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Abstract. A great number of image reconstruction algorithms, based on analytical fil-

tered backprojection, are implemented for X-ray Computed Tomography (CT) [1,2]. The

limits of these methods appear when the number of projections is small, and/or not equidis-

tributed around the object. That’s the case in the context of dynamic study of fluids in

foams for example, the data set are not complete due to the limited acquistion time. In

this specific context, iterative algebraic methods are a solution to this lack of data. A great

number of them are mainly based on least square criterion. Recently, we proposed a reg-

ularized version based on Bayesian estimation approach. The main problem that appears

when using such methods as well as any iterative algebraic methods is the computation

time and especially for projection and backprojection steps. In this study, first we show

how we implemented some main steps of such algorithms which are the forward projec-

tion and backward backprojection steps on multi-GPU hardware, and then we show some

results on real application of the 3D tomographic reconstruction of metallic foams from

a small number of projections. Through this application, we also show the good quality

of results as well as a significant speed up of the computation with GPU implementation

(300 acceleration factor).

1 Iterative method

The inverse problem we solve is to reconstruct the object f from the projection data g collected by a
cone beam 3D CT [3]. The link between f and g can be expressed as :

g = H f + ǫ (1)

where H is the forward projection matrix operator modeling the acquisition system and ǫ represents
all the errors (modeling and measurement noise). The element Hi j represents the participation of the j

pixel in the i detector.
In this discretized presentation of the CT forward problem, the backprojection (BP) solution can

be expressed as f̂BP = Htg where Ht is the transpose of H and the filtered backprojection (FBP) (like
the FDK method [4]) which is also equivalent to the Least squares (LS) solution can be expressed

as f̂FBP = (HtH)−1Htg. The LS solution f̂LS = arg min f

{
Q( f ) = ‖g − H f ‖2

}
as well as the quadratic

regularization (QR) solution

f̂QR = arg min
f

{
J( f ) = ‖g − H f ‖2 + λ‖D f ‖2

}
(2)
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can be obtained by a gradient based optimization algorithm which can be described as follows:

{
f (0) = Htg

f (i+1) = f (i) + α
[
Ht(g − H f (i)) + λDtD f (i)

] (3)

where α is a fixed, variable or computed optimally step and (i) is the iteration number. Looking at this
iterative algorithm, we can distinguish, at each iteration the following operations:

1. Forward projection operation: ĝ = H f̂

2. Computation of the residuals: δg = g − ĝ
3. Backprojection operation of the residual: δ f1 = Htδg

4. Computation of the regularization or a priori term: δ f2 = λD
tD f̂

5. Updating of the solution for the next iteration:
f (i+1) = f (i) + α(δ f1 + δ f2)

2 GPU Parallelization

For the iterative step of gradient descent, the two main consuming time operations are projection (H f )
and backprojection ( Htδg) which are used to estimate a convergence criterion and its gradient. These
two operations represent 99 % of the computing time.

The follow up of the work aims at speeding up these two steps. GPU hardware, since 2006 is one
of the most used tool inside research community. Both simplicity in implementation and performance
improvements have imposed scientic community to migrate to such a tool. Recent improvements from
Nvidia have allowed to dispose of CUDA, this developing environment allows to design operating
software with high computing performances [5].

In order to compute the two matrix operations (H f and Htδg) without the too expensive memory
use of H=(hi j) (1 To is needed to store H for a 20483 reconstruction), projection and backprojection ge-
ometric operators are widely used. This operators compute in line the coefficient hi j, instead of reading
a matrix H stored in memory. For each operator, we choose the one which enables the best implementa-
tion on Nvidia GPUs with CUDA. As a consequence, our projection/backprojection pair is unmatched.
Thus each operator defines a different matrix H: Hp for projection and Hbp for backprojection. Use of
unmatched backprojection/projection pairs is widely used. Indeed, effect on convergence is in pratice
not penalising during the first iterations [6]. Main difference on backprojection and projection algo-
rithm is the main loop of computation : for backprojection, the loop is on voxels (voxel-driven) and
for projection it is on X rays (ray-driven).

Afterwards in order to gain another acceleration factor, we have parallelized on a server with 8
GPU boards (8 Tesla C1060 on a server provided by the Carri Systems compagny). In order to store all
the data on the 4 Go SDRAM memory of the GPU board, the data have been distributed as illustrated
on the figure 1.

3 Reconstruction Time

On table 1, we present the acceleration speed up, we have obtained for one iteration of our regularized
reconstruction method applied on a 10243 voxels volume from 256 projections on a 10242 pixels de-
tector. Four versions of our implementation are presented : (v1) all steps made on CPU (non optimized
code), (v2) backprojection and projection made on one GPU (Tesla C1060), (v3) backprojection and
projection made on 8 GPUs, (v4) discrete derivation made with a 3D convolution of size 33 on one
GPU. Finally, we obtain a 300 acceleration factor compared to non optimized CPU implementation.
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Fig. 1. multi-GPU Parallelization of the projection (a) and the backprojection (b).

Operators Computing Time

v1 v2 v3 v4

Projection 4.1 h 7.1 mn 57 s 57 s

2 × HP (42.5 %) (64.9 %) (21.1 %) (63.3 %)

→ × 35 → × 7

Backprojection 5.5 h 21.8 s 4.0 s 4.0 s

Ht
RP

(56.9 %) (3.3 %) (1.5 %) (4.4 %)

→ × 908 → × 5

Convolution 3.2 mn 3.2 mn 3.2 mn 12.1 s

3 × D (0.6 %) (29.2 %) (71.1 %) (13.4 %)

→ × 16

Autre 17 s 17 s 17 s 17 s

(0.0 %) (2.6 %) (6.3 %) (18.9 %)

Total 9.7 h 10.9 mn 4.5 mn 1.5 mn

→ × 53 → × 2.4 → × 3.0

v1 : HP, Ht
RP

and D on CPU

v2 : HP and Ht
RP

on 1 GPU, D on CPU

v3 : HP and Ht
RP

on 8 GPUs, D on CPU

v4 : HP and Ht
RP

on 8 GPUs, D on 1 GPU

Table 1. Processing time for one iteration of a 10243 volume reconstruction

4 Real data reconstruction

4.1 Metallic foams

Solid foams are a class of materials with a complex behavior related to the properties of the constitutive
material, the geometry and the topology of the material distribution [7]. These materials present a very
high porosity, and are thus very light, but nevertheless very resistant due to a good distribution and
architecture of matter. The most known examples of such materials are bone and wood, or also coral
and sponge. Data set is made of 96 projections on the 2562 detectors plane.
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4.2 Foams reconstructed
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Fig. 2. 2563 foam reconstructions from N projections : direct method (filtered backprojection) with N=256 (a)

and N=32 (b); regularized method with N=32 (c).

As illustrated on figure 2, the filtered backprojection (non iterative method) is creating lots of
artefacts of reconstruction when the number of projection is only N=32 (incomplete data set). Our
regularized present still a good quality of reconstruction even with N=32 projections.

5 Conclusion

We proved on a real data set that regularized methods offer a real benefit against standard filtered
backprojecton methods when the data set is incomplete. We have accelerated on a 8 GPU server by a
300 factor a 10243 volume reconstruction with a such method. We are able to do one iteration of our
regularized method in 1.5 minute. In perspective, we will explore others regularized methods on real
data set thanks to this reduced reconstruction time.
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