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3Univ. Paris-Sud, LPTMS UMR 8626 - 91405 Orsay Cedex, France, EU

PACS 73.23.-b – Electronic transport in mesoscopic systems
PACS 71.10.Ca – Electron gas, Fermi gas
PACS 73.21.La – Quantum dots

Abstract –We study mesoscopic fluctuations in a system in which there is a continuous connection
between two distinct Fermi liquids, asking whether the mesoscopic variation in the two limits is
correlated. The particular system studied is an Anderson impurity coupled to a finite mesoscopic
reservoir described by the random matrix theory, a structure which can be realized using quantum
dots. We use the slave boson mean-field approach to connect the levels of the uncoupled system to
those of the strong-coupling Nozières’ Fermi liquid. We find strong but not complete correlation
between the mesoscopic properties in the two limits and several universal features.

Introduction. – The Fermi liquid is a ubiquitous state
of electronic matter [1–3]. Indeed, it is so common that
systems can have several different Fermi liquid phases
in different parameter regimes (controlled by different
fixed points), leading to crossovers between Fermi liquids
with different characteristics. Examples of such crossovers
include, for instance, the half-filled Landau level (high-
temperature to low-temperature connection) [4], heavy-
fermion materials [3,5–7], as well as the simple spin-(1/2)
Kondo problem which will be our main concern in this
paper. In the bulk, clean case, the evolution of the quasi-
particles in such a crossover is straightforward: both sets
of quasi-particles are labeled by k because of the trans-
lational invariance and so are in a one-to-one correspon-
dence. However, in the absence of translational invariance
—such as in a disordered or mesoscopic setting— inter-
ference affects the two sets of quasi-particles differently.
In such a situation, it is interesting to ask how the quasi-
particles in one Fermi liquid are related to those in the
other.
The Kondo problem provides a particularly clear exam-

ple: at weak coupling (high temperature) the electrons
in the Fermi sea are nearly non-interacting while the
strong-coupling (low-temperature) behavior is described
by Nozières’ Fermi liquid theory [6,8]. The connection
between high and low temperature is provided, e.g., by
Wilson’s renormalization group calculation [9], yielding a
smooth crossover.

(a)E-mail: denis.ullmo@u-psud.fr

We now break translational invariance by supposing
that the size of the Fermi sea is finite; it could consist
of, for instance, a large quantum dot or metallic nano-
particle. The density of states in the electron sea will typi-
cally have low-energy structure and features, in contrast
to the intensively studied flat band case. The finite-size
effects introduce two additional energy scales: i) a finite
mean level spacing, leading to what is called the “Kondo
box” problem [10–12], and ii) the Thouless energy ETh =
�/τc, where τc is the typical time to travel across the finite
reservoir. When probed with an energy resolution smaller
than ETh, both the spectrum and the wave functions of the
electron sea display mesoscopic fluctuations, which affect
the Kondo physics [13–15]. Disorder in the electron sea
causes similar effects [16–19].
Consider the system shown in fig. 1: a small Kondo

dot coupled to a large “reservoir dot” probed weakly by
tunneling from a tip. In the high-temperature regime, the
small dot is weakly coupled to the large dot which is
essentially non-interacting. Mesoscopic fluctuations of the
density of states translate into mesoscopic fluctuations of
the Kondo temperature. Once this translation is taken into
account, the high-temperature physics remains essentially
the same as in the flat-band case [13–15]; in particular,
physical properties can be written as the same universal
function of the ratio T/TK as in the bulk flat-band case, as
long as TK is understood as a realization-dependent para-
meter [13–15]. In contrast, the consequences of mesoscopic
fluctuations for low-temperature Kondo physics (T � TK,
strong-coupling limit) remain largely unexplored. A few
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Fig. 1: (Color online) Schematic illustration of the small-large
quantum dot system. Left panel: weak-coupling limit T � TK.
Right panel: strong-coupling limit T � TK. The energy levels
and wave functions probed by the tip change from one Fermi
liquid regime to the other.

things are nevertheless known: for instance, the very low
temperature regime should be described by a Nozières-
Landau Fermi liquid, as in the original Kondo problem.
Indeed, the physical reasoning behind the emergence of
Fermi liquid behavior at low temperature, namely that for
energies much lower than TK the impurity spin has to be
completely screened, applies as well in the mesoscopic case
as long as T <∆� TK [20–25]. In this case, the system
consists of the Kondo singlet plus non-interacting elec-
trons with a π/2 phase shift as shown in the right panel
of fig. 1.
Measurements of the conductance through the large dot

or the ac response to the tip reveal the mesoscopic fluc-
tuations of the energy levels and wave functions [26,27].
Thus, such experiments can probe the connection between
the quasi-particles in the two Fermi liquid regimes, as
well as the properties of the intermediate strongly corre-
lated Kondo cloud [22–25]. In this paper, we study this
connection explicitly, using the slave boson mean-field
(SBMF) theory [3,6,7,28–32] to treat the interactions and
the random matrix theory (RMT) [33] to model the meso-
scopic fluctuations. We find that the correlation between
the properties of the two sets of quasi-particles is substan-
tial but not complete.

Model. – The system pictured in fig. 1 can be
described by the Hamiltonian H =Hbath+Himp where
Hbath describes the mesoscopic electronic bath and Himp
describes the local “magnetic impurity” —small quantum
dot, nanoparticle, or magnetic ion— and its interaction
with the bath. Hbath is the non-interacting Hamiltonian
Hbath ≡

∑
i,σ(εi−µ)c†iσciσ, where i= 1, . . . , N labels

the levels, σ=↑, ↓ is the spin component, and µ is the
chemical potential. Himp is

Himp = V0
∑
σ

[c†0σdσ + d
†
σc0σ] +Ed

∑
σ

d†σdσ, (1)

where the dσ operators refer to the impurity site with
energy Ed and the position of the impurity is taken

to be r= 0. We take the local Coulomb interaction
between d-electrons to be U =∞; thus, states with two
d-electrons must be projected out. Finally, the local
electronic operator c0σ is related to the bath eigenstate
operators ciσ through c0σ =

∑N
i=1 φ

∗
i (0)ciσ, where φi(r) =

〈r|i〉 are the one-body wave functions of Hbath with the
local normalization relation

∑
i |φi(0)|2 = 1.

To study the mesoscopic fluctuations, we assume that
the classical dynamics within the large dot is chaotic, and
thus that the energy levels εi and the wave functions at the
impurity site φi(0) are described by the random matrix
theory (RMT) [15,26,33], specifically, by the Gaussian
orthogonal ensemble (GOE) for time-reversal symmetric
systems and the Gaussian unitary ensemble (GUE) for
systems in which time reversal is broken [33,34].
Applying the SBMF approximation [3,6,7,28–32], we

introduce auxiliary boson b† and fermion f†σ operators,
such that dσ = b

†fσ, with the constraint b†b+
∑
σ f
†
σfσ= 1.

Since the Hamiltonian is invariant with respect to a U(1)
gauge transformation, the bosonic field can be treated as a
real number: b, b† �→ η. The constraint condition is satisfied
by introducing a static Lagrange multiplier, ξ. One thus
obtains the SBMF effective Hamiltonian

HMF =
∑
σ

{
N∑
i=1

(εi−µ)c†iσciσ +(Ed− ξ)f†σfσ

+ηV0(c
†
0σfσ + f

†
σc0σ)

}
+ ξ(1− η2). (2)

The mean-field parameters η and ξ are obtained by
minimizing the free energy of the system, taking µ= 0.
Using the equations of motion from the mean-field Hamil-
tonian, eq. (2), we obtain, after some algebra, the imagi-
nary time Green function

Gff(iωn) =

[
iωn+ ξ−Ed− η2V 20

N∑
i=1

|φi(0)|2
iωn+µ− εi

]−1
(3)

from which all the properties of the system can be derived.
The eigenvalues λκ and eigenstates |ψκ〉 (κ=

0, 1, · · ·, N) of the mean-field Hamiltonian eq. (2)
correspond to the quasi-particles of the strong-coupling
limit. Because the low temperature/energy regime of
the system is a Fermi liquid, the mean-field approach
provides a good description of the low-energy properties
of the strong-coupling limit, but it is not expected to be
accurate at higher energies. As a consequence, it is mainly

the range |λκ−µ|
∼
<TK which is physically relevant in

terms of Kondo physics. We shall therefore concentrate
in the following on this energy range. Since the tunneling
strength at energy E between an external tip and the
large quantum dot (see fig. 1) depends on the line-up of
the levels and the wave function intensity, both λκ and
|ψκ(r)|2 are measurable in experiments.
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We now study the relation between the {λκ, |ψκ〉} and
the {εi, |φi〉}. Expressing the Green function of HMF as

Ĝ(λ−µ) = [λ−µ−HMF]−1 =
N∑
0

|ψκ〉〈ψκ|
λ−λκ , (4)

one sees that (λκ−µ) are the poles of the Green func-
tion Gff(z) = 〈f |Ĝ(z)|f〉. Equation (3) then immediately
implies that the λκ are solutions of the equations

∆

π

N∑
i=1

|φi(0)|2
λ− εi =

λ−E0(ξ)
Γeff

, (5)

where E0(ξ)≡Ed+µ− ξ (interpreted as the position of
the Kondo resonance if the system is in the Kondo
regime) and Γeff ≡ πρ0η2V 20 (interpreted as the width of
the Kondo resonance, which gives the scale of the Kondo
temperature). ρ0 = 1/∆ is the mean density of states. Note
that eq. (5) implies that there is one and only one λκ in
each interval [εi, εi+1].
The probability of overlap between the eigenstate κ and

the impurity state |f〉, uκ ≡ |〈f |ψκ〉|2, is a key ingredient
in how the wave function amplitude at r is affected by
the Kondo singlet. Since the uκ are the residues of Gff(z),
eq. (3) implies

uκ =

[
1+
Γeff
π

N∑
i=1

|φi(0)|2∆
(λκ− εi)2

]−1
. (6)

For |λ−E0(ξ)| 
 Γeff , one contribution dominates the
sum on the left-hand side of eq. (5) —namely, the closest
εi to λκ, call it i(κ)— in which case λκ = εi(κ)+ δκ∆ with
δκ � Γeff |φi(κ)(0)|2/[π(λκ−E0)]� 1. As expected, the two
spectra nearly coincide. Similarly, the participation of the
wave functions in the singlet state is small: from eq. (6)

uκ � Γeff
π

|φi(κ)(0)|2∆
(λκ−E0)2 �

∆

Γeff
. (7)

In contrast, for |λ−E0(ξ)| � Γeff , the right-hand side of
eq. (5) can be neglected. The typical distance between
a λκ and the closest εi is then of order ∆, and uκ ∼
∆/Γeff . In the limit TK ∼ Γeff
∆, only the wave function
amplitudes for energy levels within the Kondo resonance,
|λκ−E0(ξ)| � Γeff , will be significantly affected.
Energy spectral correlation. – To characterize the

relation between the weak- and strong-coupling levels, {εi}
and {λκ}, respectively, we consider the distribution of the
normalized level shift defined by

S ∈
{ |λκ− εi|
|εi+1− εi| ,

|λκ− εi+1|
|εi+1− εi|

}
, (8)

where εi and εi+1 are the two levels which sandwich
λκ. The range of S is from 0 to 1. The probability
distribution P (S) obtained numerically using the SBMF
approximation by sampling a large number of realizations
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Fig. 2: (Color online) The distribution of S, including
both |λκ− εi|/|εi+1− εi| and |λκ− εi+1|/|εi+1− εi|, from the
SBMF treatment of the infinite-U Anderson model; (a) GOE,
(b) GUE. The dashed lines are the results of the toy model.

Inset (a): the cumulative distribution F (S)≡ ∫ S
0
p(x) dx of

the V0 = 1.0 GOE data compared to the toy model. Note the
presence of the square-root singularity. Parameters: full band
widthD= 3, impurity energy level Ed =−0.7, 500 energy levels
within the band, and 5000 realizations used.

is shown in fig. 2 for several cases. Only the levels that
are within the Kondo resonance are included; that is,
levels satisfying |λκ−E0|< Γeff/2. Note in particular two
features of the numerical results: i) the strong-coupling
levels are more concentrated near the original levels in the
case of the GOE while they are pushed away from the
original levels in the GUE, and ii) the distribution found
is completely independent of V0.
An explanation for both of these features can be found

from a simple analytic approximation to the distribution
P (S). Well within the resonance, |λκ−E0| � Γeff , the
r.h.s. of eq. (5) can be set equal to zero, thus leading to

the simplification
∑N
i=1 |φi(0)|2/(λκ− εi)≈ 0. Focusing on

the level λκ located between εi and εi+1, we consider a toy
model in which the influence of all but these closest ε’s is
neglected, yielding the much simpler equation for λκ

|φi|2
λκ− εi +

|φi+1|2
λκ− εi+1 = 0. (9)

In RMT, the wave function amplitudes |φi|2 and |φi+1|2
are uncorrelated and distributed according to the Porter-
Thomas distribution [33,34]. Notice that all energy scales
(V0, ∆, etc.) have disappeared from the problem except for
δε≡ εi+1− εi. The resulting distribution of λκ is therefore
universal, depending only on the symmetry under time
reversal. Hence the empirical observation in fig. 2 that the
curves are independent of V0.
Integration over the Porter-Thomas distributions gives

P (λκ) =
1

π

1√
(εi+1−λκ)(λκ− εi)

GOE, (10)

P (λκ) =
1

δε
GUE. (11)

Breaking time-reversal symmetry thus affects drastically
the correlation between the low-temperature levels λκ and
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the neighboring high-temperature ones εi and εi+1. Time-
reversal symmetric systems show clustering, with a square
root singularity, of the λκ’s close to the εi’s, while for
systems without time-reversal symmetry the distribution
is uniform between εi and εi+1. The GUE result can
be improved by taking into account the other levels on
average; this yields the expression plotted in fig. 2(b), but
as it is lengthy we do not specify it here. Note that this
improved toy model does give the bunching of levels in the
middle of the interval seen in the numerics.
The difference between P (S) in the two ensembles

comes from the very different wave function distribution:
the GOE Porter-Thomas distribution has a square-root
singularity at |φi(0)|2 = 0, while it is finite for the GUE.
The high probability of small wave function amplitudes in
the GOE leads to the clustering of strong-coupling levels
around the original ones. To explore this in the SBMF
numerical results, we plot the cumulative distribution
function on a log-log scale in the inset in fig. 2; the
resulting straight line parallel to the toy model result
shows that, indeed, the square-root singularity is present.

Wave function correlations. – A key quantity in
quantum dot physics is the magnitude of the wave function
of a level at a point in the dot that is coupled to an external
lead (see fig. 1). This quantity is directly related to the
conductance into the dot when the chemical potential in
the lead is close to the energy of the level. We assume
that the probing lead is very weakly coupled, so that the
relevant quantity is the wave function in the absence of
leads. To see how the tunneling to an outside lead at
r is affected by the coupling to the impurity, we study
the correlation between the strong-coupling wave function
intensity |ψκ(i)(r)|2 and its weak-coupling counterpart
|φi(r)|2, with κ(i)≡ i for λκ < E0 and ≡ (i+1) for λκ > E0.
Specifically, we consider the correlator

Ci,κ(i) =
|φi(r)|2|ψκ(i)(r)|2− |φi(r)|2 · |ψκ(i)(r)|2

σ(|φi(r)|2)σ(|ψκ(i)(r)|2) . (12)

The average (·) here is over all realizations, for arbitrary
fixed r �= 0, and σ(·) is the square root of the variance of
the corresponding quantity.
Results for Ci,κ(i) from the SBMF approach to the

infinite-U Anderson model are shown in fig. 3. Two ways of
showing the dependence on the argument i are used: in the
left-hand panels, the x-axis is simply the (average) energy
from the middle of the band, namely δεi ≡ i∆−D/2, while
in the right-hand panels, this energy is scaled so that the
x-axis is the energy from the center of the Kondo reso-
nance in units of the Kondo temperature (see caption
for the exact expression). Because the infinite-U Ander-
son model is inherently not particle-hole symmetric, the
location of the Kondo resonance is not at zero but rather
increases as V0 increases so that the average occupation of
the impurity level is less than one.
The scaled curves have a very natural interpretation.

First, those states which do not participate in the Kondo
singlet state at low temperature, |δε− (Ed− ξ)| 
 Γeff ,
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Fig. 3: (Color online) Wave function correlation, Ci,κ(i), for the
SBFM approach to the infinite-U Anderson model. (a) GOE
and (c) GUE, as a function of the average distance from the
middle of the band. (b) GOE and (d) GUE, as a function
of the rescaled average distance [i∆−D/2− (E0(ξ)−µ)]/Γeff .
Dashed line: analytic approximation, eq. (16). Parameters: full
band width D= 3, impurity energy level Ed =−0.7, 500 energy
levels within the band, and 2000 realizations.

are essentially unchanged, Ci,κ(i) ∼ 1. In contrast, those
states with energies within the Kondo resonance are
substantially changed by interaction with the impurity.
The universality of the low-energy Kondo physics is nicely
demonstrated by the collapse of all the numerical curves
for different coupling strengths onto universal curves, one
for the GOE and one for the GUE.
The most interesting feature in fig. 3 is that the

correlation does not go to zero at the center of the Kondo
resonance, even for strong bare coupling. Clearly, the
wave functions of the weak-coupling and strong-coupling
Fermi liquid states are similar to each other in that
the interference pattern in the original wave function
is not completely wiped out by the formation of the
Kondo singlet state. This residual correlation should be
observable as a correlation in the conductance probed by
an external tip.
Expressing the wave function probability |ψκ(r)|2 as the

residue of Ĝ(r, r), and using that in the semiclassical limit
the magnitude of the unperturbed wave functions φi(r)
are uncorrelated at different points and with the energy
levels, one can show [35] that in the limit Γeff
∆, the
correlator is given by

Ci,κ =Ωκii = uκ ·
|vi|2
λκ− εi , (13)

where vi = ηV0φi(0). An approximation to Ci,κ(i) can be
obtained by taking the energy levels to be evenly spaced
and replacing the wave function intensities by the average
value; this yields

(Ωκii)
bulk ≡ 1

δ2κ
∑
i

1

(i+ δκ)2

, (14)
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where δκ ≡ (λκ(i)− εi)/∆. Within the same approxima-
tions, eq. (5) then implies

λκ− Ē0
Γ̄eff

=
1

π

∑
j

1

δκ− j = cotan(πδκ). (15)

By defining λ̄κ ≡ λκ− Ē0, we obtain for the correlator

Ci,κ(i) � 1

[cotan−1(λ̄κ/Γ̄eff)]2(1+ (λ̄κ/Γ̄eff)2)
(16)

which, as anticipated, depends only on the ratio (λ̄κ/Γ̄eff).
The curve resulting from this expression is shown in
fig. 3(b) and (d); it yields the value Ci,κ(i) ∼ 4/π2 at the
minimum, independent of all parameters [35]. The value
found numerically is slightly smaller but in reasonable
agreement.

Conclusion. – We have presented the first study of
mesoscopic fluctuations in two distinct but continuously
connected Fermi liquids by using the slave boson mean-
field approximation to calculate the strong-coupling levels.
In the specific case that we study —a small quantum dot
coupled to a large reservoir quantum dot with chaotic
dynamics— the fluctuations of single-particle properties
in the two limits are highly correlated, universal, and
very sensitive to time-reversal symmetry. Indeed, each
strong-coupling level must lie between two of the original
levels (the spectra are interleaved), and, in the GOE
case but not the GUE, the levels within the Kondo
resonance are clustered about the weak-coupling ones.
Similarly, while the wave function correlation dips within
the Kondo resonance, it remains substantial, showing
that while the corresponding wave function is strongly
affected by the Kondo screening it retains a surprisingly
substantial overlap with the original wave function. We
expect a similar strong correlation between the properties
of continuously connected distinct Fermi liquids in other
systems. An interesting extension would be to study such
correlations when a quantum phase transition intervenes
as in, e.g., the two-impurity Kondo model.
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