysS∆≠intπ ; there are in fact many processes for which 0sys <∆S  and 

0int ≥π . The system entropy production 
intπ  is defined [1, 2, 5] by the relation 

intoutinsys π+−=∆ SSS                                                                    (8) 

where inS  and outS  are respectively the quantity of entropy which respectively comes into and comes 

out of the system in the irreversible process; ∫=∆
B

A sysT

Q
S Rev

sys

δ
 is the entropy variation of the system 

from A to B and does not depend on the particular process. Similarly the external Entropy 

production, extπ  is given by the relation 

ext

ext

out

ext

inext π+−=∆ SSS                                                                    (9) 

or by relation (7). It is easy to verify that for both previous irreversible isothermal processes 0ext =π  

and therefore that for both the expansion and the compression Uππ =int . In the Appendix we give 

the relations for the Lost Work and Extra Work for isothermal processes with internal and external 

irreversibility ( 0ext ≠π ). From relations (A4) and (A6) it follows that the Lost Work for an 

isothermal expansion at temperature 0TT =  and without external irreversibility ( 0ext =π ) is 

int0outRevLost πTWWW =−=                                                                  (10) 

and that the Extra Work for an isothermal compression at BTT =  (with 0ext =π ) is 

intRevinExtra πBTWWW =−=                                                                  (11) 

Therefore we understand that in the irreversible compression much more energy is wasted than in 

the irreversible expansion. 

 

 

2.2 - Entropy production, Lost Work and Extra Work in isobaric irreversible processes 

 

Let us consider the irreversible isobaric expansion at pressure AP  (heating) of one mole of 

monatomic ideal gas from the state A to the state B for which, for example, AB TT 2= . The ideal gas, 

initially at temperature AT , is brought in thermal contact with the source AB TT 2= , then an 

Figure 1 – Irreversible  isobaric heating 

AP

BT

BA

ext
PPP ==
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irreversible isobaric expansion at pressure extPPP BA ==  takes place and the ideal gas reaches the 

final state B. Let AV be the initial volume and BV  the final volume. In the expansion the gas has 

performed the work (= )outE  

)()(outirrev ABABA TTRVVPWW −=−=≡                                               (12) 

and has extracted from the source BT  the heat (= inE ) )(irrev ABp TTCQ −= . From the energy balance 

we understand that there has been an increase of internal energy 

)(outin ABVAB TTCEEU −=−=∆  

where PC  and VC  are the molar specific heats respectively at constant pressure and at constant 

volume. For this process 

BA

B
PU

T

Q

T

T
CSS

irrevext

sys ln −=∆+∆=π                                               (13) 

As in the previous case we want to find intπ  and extπ , i.e. the Entropy production due to the internal 

irreversibility and the Entropy production due to the external irreversibility. The path we follow is to 

analyse the related externally reversible process ( which we call Eso-reversible process); for this we 

evaluate the Entropy production, which is therefore due only to the internal irreversibility. This will 

be 
intπ . From this we can have 

extπ  (the Entropy production due to the external irreversibility) by 

subtracting 
intπ  from 

Uπ , i.e. 

intext πππ −= U
                                                                (14) 

To perform the Eso-reversible process a process in which the heating is done gradually  we need a 

sequence of heat sources ranging from AT  to BT , from which the gas takes, at each infinitesimal step, 

the heat Qδ  to perform the irreversible isobaric expansion, and an auxiliary reversible heat engine 

which takes the heat Q
T

T
Q B δδ =Eso  from the source at temperature BT  and gives the heat 

dTCQ P=δ  to the source at temperature T  of the sequence. Such an engine performs the work 









−=

BT

T
QW 1Eso

Rev δδ  at each step. Obviously 

A

B
PB

B

A

BP

B

A
T

T
CT

T

dT
TCQQ ln

EsoEso === ∫∫δ . 

In this Externally reversible process the Entropy production due to the Internal irreversibility intδπ  at 

each step is due to the infinitesimal variation of Entropy of the gas (i.e. 
T

dT
CdS P=Eso

syst ) and to the 

infinitesimal variation of Entropy of the heat source of the sequence which is active in the step ( i.e. 

T

dT
CdS P−=Eso

ext ), hence 

0
Eso

ext

Eso

systint =−=+=
T

dT
C

T

dT
CdSdS PPδπ  

We find therefore that 0int =π , which means that there is no internal Entropy production in this Eso-

reversible process; therefore 

BA

B
PU

T

Q

T

T
C

irrev

ext ln −== ππ                                                     (15) 

Remark that the global Entropy change is related the local Entropy productions by means of the 

following relation 

extint

ext

sys πππ +=∆+∆=∆≡ SSSUU  

Deleted:  

Deleted:  (Eso-reversible)
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 5 

For the irreversible isobaric expansion at pressure AP  (heating) of one mole of monatomic ideal gas 

from the state A to the state B for which, for example, AB TT 2=  and RCP
2

5
=  the irreversible work 

done by the gas and the heat taken from the source BT  are AABABA RTTTRVVPW =−=−= )()(irrev  

and APABP TCTTCQ =−= )(irrev ; therefore 

PP

BA

B
PU CC

T

Q

T

T
C 193.0

2

1
2lnln

irrev

ext =






 −=−== ππ .                          (16) 

To find the Lost Work we need the available total Reversible Work. The total Reversible work is the 

reversible work made by the gas (which is identical to the irreversible work) and the work made by 

the auxiliary reversible engine working between BT and the variable temperature T of the sequence 

of sources which we use to perform the reversible isobaric expansion. 









−+−=+= ∫

B

B

A

ABB
T

T
QVVPWWW 1)( Esoengine

Rev

gas

Rev

Total

Rev δ  

where 

dTC
T

T
Q P

B=Esoδ  

Therefore 

)(lnirrev

Total

RevLost ABP

A

B
BP TTC

T

T
TCWWW −−=−=  

On the other hand by relation (A4) 

)(lnextLost ABP

A

B
BPBUB TTC

T

T
TCTTW −−=== ππ                                      (17) 

i.e. APAUB TCTTW 386.02 extLost === ππ . 

For the irreversible isobaric compression at pressure AP  (cooling) of one mole of monatomic ideal 

gas from the state B to the state A for which as before, AB TT 2= , the irreversible work is 

)()(irrev ABABA TTRVVPW −−=−−= . 

Following the same steps as for the expansion we find 

AA

B
PU

T

Q

T

T
C

irrev

ext ln +−== ππ  

and 

a

B
APuA

T

T
TCQTW lnirrevExtra −== π                                                (18) 

 

i.e. for AB TT 2=  

PP CC 307.0)2ln1(ext =−=π      and     APuA TCTW 307.0Extra == π  

Observe that here, as opposed to the previous isothermal process, we have 

ExtraLost WW ≥  

In the next section by means of relations (10,11) and (17,18) we study the Lost Work and the Extra 

Work for the Stepwise Circular Cycle. 
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3 - The step-wise ideal gas Circular cycle and dissipated energy 

 

In order to perform an ideal gas stepwise cycle we need a lot of heat sources (N) and heat sinks (N), 

a vessel with a free piston and a large number (N) of small “driving weights” to increase or decrease 

slowly, step by step, the external pressure P. If the steps are infinitesimally small the cycle is 

“reversible”. In order to evaluate the work performed by the ideal gas during the cycle, the 

displacements of the small driving weights (dw) must be done carefully. We let them move on and 

off the piston only horizontally. To this end we assume that the handle of the piston is endowed with 

so many shelves that we can move each dw horizontally (and without friction) from (or to) the 

corresponding fixed shelf which belongs to the dw’s Reservoir. (The dw’s Reservoir is a vertical 

sequence of horizontal shelves on which the dw’s are initially located). Such an ideal device is 

shown schematically in Figure 2. 

The Circular cycle can be performed through Z=2N steps. In each of the first N steps one dw is 

added on the piston (and removed from the Reservoir at its initial height h0 ); in each of the 

following N steps one dw is removed from the piston (and brought back to the Reservoir at its final 

height, say h,f). The k-th dw is the dw which has been added on the piston at the k-th step in the 

compression. When the dw is added on the piston of the vessel in thermal contact with the sink 

iT ,the gas performs an isothermal compression; when it is removed the process is the isothermal 

expansion. Each isothermal process is followed by an isobaric process: this is a compression 

(volume reduction) in the first N/2 steps and an expansion in the following N/2 steps. The reverse 

happens in the N removing steps. Therefore at the end of the cycle the overall raising, on the dw’s 

Reservoir, of the k-th dw from its initial height (hk0 ) to the final one )( kfh  is 

0 kkfk hhh −=                                                                         (19) 

Since a friction-less process is assumed, the vertical motion of the dw’s is only due to the gas and the 

total work (W) performed by the ideal gas can be found as increase of potential energy of the dw’s 

on the Reservoir, i.e. 

∑∑
==

=∆=
N

k

k

i

ii hmgVPW
1

  2N

1

                                                            (20) 

where Pi is the external pressure at step i (after the addition or removal of the i-th dw) 
1−−=∆ iii VVV , 

is the volume variation from step (i–1) to step i, and mg is the weight of the generic dw. Relation 

(17) has been proved elsewhere [3]. In the next section the raisings of the single dw on the reservoir 

are evaluated. 

 

Figure 2 

a) The adiabatic vessel with some dw’s on the piston. 

b) Cross section view of the vessel showing two supports for the dw’s (the dw’s Reservoir). 
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3.1 - The raisings of the dw’s for a step-wise Circular cycle  

 

The cycle we consider is reported in Figure 3. The chosen values of P and V are easily available in 

ordinary conditions. In the first N steps the dw’s are added on the piston to perform first the process 

(A→B). In the remaining N steps the dw’s are removed from the piston in order to return to the 

initial state (B→A). The working fluid is the ideal gas and we assume the free piston has no mass. 

The vertical vessel’s walls are heat insulating and the vessel’s diathermal floor is made adiabatic 

when needed. The chosen circular cycle is described in the PV plane by the relation 

 1

2

0

2

0 =






 −
+







 −

VP r

VV

r

PP
                                                          (21) 

where 0P  = 15×10
–1

 atm, 0V  = 17.4 l, Vr  = 5 l and 
Pr  = 5×10

–1
 atm. Since minT  is at ( )πθ 4/3min −=  

and MaxT  is at ( )πθ 4/7Max −= , it follows that the steps from 1 to N/4 are cooling steps. These are 

followed by N heating steps and ( )N4/3 cooling steps. 

Let us call 1=AP  atm and 2=BP  atm, respectively, the values of the pressure at bottom and at the top 

of the cycle. We have considered here N = 1033 dw’s and therefore 2N = 2066 steps. The mass of 

each dw is m = 0.1 Kg. The surface of the piston is S = 100 cm2, so that at each step in the 

compression the pressure increase is 1033/APP =∆ , i.e. 

PiPP Ai ∆+=    for   [ ]Ni ,1∈    and   PNPP AB ∆+=  

And for each step in the expansion the pressure decreases by ∆P i.e. 

PlPPlNPP BAlN ∆−=∆−+=+ )(    for   [ ]Nl ,1∈  

Notice moreover that 
AN VV  2 =  and 

BN VV  = , i.e. the volume at step 2N is the initial volume and the 

volume at step N is the volume at the top of the cycle. Of course for each [ ]NiPi ,1, ∈ , by means of 

relation (18), there are exp)( iPV  and comp)( iPV  which are the volume at the pressure Pi taken 

respectively in the “expansion” (B→A) and in the “compression” (A→B), and also two temperatures 

exp)( iPT  and comp)( iPT . All that can also be written in the following way: for each [ ]NiPi 2,1, ∈  there 

is a volume )( ii PVV =  and a heat (source or sink) at temperature )( ii PTT = . Keeping in mind how 

we perform the Circular cycle, let us take a closer look at the last dw: when this small weight leaves 

the Reservoir and is added on the piston, it (together with the piston and the previous dw’s) moves 

downward, performing the isothermal compression step ( *

111  −−− → NNNN VPVP ) at temperature 1−NT ; 

then the gas is heated by the heat source 
NT  at pressure 

BN PP =  performing the expansion 

( BN VV  *

1 →− ); afterwards, at step N+1, the small weight is removed and goes to rest on the fixed shelf 

of the Reservoir in front of it. It will stay on the piston for one step only! i.e. 

Figure 3 - The step-wise Circular cycle with very small steps and T(θ) the temperature along the clock-wise cycle. 
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 )( 1 SVVh NNN −−= . 

For this last step let us call 1−−=∆ NNN TTT , 1

*

1

*

1 −−− −=∆ NNN VVV , *

1−−=∆ NN

p

N VVV ; from which 

we have *

11 −− ∆+∆=−=∆ N

p

NNNN VVVVV . In this last step the sink at temperature 1−NT  takes the 

entropy 
1

out

1

−

−

N

N

T

Q
, and the source at temperature NT  gives the entropy 

N

N

T

Q in

 to the system, where 

*

1

out

1 −− ∆= NNN VPQ  and p

NNN VPQ ∆=in . 

Since 1

*

111  −−−− == NNNNN RTVPVP , it follows that 
11

1

1

1

−−

−

−

− ∆
=

∆
=

NN

N

N

out

N

P

PR

T

PV

T

Q
 and 

N

N
P

N

N

T

T
C

T

Q ∆
=

in

. 

Similarly for the last but one dw: 

( ) ( )1)1()1(2211  
11

−−−−−+− −=−= NNNNNN VV
S

VV
S

h                                       (22) 

 

Therefore for the k-th dw 

( )12 
1

−− −= kkNk VV
S

h , 

and 

( )0121  
1

VV
S

h N −= − . 

For a very large number N we can write 

[ ]compexp )()(
1

)( PVPV
S

Ph −=                                             (23) 

Were exp)(PV  and comp)(PV  are the volume at the pressure P in the “expansion” and in the 

“compression”, and )(Ph is the raising of the dw which, added on the piston, gives rise to the 

pressure P. From this: 

( )20

2

0exp)( PPrVPV V −−+=      and     ( )20

2

0comp)( PPrVPV V −−−=            (24) 

For PV rr ≠  one has elliptic cycles. 

For a reversible Circular Cycle that starts from 0V  =17.4 l and AP  = 10×10
−1

 = 1 atm, the raisings 

h(P) are easily obtained from relations (22-24): 

( ) 2

0

22
)( PPr

S
Ph V −−= ,                                                (25) 

whose values, for 220cmS =  are shown in Figure 4. 

 

 

Figure 4 - Overall raising on the reservoir  of  each dw. 
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3.2 - Lost work and extra work step by step and the total dissipated energy 

 

One may observe that in the cycle there has been an Entropy production: in fact when the last dw is 

added on the piston (the N-th step) we had an isothermal compression at temperature 
1−NT  and an 

isobaric expansion from 1−NT  to NT . By means of relations (11) and (17), for the isothermal 

compression ( 0
*

1 <∆ −NV , 
1

*

1

1 −

−

−

∆
−=

∆

N

N

N V

V

P

P
) we have 

2

11

*

1

1

1

int
2

1ln 






 ∆
≅







 ∆
+−=

−−

−

−

−

−
NN

N

N

out

N

N
P

PR

V

V
R

T

Q
π                                      (26) 

 

 For the expansion and isobaric heating we have 
2

1

Ext
2

1ln 






 ∆
≅−







 ∆
+=

−
−

N

NP

N

in

N

N

N

PN
T

TC

T

Q

T

T
Cπ                               (27) 

 

Observe that the same result holds for isobaric cooling. Therefore in the N-th step we have 

int1extra −−− = NNN TW π  and ExtLost −− = NNN TW π . Finally we can conclude that the Dissipated energy i.e. 

DW  is 

( )
2

2

1

2

1

2

1

1

2

1

Extint1
22

1










 ∆
+









 ∆
≅+= ∑∑∑

=−=
−

=
−−−

i

i
N

i

P

i

N

i

i

N

i

iiiiD
T

TC

P

P
VTTW ππ                           (28) 

Now we give some upper bound to )(NWD . Let 

2/1 Nn =  be the first N/2 adding steps for which APP ≥ , 0VV ≤ , minTT ≥  

2/2 Nn =  be the second N/2 adding steps for which 0PP ≥ , 0VV ≤ , CTT ≥  

2/3 Nn =  be the third N/2 removing steps for which 
0PP ≥ , 

DVV ≤ , 
0TT ≥  

2/4 Nn =  be the fourth N/2 removing steps for which APP ≥ , DVV ≤ , minTT ≥  

( )
















 ∆
+









 ∆
+









 ∆
+









 ∆
≤+=∑

=
−−−

22

0

0

2

min

2

0

2

1

Extint1
22

1

22

1

2
C

iPiP

A

N

i

iiiiD
T

TC

P

P
V

T

TC

P

P
V

N
TTW ππ  

 
















 ∆
+









 ∆
+









 ∆
+









 ∆
+

2

min

22

0

2

0
22

1

22

1

T

TC

P

P
V

T

TC

P

P
V iP

A

D
iP

D  

And, since 
N

T
T ≤∆ , 

( ) TC
P

V

P

V

P

V

P

V
P

N
TTW P

A

DD

A

N

i

iiiiD ∆+







+++∆≤+=∑

=
−−−

00

002
2

1

Extint1 )(
4

ππ  

Since DVV  
5

4
0 ≅ , APP  

2

3
0 ≅ , choosing 

N

PV
TCP

2

5
 

N

RT

2

5
≅≅∆ , we have  

( )
N

PV

P

V

N

PN
TTW

A

DA

N

i

iiiiD
2

5
3

4

22

1

Extint1 +






≤+=∑
=

−−− ππ , 

 

( )
N

VP
TTW DA

N

i

iiiiD 3
2

1

Extint1 ≤+=∑
=

−−− ππ . 

Even if this is not the best upper bound we can find, we can see that for ∞→N , 0)( →NWD
. 
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In fact  we expect that  the entropy production and the Dissipated energy are due to the step-wise 

processes. If the steps are very small these related quantities are very small too. 

 

 

 

 

4 - Summary 

 

In this paper  new and previous results are used to evaluate the Dissipated energy for a stepwise ideal 

gas Circular Cycle, a system with complexity, the Extra Work  together with the Lost Work, give the 

Dissipated energy in this special  process. The analysis is very accurate for irreversible isothermal 

process and for isobaric processes.  
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Appendix - Lost Work and Extra Work for  processes with external irreversibility 

 

Here we evaluate the Lost Work for the expansion and the Extra work for the compression when 

there is external irreversibility. In Sec. 2.2 and in Sec. 3 of paper [1] we have shown that, if the 

irreversible isothermal expansion is performed by means of a (shorter) contact with a heat source at 

TT >ext
, we have 0ext ≠π , i.e. 

ext

inin
ext

T

Q

T

Q
−=π                                                                      (A1) 

and for the Endo–reversible process, i.e. the process in which the gas performs the reversible 

isothermal expansion A B→ , 

ext

RevRevEndo

ext
T

Q

T

Q
−=π                                                                  (A2) 

Similarly, if the irreversible isothermal compression is performed by means of a (shorter) contact 

with an heat source at TT <ext , we have 0ext ≠π , i.e. 

T

Q

T

Q out

ext

out
ext −=π      and     

T

Q

T

Q Rev

ext

RevEndo

ext −=π .                                       (A3) 

To evaluate the Lost Work for the expansion with TT >ext  we calculate the work available in the 

related Reversible process and subtract from it outW , the effective work done in the irreversible 

process. This difference gives the Lost Work. 

The Reversible Work is the Reversible work of the gas plus the work of an auxiliary reversible 

engine working between extT  and T . For the gas Rev

gas

Rev QW = . The auxiliary reversible engine, which 

brings the heat 
RevQ  to the system (the ideal gas at temperature T ) and takes from the heat source 

at temperature extT  the heat 
T

T
Q ext

Rev , performs the work 







−=

ext

ext
Rev

engine

Rev 1
T

T

T

T
QW . Therefore the 

total reversible work is 









−+=+=

ext

ext
RevRev

engine

Rev

gas

Rev

Total

Rev 1
T

T

T

T
QQWWW  

The Work performed by the gas in the irreversible expansion is inout QW = , therefore 

Formatted: Left

Deleted: From this upper bound we see 

that, for ∞→N , 0)( →NWD
.¶
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Endo

extextinRev
ext

RevinRevout

Total

RevLost ππ TTQ
T

T
QQQWWW +=−+−=−=                       (A4) 

On the other hand for the compression with a heat source at TT =ext  

intRevoutRevinExtra πTQQWWW =−=−=                                                (A5) 

but if one uses a heat source at TT <ext , we have to subtract the work of the reversible engine from 

the Reversible work necessary to perform the isothermal compression at temperature T , which 

subtracts outQ  from the heat source at temperature T  (the gas) and gives the heat out
extMin Q
T

T
Q =  to 

the source at temperature extT , i.e. 

extext
out

ext

out
ext

min

out

ext

Rev πT
T

Q

T

Q
TQQW =








−=−= ; 

therefore the Extra work is 

( ) extextint
out

extoutRevout

ext

RevRevinExtra ππ TT
T

Q
TQQQWWWW +=−+−=−−= .                  (A6) 
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