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The classical Onofri inequality in the two-dimensional sphere assumes a natural form in the plane when transformed via stereographic projection. We establish an optimal version of a generalization of this inequality in the d-dimensional Euclidean space for any d ≥ 2, by considering the endpoint of a family of optimal Gagliardo-Nirenberg interpolation inequalities. Unlike the two-dimensional case, this extension involves a rather unexpected Sobolev-Orlicz norm, as well as a probability measure no longer related to stereographic projection.

Introduction and main result

The Onofri inequality as stated in [START_REF] Onofri | On the positivity of the effective action in a theory of random surfaces[END_REF] asserts that log

S 2 e v dσ 2 - S 2 v dσ 2 ≤ 1 4 ∇v 2 L 2 (S 2 ,dσ2) (1) 
for any function v ∈ H 1 (S 2 , dσ 2 ). Here dσ 2 denotes the standard surface measure on the two-dimensional unit sphere S 2 ⊂ R 3 , up to a normalization factor 1 4 π so that S 2 1 dσ 2 = 1. Using stereographic projection from S 2 onto R 2 , that is defining u by u(x) = v(y) with y = (y 1 , y 2 , y 3 ) , y

1 = 2 x 1 1 + |x| 2 , y 2 = 2 x 2 1 + |x| 2 , y 3 = 1 -|x| 2 1 + |x| 2
for any x = (x 1 , x 2 ) ∈ R 2 , then (1) can be reformulated into the Euclidean Onofri inequality, namely log

R 2 e u dµ 2 - R 2 u dµ 2 ≤ 1 16 π ∇u 2 L 2 (R 2 ,dx) (2) 
for any u ∈ L 1 (R 2 , dµ 2 ) such that ∇u ∈ L 2 (R 2 , dx), where

dµ 2 (x) := dx π (1 + |x| 2 ) 2
is again a probability measure.

The purpose of this note is to obtain an (optimal) extension of inequality (2) to any space dimension. There is a vast literature on Onofri's inequality, and we shall only mention a few works relevant to our main result below. Onofri's inequality with a non-optimal constant was first established by J. [START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF], a work prior to that of E. [START_REF] Onofri | On the positivity of the effective action in a theory of random surfaces[END_REF]. For this reason, the inequality is sometimes called the Moser-Onofri inequality. We also point out that Onofri's paper is based on an earlier result of T. [START_REF] Aubin | Meilleures constantes dans le théorème d'inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire[END_REF]. We refer the interested reader to [START_REF] Ghigi | On the Moser-Onofri and Prékopa-Leindler inequalities[END_REF] for a recent account on the Moser-Onofri inequality. The inequality has an interesting version in the cylinder R × S 1 , see [START_REF] Dolbeault | The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions[END_REF], which is however out of the scope of the present work.

In this note, we will establish that the Euclidean version of Onofri's inequality (2) can be extended to an arbitrary dimension d ≥ 3 in the following manner. Let us consider the probability measure

dµ d (x) := d |S d-1 | dx 1 + |x| d d-1 d . Let us denote R d (X, Y ) := |X + Y | d -|X| d -d |X| d-2 X • Y , (X, Y ) ∈ R d × R d ,
which is a polynomial if d is even. We define

H d (x, p) := R d -d |x| -d-2 d-1 1+|x| d d-1 x, d-1 d p , (x, p) ∈ R d × R d ,
and

Q d [u] := R d H d (x, ∇u) dx log R d e u dµ d -R d u dµ d .
The following is our main result.

Theorem 1.1. With the above notation, for any smooth compactly supported function u, we have log

R d e u dµ d - R d u dµ d ≤ α d R d H d (x, ∇u) dx . (3) 
The optimal constant α d is explicit and given by

α d = d 1-d Γ(d/2) 2 (d -1) π d/2 .
Small multiples of the function

v(x) = -d x • e |x| d-2 d-1 1 + |x| d d-1 (4)
for a unit vector e are approximate extremals of (3) in the sense that

lim ε→0 Q d [ε v] = 1 α d .
A rather unexpected feature of inequality (3) when compared with Onofri's inequality (2), is that it involves an inhomogeneous Sobolev-Orlicz type norm. As we will see below, as a by-product of the proof we obtain a new Poincaré inequality in entire space, (7) below, of which the function v defined by ( 4) is an extremal.

Example 1.2. If d = 2, R d H 2 (x, ∇u) dx = 1
4 R 2 |∇u| 2 dx and we recover Onofri's inequality (3) as in [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF], with optimal constant 1/α 2 = 4 π. On the other hand, if for instance d = 4, we find that H 4 (x, ∇u) is a fourth order polynomial in the partial derivatives of u, since R

4 (X, Y ) = 4 (X • Y ) 2 + |Y | 2 (|Y | 2 + 4 X • Y + 2 |X| 2 ).
Extensions of inequality (2) to higher dimensions were already obtained long ago. Inequality (1) was generalized to the d-dimensional sphere in [START_REF] Beckner | Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality[END_REF], [START_REF] Carlen | Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on S n[END_REF], where natural conformally invariant, non-local generalizations of the Laplacian were used. Those operators are of different nature than the ones in Theorem 1.1. Indeed, no clear connection through, for instance, stereographic projection is present. See also [START_REF] Kim | Linearised Moser-Trudinger inequality[END_REF], [START_REF] Kawohl | Best constants in some exponential Sobolev inequalities[END_REF] in which bounded domains are considered.

Inequality (3) determines a natural Sobolev space in which it holds. Indeed, a classical completion argument with respect to a norm corresponding to the integrals defined in both sides of the inequality determines a space on which the inequality still holds. This space can be identified with the set of all functions u ∈ L 1 (R d , dµ d ) such that the distribution ∇u is a square integrable function. To avoid technicalities, computations will only be done for smooth, compactly supported functions.

Our strategy is to consider the Euclidean inequality of Theorem 1.1 as the endpoint of a family of optimal interpolation inequalities discovered in Del Pino and Dolbeault [2002b] and then extended in Del Pino and Dolbeault [2002a]. These inequalities can be stated as follows.

Theorem 1.3. Let p ∈ (1, d], a > 1 such that a ≤ p (d-1)
d-p if p < d, and b = p a-1 p-1 . There exists a positive constant C p,a such that, for any function

f ∈ L a (R d , dx) with ∇f ∈ L p (R d , dx), we have f L b (R d ) ≤ C p,a ∇f θ L p (R d ) f 1-θ L a (R d ) with θ = (a-p) d (a-1) (d p-(d-p) a) (5) if a > p. A similar inequality also holds if a < p, namely f L a (R d ) ≤ C p,a ∇f θ L p (R d ) f 1-θ L b (R d ) with θ = (p-a) d a (d (p-a)+p (a-1)) .
In both cases, equality holds for any function taking the form

f (x) = A 1 + B |x -x 0 | p p-1 -p-1 a-p + ∀ x ∈ R d for some (A, B, x 0 ) ∈ R × R × R d
, where B has the sign of a -p.

While in Del Pino and Dolbeault [2002a], only the case p < d was considered, the proof there actually applies to also cover the case p = d, for any a ∈ (1, ∞).

For a = p, inequality (5) degenerates into an equality. By substracting it to the inequality, dividing by a -p and taking the limit as a → p + , we obtain an optimal Euclidean L p -Sobolev logarithmic inequality which goes as follows. Assume that 1 < p ≤ d. Then for any u

∈ W 1,p (R d ) with R d |u| p dx = 1 we have R d |u| p log |u| p dx ≤ d p log β p,d R d |∇u| p dx , where β p,d := p d p -1 e p-1 1 π p 2   Γ d 2 +1 Γ d p-1 p +1   p d
is the optimal constant. Equality holds if and only if for some σ > 0 and

x 0 ∈ R d u(x) = 1 2 π d 2 p p -1 Γ d 2 Γ d p-1 p p σ d p-1 p 1 p e -1 σ |x-x0| p p-1 ∀ x ∈ R d .
This inequality has been established in Del Pino and [START_REF] Del | The optimal Euclidean L p -Sobolev logarithmic inequality[END_REF] when p < d and in general in Gentil [2003]; see also [START_REF] Cordero-Erausquin | Inequalities for generalized entropy and optimal transportation[END_REF][START_REF] Del Pino | Nonlinear diffusions, hypercontractivity and the optimal L p -Euclidean logarithmic Sobolev inequality[END_REF].

When p < d, the endpoint a = p (d-1) d-p corresponds to the usual optimal Sobolev inequality, for which the extremal functions were already known from the celebrated papers by T. Aubin and G. Talenti, Aubin [1976], Talenti [1976]. See also [START_REF] Bliss | An integral inequality[END_REF], Rosen [1971] for earlier related computations, which provided the value of some of the best constants.

When p = d, Theorem 1.1 will also be obtained by passing to a limit, namely as a → +∞. In this way, the d-dmensional Onofri inequality corresponds to nothing but a natural extension of the optimal Sobolev's inequality. In dimension d = 2, with p = 2, a = q + 1 > 2 and b = 2 q, it has been recently observed in [START_REF] Dolbeault | Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion[END_REF] that

1 ≤ lim q→∞ C 2,q+1 ∇f q q-1 2 q L 2 (R 2 ) f q q+1 2 q L q+1 (R 2 ) f q L 2q (R 2 ) = e 1 16 π R 2 |∇u| 2 dx R 2 e u dµ 2 if f q = (1 + |x| 2 ) -1 q-1 (1 + u 2 q
) and R 2 u dµ 2 = 0. In that sense, Onofri's inequality in dimension d = 2 replaces Sobolev's inequality in higher dimensions as an endpoint of the family of Gagliardo-Nirenberg inequalities

f L 2q (R d ) ≤ C 2,q+1 ∇f θ L 2 (R d ) f 1-θ L q+1 (R d )
with θ = q-1 q d d+2-q (d-2) . In dimension d ≥ 3, we will see below that (3) can also be seen as an endpoint of (5).

2 Proof of Theorem 1.1

Assume that u ∈ D(R d ) is such that R d u dµ d = 0 and let f a := F a 1 + d-1 d a u ,
where F a is defined by

F a (x) = 1 + |x| d d-1 -d-1 a-d ∀ x ∈ R d . (6) 
From Theorem 1.3, Inequality (5), we know that

1 ≤ lim a→+∞ C d,a ∇f a θ L d (R d ) f a 1-θ L a (R d ) f a L b (R d ) if p = d.
Our goal is to identify the right hand side in terms of u. We recall that b = d (a-1)

d-1

and θ = a-d d (a-1) . Using the fact that F a is an optimal function, we can then rewrite (5) with f = f a as

R d |f a | d (a-1) d-1 dx R d |F a | d (a-1) d-1 dx ≤ R d |∇f a | d dx R d |∇F a | d dx a-d d (d-1) R d |f a | a dx R d |F a | a dx
and observe that:

(i) lim a→+∞ R d |F a | d (a-1) d-1 dx = R d 1 + |x| d d-1 -d dx = 1 d |S d-1 | and lim a→+∞ R d |f a | d (a-1) d-1 dx = lim a→+∞ R d F d (a-1) d-1 a (1 + d-1 d a u) d (a-1) d-1 dx = R d e u 1 + |x| d d-1 d dx , so that lim a→+∞ R d |f a | d (a-1) d-1 dx R d |F a | d (a-1) d-1 dx = R d e u dµ d . (ii) As a → +∞, R d |F a | a dx ≈ 2 a π d/2 d 2 Γ(d/2) , lim a→+∞ R d |f a | a dx = ∞ , and 
lim a→+∞ R d |f a | a dx R d |F a | a dx = 1 .
(iii) Finally, as a → +∞, we also find that

R d |∇f a | d dx R d |∇F a | d dx a-d d (d-1) ≈ 1 + d (d-1) a α d R d H d (x, ∇u) dx a-d d (d-1) ≈ exp α d R d H d (x, ∇u) dx .
Here and above ℓ 1 (a) ≈ ℓ 2 (a) means that lim a→+∞ ℓ 1 (a)/ℓ 2 (a) = 1. Fact (iii) requires some computations which we make explicit next. First of all, we have

R d |∇F a | d dx = 2 d d-2 π d/2 Γ(d/2) a 1-d .
With X a := 1 + d-1 d a u ∇F a and Y a := d-1 d a F a ∇u, we can write, using the definition of R d , that

|∇f a | d = |∇F a | d 1 + d-1 d a u d + F a |∇F a | d-2 ∇F a • ∇ 1 + d-1 d a u d + R d (X a , Y a ) .
Consider the second term of the right hand side and integrate by parts. A straightforward computation shows that

R d F a |∇F a | d-2 ∇F a • ∇ 1 + d-1 d a u d dx = - R d |∇F a | d 1 + d-1 d a u d dx - R d F a ∆ d F a 1 + d-1 d a u d dx where ∆ p F a = ∇ • (|∇F a | p-2 ∇F a ) is computed for p = d. Collecting terms, we get R d |∇f a | d dx = - R d F a ∆ d F a 1 + d-1 d a u d dx + R d R d (X a , Y a ) dx .
We may next observe that

a ∇F a (x) = -d a a-d |x| -d-2 d-1 x 1 + |x| d d-1 -a-1 a-d + → -d |x| -d-2 d-1 x 1 + |x| d d-1
a.e. as a → +∞ ,

while a ∇ 1 + d-1 d a u = d-1 d ∇u, so that both X a = 1 + d-1 d a u ∇F a and Y a = d-1 d a F a ∇u in R d (X a , Y a )
are of the order of 1/a. By homogeneity, it follows that

a d R d (X a , Y a ) → R d -d |x| -d-2 d-1 1+|x| d d-1 x, d-1 d ∇u = H d (x, ∇u) as a → +∞ ,
by definition of H d . Hence we have established the fact that

R d |∇f a | d dx = - R d F a ∆ d F a 1 + d-1 d a u d dx + R d R d (X a , Y a ) dx = - R d F a ∆ d F a 1 + d d-1 d a u + o(a -1 ) dx + a -d R d H d (x, ∇u) dx Next we can observe that -R d F a ∆ d F a dx = R d |∇F a | d dx, while -lim a→+∞ a d-1 F a ∆ d F a = d d-1 |S d-1 | µ d , so that - R d F a ∆ d F a u dx = a 1-d d d-1 |S d-1 | R d u dµ d + o(a 1-d ) = o(a 1-d ) as a → +∞ by the assumption that R d u dµ d = 0. Altogether, this means that R d |∇f a | d dx R d |∇F a | d dx a-d d (d-1) ≈ 1 + R d H d (x, ∇u) dx a d R d |∇F a | d dx a-d d (d-1) ≈ 1 + d (d-1) a α d R d H d (x, ∇u) dx a-d d (d-1)
as a → +∞, which concludes the proof of (iii).

Before proving the optimality of the constant α d , let us state an intermediate result which of interest in itself. Let us assume that d ≥ 2 and define Q d as

Q d (X, Y ) := 2 lim ε→0 ε -2 R d (X, ε Y ) = d 2 dt 2 |X + t Y | d t=0 = d |X| d-4 (d -2) (X • Y ) 2 + |X| 2 |Y | 2 .
We also define

G d (x, p) := Q d -d |x| -d-2 d-1 1+|x| d d-1 x, d-1 d p , (x, p) ∈ R d × R d .
Corollary 2.1. With α d as in Theorem 1.1, we have

R d |v -v| 2 dµ d ≤ α d R d G d (x, ∇v) dx with v = R d v dµ d , (7) 
for any v ∈ L 1 (R d , dµ d ) such that ∇v ∈ L 2 (R d , dx).
This inequality is a Poincaré inequality, which is remarkable. Indeed, if we prove that the optimal constant in ( 7) is equal to α d , then α d is also optimal in Theorem 1.1, Inequality (3). We will see below that this is the case.

Proof of Corollary 2.1. Inequality ( 7) is a straightforward consequence of (3), written with u replaced by ε v. In the limit ε → 0, both sides of the inequality are of order ε 2 . Details are left to the reader.

To conclude the proof of Theorem 1.1, let us check that there is a nontrivial function v which achieves equality in (7). Since F a is optimal for (3), we can write that log

R d |F a | d (a-1) d-1 dx = log C d,a + a-d d (d-1) log R d |∇F a | d dx + log R d |F a | a dx .
However, equality also holds true if we replace F a by F a,ε with F a,ε (x) := F a (x + ε e), for an arbitrary given e ∈ S d-1 , and it is clear that one can differentiate twice with respect to ε at ε = 0. Hence, for any a > d, we have 8) is negligible compared to the other ones. Passing to the limit as a → +∞, with v := lim a→+∞ a v a , we find that v is given by ( 4) and

d (a-1) d-1 d (a-1) d-1 -1 R d |F a | d (a-1) d-1 |v a | 2 dx R d |F a | d (a-1) d-1 dx = a-d d (d-1) R d Q d (X a , d-1 d Y a ) dx R d |∇F a | d dx + a (a -1) R d |F a | a |v a | 2 dx R d |F a | a dx (8) with X a = ∇F a , Y a = d d-1 F a ∇v a and v a := e • ∇ log F a , that is v a (x) = - d a -d x • e |x| d-2 d-1 1 + |x| d d-1 . Hence, if φ is a radial function, we may notice that R d φ v a dx = 0 and lim a→+∞ a 2 R d φ |v a | 2 dx = d 2 R d φ(x) |x| 2 d-1 -2 (x • e) 2 1 + |x| d d-1 2 dx = d R d φ(x) |x| 2 d-1 1 + |x| d d-1 2 dx . Since R d |F a | d (a-1) d-1 dx = o R d |F a | a dx , the last term in (
d d-1 2 R d |v| 2 dµ d = α d R d Q d -d |x| -d-2 d-1 1+|x| d d-1 x, d-1 d Y dx
where Y := d-1 d ∇v and where we have used the fact that

d (d -1) α d lim a→+∞ a d R d |∇F a | d dx = 1 .
Since the function Q d is quadratic, we obtain that which corresponds precisely to equality in (7) since v given by ( 4) is such that v = 0. Equality in (3) is achieved by constants. The optimality of α d amounts to establish that in the inequality

Q d [u] ≥ 1 α d ,
equality can be achieved along a minimizing sequence. Notice that

Q d [u] = R d H d (x, ∇u) dx log R d e u dµ d if R d u dµ d = 0 ,
The reader is invited to check that lim ε→0 Q d [ε v] = 1 α d . In dimension d = 2, v is an eigenfunction associated to the eigenvalue problem: -∆ v = λ 1 vµ 2 , corresponding to the lowest positive eigenvalue, λ 1 . The generalization to higher dimensions is given by (4). Notice that the function v is an eigenfunction of the linear form associated to G d , in the space L 2 (R d , dµ d ). This concludes the proof of Theorem 1.1.

Whether there are non-trivial optimal functions, that is, whether there exists a non-constant function u such that Q d [u] = 1 α d , is an open question. At least the proof of Theorem 1.1 shows that there is a loss of compactness in the sense that the limit of ε v, i.e. 0, is not an admissible function for Q d .

  x, ∇v) dx ,
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