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Introduction

Rayleigh scattering [START_REF] Strutt | Third Baron Rayleigh[END_REF], i.e. the fact that the mean-free path of weakly scattered waves varies as ω -(d+1) in a d-dimensional disordered medium as ω → 0, is widely believed to be a general property of quenched disordered matter [2][3][4][5][6]. However, R.1 recently it has been claimed [7] that a harmonic system with displacements u i (t) obeying

d 2 dt 2 u i (t) = - j t ij u i (t) -u j (t) , (1) 
where i and j denote random sites r i,j in d-dimensional space, would have wavelike excitations, which have a line-width (inverse mean-free path), varying with ω 2 instead of ω 4 in d = 3. t ij are force constants, divided the mass at the node i, which are assumed to depend on the distance, i.e. t ij = t(r ij ). The claim of absence of Rayleigh scattering had been substantiated by a high-density expansion and a diagrammatical analysis [7]. This claim is not only astonishing with respect to the mentioned general view on waves in disordered media, but it is also in contradiction with the known analytic properties of the analogous diffusion system. If one replaces the double time derivative in [START_REF] Strutt | Third Baron Rayleigh[END_REF] equation of a random walk among the sites i, j:

d dt n i (t) = - j t ij n i (t) -n j (t) , (2) 
where n i (t) give the odds for the walker to be at i at time t and t ij = t(r ij ) is the hopping probability per unit time. Eq. ( 2) describes e.g. the motion of electrons hopping among shallow impurities in a semiconductor [8,9,[START_REF] Shklovskii | Electroic Properties of Doped Semiconductors[END_REF][START_REF] Böttger | Hopping Conduction in Solids[END_REF]. Such a random walk is known [10] to exhibit a long-time tail of the velocity-autocorrelation function (VAF) varying as Z(t) ∝ t (d+2)/2 for t → ∞ [10,[START_REF] Ernst | [END_REF], a feature shared with Lorentz models [START_REF] Ernst | [END_REF][14][15]. In fact, the Laplace transform of the VAF is the frequency-dependent diffusivity D(z = iω + ), which has, according to the Tauberian theorems [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] a low-frequency singularity D(z) → z d/2 , |z| → 0. Now, in the analogous vibrational problem this quantity corresponds to the square of a frequency-dependent sound velocity D(z = -ω 2 + i ) = v 2 (z). The imaginary part v (ω) of the latter is related to the mean-free path via

1 (ω) = 2ωv (ω) |v(z)| 2 (3) 
This gives ∝ ω -(d+1) , i.e. Rayleigh scattering. We conclude that the long-time tail of the VAF in the diffusion problem is mathematically equivalent to the Rayleighscattering property.

In the following we calculate all irreducible diagrams (self-energy diagrams) up to second order in the inverse density ρ -1 = V /N , where N is the number of sites and V the volume. We show that to this order the self energy is proportional to k 2 z d/2 , z = iω + (diffusion) or z = -ω 2 + i (sound). and not as claimed in Refs. [7] ∝ k 2 z (d-2)/2 . We also show, why the so-called cactus approximation for a self-consistent theory erroneously leads to a non-analyticity z (d-2)/2 instead of z d/2 .

Formalism

As in refs. [7] we start from a high-frequency (z) and high-density (ρ = N/V ) expansion of the averaged propagator

G(k, z) = 1 N mn e ikrmn [z1 -M] -1 mn = 1 z + ∞ p=1 1 z p+1 1 N i0...ip e ikri 0 i 1 M i0i1 . . . e ikri p-1 ip M ip-1ip
Here M is a matrix with off-diagonal elements M ij = t ij and diagonal elements

M ii = - =i t i . t(k) = t(k) is the d-dimensional
Fourier transform of t(r). The configurationally averaged Green's function can now be expressed in terms of the irreducible self energy Σ (k, z) as follows The frequency-dependent diffusivity/sound velocity is given by

G (k, z) = 1 z -ρ [ t (k) -t (0) ] -Σ (k, z) k→0 = 1 z + D(z)k 2 (4) 
D(z) = v(z) 2 = - 1 2 ∂ 2 ∂k 2 t(k) + Σ(k, z) k→0 (5) 
For simplicity, we assume complete site disorder (i.e. the radial pair correlation function g (r) ≡ 1). Therefore t (k) is simply the Fourier transform of the transition rate t (r) [17].

It is possible, to consider a more general case, e.g. by replacing t n (r ij ) → g (r ij ) t n (r ij ) (n > 0) in every diagram (Kirkwood factorization). Without proof, it can be demonstrated that the analytical properties of the first and second order diagrams would remain unaffected by such an extension.

R.4

We denote the unrenormalized part of the Green's function by G 0 :

G 0 (k, z) := 1 z -ρ [ t (k) -t (0) ] (6) 
In analogy to the approach in Ref. [7], it is helpful to consider a high-density expansion of the propagator, which is in turn determined by an analogous expansion the self energy Σ (k, z)

Σ (k, z) =: ∞ n=1 ρ -n Σ (n) (k, z) , (7) 
As outlined in [7], the index n counts repetitions of sites in the high frequency / high density expansion.

In the following, we will derive exact results for n = 1 and n = 2.

To this end, we will use diagrammatic representations (as explained in Figure 1), to distinguish topologically different contributions to the self energy.

In the following, we calculated the diagrams for the special case d = 3, but the results remain valid for arbitrary dimensions.

R.3

3. First-order diagrams: Σ (1) (k, z)

This case is comparably trivial and requires the addition of four diagrams (cf. Figure 1), since the first and last connection can refer to an off-diagonal (O) or a diagonal (D) transition rate. 

OO = ρ dp (2π) 3 t 2 (p) G 0 (p, z) OD = -ρ dp (2π) 3 t (k -p) t (p) G 0 (p, z) DO = -ρ dp (2π) 3 t (k -p) t (p) G 0 (p, z)
= [ z + ρ t (0) ] -1 , which is formally obtained as G 0 (z) = lim k→∞ G 0 (k, z).
In most cases, this requires no special attention. Exceptions, when these terms need to be explicitly excluded to preserve irreducibility will be mentioned below. Open circles will always indicate start and end points of a diagram.

DD = ρ dp (2π) 3 t 2 (k -p) G 0 (p, z)
Added together:

ρ dp (2π) 3 [ t (k -p) -t (p) ] 2 G 0 (p, z) (8) 
Since we are mainly interested in the imaginary part of

lim z→0 lim k→0 Σ (k, z) (9) 
we will have to examine the bracket in Eq. ( 8) in the limit k → 0

lim k→0 t (k -p) -t (p) = t (p) p • kp + 1 2 t (p) • p -t (p) p 3 • [ kp ] 2 + 1 2 t (p) p • k 2 + O k 3 (10) We therefore obtain lim p→0 lim k→0 [ t (k -p) -t (p) ] 2 = c • [ kp ] 2 ∝ p 2 +O k 3 , p 3 (11) 
with some usually nonzero constant c. With the additional p 2 factor from the threedimensional integral, we obtain from the diffusion pole of G 0 (k, z) 4. Second-order diagrams:

lim z→0 lim k→0 Im Σ (1) (k, z) ∝ z 3/2 k 2 (12) 
Σ (2) (k, z)
This case is considerably more complex. It turns out to be advantegeous to consider topologically different groups of irreducible diagrams separately:

• Σ (2) α (k, z): (1 * 2 • • • 2 • • • 1) • Σ (2) β (k, z): (1 2 • • • 2 • • • 1) • Σ (2) γ (k, z): (1 * 2 • • • 1 • • • 2) • Σ (2) δ (k, z): (1 2 • • • 1 • • • 2) • Σ (2) ε (k, z): (1 • • • 1 • • • 1)
Unlike in • • • at least one additional site index (differnt from 1 and 2) needs to be contained in * .

The complete and exact second-order self energy is then just the sum of these partial contributions:

Σ (2) (k, z) = Σ (2) α (k, z) + Σ (2) β (k, z) + Σ (2) γ (k, z) + Σ (2) δ (k, z) + Σ (2) ε (k, z) (13) 4.1. Σ (2) α (k, z): Irreducible Diagrams (1 * 2 • • • 2 • • • 1)
Here, the 16 diagrams in Figure 2 need to be distinguished [18]: 

OOOO = ρ 2 dp dq t 3 (p) t (q) G 2 0 (p) G 0 (q) OOOD = -ρ 2 dp dq t (k -p) t 2 (p) t (q) G 2 0 (p) G 0 (q) OODO = -ρ 2 dp dq t 3 (p) t (p -q) G 2 0 (p) G 0 (q) OODD = ρ 2 dp dq t (k -p) t 2 (p) t (p -q) G 2 0 (p) G 0 (q) ODOO = -ρ 2 dp dq t 2 (p) t (p -q) t (q) G 2 0 (p) G 0 (q) ODOD = ρ 2 dp dq t (k -p) t (p) t (p -q) t (q) G 2 0 (p) G 0 (q) ODDO = ρ 2 dp dq t 2 (p) t 2 (p -q) G 2 0 (p) G 0 (q)
α (k, z) ODDD = -ρ 2 dp dq t (k -p) t (p) t 2 (p -q) G 2 0 (p) G 0 (q) DOOO = -ρ 2 dp dq t (k -p) t 2 (p) t (q) G 2 0 (p) G 0 (q) DOOD = ρ 2 dp dq t 2 (k -p) t (p) t (q) G 2 0 (p) G 0 (q) DODO = ρ 2 dp dq t (k -p) t 2 (p) t (p -q) G 2 0 (p) G 0 (q) F o r P e e r
DODD = -ρ 2 dp dq t 2 (k -p) t (p) t (p -q) G 2 0 (p) G 0 (q) DDOO = ρ 2 dp dq t (k -p) t (p) t (p -q) t (q) G 2 0 (p) G 0 (q) DDOD = -ρ 2 dp dq t 2 (k -p) t (p -q) t (q) G 2 0 (p) G 0 (q) DDDO = -ρ 2 dp dq t (k -p) t (p) t 2 (p -q) G 2 0 (p) G 0 (q) DDDD = ρ 2 dp dq t 2 (k -p) t 2 (p -q) G 2 0 (p) G 0 (q)
Added together:

Σ (2) α (k, z) = (14) 
ρ 2 dp dq [ t (k -p) -t (p) ] 2 [ t (p -q) -t (p) ] [ t (p -q) -t (q) ] G 2 0 (p) G 0 (q)
Two cases need to be distinguished:

p is small: Because of Eq. ( 11), the first squared bracket delivers a factor p 2 . Additional p 2 factors result from the third bracket and the 3D integration, respectively, so that we finally arrive at a p 6 factor. From the identity G 2 0 (p, z) ∝ ∂ ∂z G 0 (p, z), we obtain a nonanalyticity ∝ z 3/2 . Note that uneven occurrences of p and/or q, such as an isolated product pq, are not rotation invariant and therefore do not contribute to the integral. q is small: Now the second bracket delivers an additional nonanalyticity [19] q 2 , which again produces a z 3/2 nonanalyticity.

We therefore conclude for this group of diagrams

lim z→0 lim k→0 Im Σ (2) α (k, z) ∝ z 3/2 k 2 (15) 4.2. Σ (2) 
β (k, z): Irreducible Diagrams (1 2 • • • 2 • • • 1)
Since sites 1 and 2 are connected directly via t o 12 or t d 12 , the diagrams contain only three t's and two G 0 's. Therefore, only eight diagrams are possible (cf. Figure 3): Added together:

OOO = ρ dp dq t 2 (p) t (q) G 0 (p) G 0 (q)
β (k, z) OOD = -ρ dp dq t (k -p) t (p) t (q) G 0 (p) G 0 (q) ODO = -ρ dp dq t 2 (p) t (p -q) G 0 (p) G 0 (q) ODD = ρ dp dq t (k -p) t (p) t (p -q) G 0 (p) G 0 (q) DOO = -ρ dp dq t (p) t (p -q) t (q) G 0 (p) G 0 (q) DOD = ρ dp dq t (k -p) t (p -q) t (q) G 0 (p) G 0 (q) DDO = ρ dp dq t (p) t 2 (p -q) G 0 (p) G 0 (q) DDD = -ρ dp dq t (k -p) t 2 (p -q) G 0 (p) G 0 (q) F o r P e e r
Σ (2) β (k, z) = (16) -ρ dp dq [ t (k -p) -t (p) ] [ t (p -q) -t (p) ] [ t (p -q) -t (q) ] G 0 (p) G 0 (q)
Because of (10), the first bracket gives us only a k 2 . Depending on whether p or q are small, the third, respectively second, bracket delivers the required additional p 2 , respectively q 2 , to obtain:

lim z→0 lim k→0 Im Σ (2) β (k, z) ∝ z 3/2 k 2 (17)
Note a particular property of diagrams DDO and DDD: If the propagator in the middle of the diagram collapses to the diagonal G 0 , as explained above, these diagrams are factorizable at site 1 and therefore not irreducible anymore. To avoid double counting, the diagonal term G 0 must therefore be subtracted from this propagator.

It can be easily verified, however, that the z 3/2 -nonanalyticity is not affected by this.

4.3. Σ (2) γ (k, z): Irreducible Diagrams (1 * 2 • • • 1 • • • 2)
The crossover topology of these 16 diagrams (Figure 4) leads to more intricate convolution integrals.

Based on the following abbreviations 

α := k -p -q β := p γ := q a := p + q b := k -p c := k -q (18) we obtain OOOO = ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t (α) t (β) t 2 (γ) OOOD = -ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t (a) t (β) t 2 (γ) OODO = -ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t 2 (α) t (a) t (γ)
γ (k, z) OODD = ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t (b) t (c) t 2 (β) ODOO = -ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t (α) t (a) t (β) t (γ) ODOD = ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t 2 (a) t (β) t (γ) ODDO = ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t (b) t (c) t (β) t (γ) F o r P e e r R e v i e w O n l y ODDD = -ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) t (b) t 2 (c) t (β) DOOO = -ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t (α) t (a) t (β) t (γ) DOOD = ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t (α) t (b) t (c) t (β) DODO = ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t (α) t 2 (a) t (γ) DODD = -ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t 2 (b) t (c) t (β) DDOO = ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t (α) t (b) t (c) t (γ) DDOD = -ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t (α) t (b) t 2 (c) DDDO = -ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t 2 (b) t (c) t (γ) DDDD = ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) • t 2 (b) t 2 (c)

Collecting Terms

To derive a usable expression for the sum of these 16 diagrams, we have to exploit the symmetries of the problem.

Transforming variables p, q → p, q allows to arbitrarily permute α, β, γ under the boundary condition that a, b, c perform the same permutation, as indicated in the following table: For example, the transformation

p := k -p -q und q := p (20) leads to k -p -q → p (21) p → q (22) q → k -p -q (23) p + q → k -p (24) k -p → k -q (25) k -q → p + q (26)
and thus the permutation α β γ a b c → β γ α b c a.

The product G 0 (α) G 0 (β) G 0 (γ) is invariant with respect to these permutations and because of

dα dβ = dα dγ = dβ dγ (27) 
the integration variables can be chosen freely. After suitably regrouping the tfactors, we obtain for the sum of all diagrams the expression

K := OOOO + • • • + DDDD = ρ 2 dβ dγ G 0 (α) G 0 (β) G 0 (γ) × × [ t (β) -t (b) ] • [ t (γ) -t (c) ] • [ t (γ) -t (β) ] • [ t (α) + t (β) ]
Since we integrate over two variables only, we have to eliminate one G 0 -factor. To this end, we apply a partial fraction decomposition

ρ [ t (γ) -t (β) ] • G 0 (β) G 0 (γ) = [ G 0 (γ) -G 0 (β) ] (28) 
Some further permutations and regrouping lead to

K = ρ 2 dβ dγ G 0 (β) G 0 (γ) × × [ t (α) -t (a) ] • [ t (α) -t (γ) ] • [ t (γ) -t (c) ]
After reinserting the above definitions, we can expand for small k: 

t (α) -t (a) = t (k -p -q) -t (p + q) = t (p + q) |p + q| • k (p + q) + O k 2 t (c) -t (γ) = t (k -q) -t (q) = t (q) q • kq + O k 2
We thus obtain lim k→0 K ∝ k 2 , as required. Since we only consider the lowestorder term, we may use

t (α) -t (γ) = t (a) -t (γ) + O (k) (29) 
and set

t (α) -t (γ) ≈ t (p + q) -t (q) (30) 
We thus finally arrive at

K = ρ 2 dp dq G 0 (p) G 0 (q) × (31) 
× t (p + q) |p + q| • k (p + q) A • [ t (p + q) -t (q) ] B • t (q) q • kq C +O k 3
For the analytical properties, we again have to consider two cases:

q is small:

Bracket C gives us a factor q, but brackets A and B approach a finite value for q → 0.

But: After setting q = 0 in A and B, both the integral over p (because of the kp term in A) and over q (due to the kq in C) vanish due to lack of rotational invariance. Consequently, we have to expand the fraction in A to first order in q, which provides us with an additional factor pq ∝ q. Now rotational invariance is preserved and a z 3/2 nonanalyticity is obtained.

p is small: Bracket C remains finite and B leads to a factor pq ∝ p. Setting p = 0 in A leads to the following structure

dp dq f (q) • [ pq ] • [ kq ] 2 (32) 
In order to restore rotational invariance, we again have to expand in A to first order in p, which yields an additional pq ∝ p and leads to a z 3/2 nonanalyticity. We thus conclude that lim

z→0 lim k→0 Im Σ (2) γ (k, z) ∝ z 3/2 k 2 (33) 
holds.

Σ

(2)

δ (k, z): Irreducible Diagrams (1 2 • • • 1 • • • 2)
Similar to Σ β above, 8 diagrams need to be considered (Figure 5): 

OOO = ρ dp dq t (k -p + q) t (p) t (q) G 0 (p) G 0 (q) OOD = -ρ dp dq t (k -p + q) t (k -p) t (q) G 0 (p) G 0 (q) ODO = -ρ dp dq t (k -p + q) t (p) t (p -q) G 0 (p) G 0 (q) ODD = ρ dp dq t (k -p + q) t (k -p) t (p -q) G 0 (p) G 0 (q) DOO = -ρ dp dq t (k -p) t (p) t (q) G 0 (p) G 0 (q)
ε (k, z) DOD = ρ dp dq t 2 (k -p) t (q) G 0 (p) G 0 (q) DDO = ρ dp dq t (k -p) t (p) t (p -q) G 0 (p) G 0 (q) DDD = -ρ dp dq t 2 (k -p) t (p -q) G 0 (p) G 0 (q)
Added together:

Σ (2) δ (k, z) ∝ (34) ρ dp dq [ t (k -p) -t (p) ] [ t (k -p + q) -t (k -p) ] [ t (p -q) -t (q) ] G 0 (p) G 0 (q)
The first bracket is proportional to k 2 . Depending on whether p or q is small, the third or second bracket yields the required additional p 2 or q 2 , respectively.

Thus we have here too:

lim z→0 lim k→0 Im Σ (2) δ (k, z) ∝ z 3/2 k 2 (35) 4.5. Σ (2) ε (k, z): Irreducible Diagrams (1 • • • 1 • • • 1)
Here only 4 cases are possible (Figure 6).

OO = -ρ dp dq t (p) t (p -q) t (q) G 0 (p) G 0 (q) OD = ρ dp dq t (k -p) t (p -q) t (q) G 0 (p) G 0 (q) F o r P e e r R e v i e w O n l y DO = ρ dp dq t (k -q) t (p) t (p -q) G 0 (p) G 0 (q) DD = -ρ dp dq t (k -p) t (k -q) t (p -q) G 0 (p) G 0 (q)
Added together:

Σ (2) ε (k, z) ∝ (36) ρ dp dq [ t (k -p) -t (p) ] [ t (k -q) -t (q) ] t (p -q) G 0 (p) G 0 (q)
For order O k 2 , because of (10), the first two brackets muts be proportional to ∝ kp and kq, respectively. For rotational invariance, the last bracket needs to be expanded and thus provides the additional required pq term, to obtain:

lim z→0 lim k→0 Im Σ (2) ε (k, z) ∝ z 3/2 k 2 (37) 
With ( 13) it follows immediately

lim z→0 lim k→0 Im Σ (2) (k, z) ∝ z 3/2 k 2 (38) 

Conclusion

Working out term by term in the second-order self energy we have convinced ourselves that to this order the nonalytic behavior (38), which both leads to Rayleightype sound attenuation and to the correct long-time tail in the analogous diffusion problem is recovered. This is in contrast to the claims in the publications [7]. In these publications a self-consistent equation for the self-energy is advocated, which consists in making the first-order result (8) self-consistent, i.e. replacing the 0-thorder Green's function by the full one. Now, in performing a high-density expansion of this equation one easily convinces oneself that the corresponding diagrams are

• the entire sum Σ

α (k, z); • the diagrams OOO, OOD, ODO, ODD of Σ As the partial sums do not give the correct analytic properties, this is the reason, why the self-consistent scheme advocated by [7] does not lead to Rayleigh scattering. We shall publish shortly a self-consistent scheme, which includes Rayleigh scattering. Irreducible diagrams in Σ (1) (k,z).

F
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