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Summary. We consider the likelihood ratio test (LRT) process related to the test
of the absence of QTL (a QTL denotes a quantitative trait locus, i.e. a gene with
quantitative effect on a trait) on the interval [0, 7] representing a chromosome.
Recently, Azais et al. (2011) proved that the LRT process was the square of a non
linear interpolated process. However, in their study of the same problem, Chang
et al. (2009) introduced another interpolation. So, why do Azais et al. (2011) and
Chang et al. (2009) find different interpolations ? We correct errors present in
the interpolation of Chang et al. (2009) and establish the link between the two
interpolations. We finally generalize the interpolation of Chang et al. (2009) to the
alternative hypothesis of a QTL located at ¢* € [0, T.

Keywords: Gaussian process, Likelihood Ratio Test, Mixture models, Nuisance
parameters present only under the alternative, QTL detection.

1. Introduction

We focus on the famous “Interval Mapping" of Lander and Botstein (1989). That
is to say, we address the problem of detecting a Quantitative Trait Locus, so-
called QTL (a gene influencing a quantitative trait which is able to be measured)
on a given chromosome. We study a backcross population: A x (A x B), where
A and B are purely homozygous lines. The trait is observed on n individuals
(progenies) and we denote by Y;, j = 1,...,n, the observations, which we will
assume to be Gaussian, independent and identically distributed (i.i.d.). The
mechanism of genetics, or more precisely of meiosis, implies that among the two
chromosomes of each individual, one is purely inherited from A while the other
(the “recombined” one), consists of parts originated from A and parts originated
from B, due to crossing-overs (see for instance Wu et al. (2007)).

The chromosome will be represented by the segment [0,7]. The distance
on [0,T] is called the genetic distance, it is measured in Morgans. 2 genetic
markers are located at fixed locations t; = 0 < to = T. The genome X (¢) of one
individual takes the value +1 if, for example, the “recombined chromosome” is
originated from A at location ¢ and takes the value —1 if it is originated from B
. We use the Haldane (1919) modeling that can be represented as follows: X (0)
is a random sign and X (t) = X (0)(=1)N® where N(.) is a standard Poisson
process on [0, T]. We assume an “analysis of variance model” for the quantitative
trait :

Y=p+ X(t*)q + o¢e (1)
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where ¢ is a Gaussian white noise and t* is the true location of the QTL.
In fact the “genome information” will be available only at the marker locations
and the observation will be

(Y, X(t1), X(t2)).

So, we observe n observations (Y;, X;(t1), X;(¢2)) ii.d. Calculation on the
Poisson distribution show that

r(t,t) = P(X ()X (') = —1) = P(IN(t) = N(t')| odd) = % (1 — e2lt=t]),

we set in addition
F(t,t)=1—r(tt).

The challenge is that the location of the QTL ¢* is unknown, so we will perform
a likelihood ratio test (LRT) in order to test the presence of a QTL (ie. ¢ = 0)
at every location t € [0,T]. It leads to a process {A,(t), t € [0,T]} called “LRT
process", and taking as test statistic the maximum of this process comes down
to perform a LRT in a model when the localisation of the QTL is an extra
parameter. A key point is that since the "genome information" is only available
at marker locations, we have to deal with a mixture model, when we perform
a test at a location t which does not correspond to a marker location. This
mixture model has two Gaussian components : boths components have variance
o2, but the first component has expected value u + ¢ whereas the second one
has expected value p — ¢q. So, at such a location ¢, in order to obtain the
weights of our mixture model, for the first (resp. second) component, we have
to compute the probability that X (¢) =1 (resp. X (t) = —1) given the "genome
information" at markers. In particular, according to Azais et al. (2011), if we
call p(t) = P{X(¢t) =1]| X(t1), X (¢t2)} (ie. the weight for the first component),
we have :

p(t) = Qi Ixiy=1lx()=1 + Q" Ix()=11x(ta)=—1
+ Q;Ll Ix@n=—1lx@s=1 + Q;Lil Ixn=—11x(t2)=—1

where :
bl = 7(t1,t) 7(t,t2) Qb = 7(t1,t) r(t,t2)
t f(tl,tg) ’ t T(tl,tg)
o7 = r(ty,t) 7(t,t2) Qb = r(ty,t) r(t, t2)
¢ T(tl,tg) ’ ¢ ’F(tl,tg)

This problem has been studied under some approximations by Rebai et al.
(1995), Rebal et al. (1994), Cierco (1998), Azais and Cierco-Ayrolles (2002),
Azais and Wschebor (2009). Recently, Azais et al. (2011) have shown that the
LRT process was the square of a non linear interpolated process. The aim of
this present article is to establish the link between this non linear interpola-
tion and another interpolation introduced also recently by Chang et al. (2009).
The interpolation of Azais et al. (2011) is a non linear interpolation between
test statistics at marker locations : it means that all the test statistics inside
a marker interval, can be deduced by interpolation from the test statistics at
flanking markers. So, it explains why when people analyze data, they obtain a
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likelihood profile which is smooth between markers. Besides, this interpolation
leads to an easy formula for computing the supremum of the LRT process (see
Lemma 1 of Azais et al. (2011)). The interpolation of Chang et al. (2009) is less
interesting from a genetic point of view : it is very difficult to interpret it graphi-
cally. However, it is always interesting to understand why the two articles Azais
et al. (2011) and Chang et al. (2009), which study the same problem, present
different results. We will correct here technical errors present in Chang et al.
(2009), and establish the link between the two interpolations. Finally, we will
generalize the interpolation of Chang et al. (2009) to the alternative hypothesis
of a QTL located at t* € [0,T], since contrary to Azals et al. (2011), Chang et
al. (2009) focused only on the null hypothesis.

We refer to the book of Van der Vaart (1998) for elements of asymptotic
statistics used in proofs.

2. Two different interpolations

Let Hy be the null hypothesis ¢ = 0. Since in Chang et al. (2009), the authors
study only the null hypothesis, we will first focus only under the null hypothesis.
Besides, it is well known that for a regular model, the score test is equivalent to
the square of the LRT, so without loss of generality, we will limit our study to
score tests as in Chang et al. (2009).

2.1. Under the null hypothesis

Let’s consider a location ¢, distinct from the marker locations, that is to say
t €]t1,t2], and the result will be prolonged by continuity at marker locations.
Sp(t) will be the score test statistic at location ¢.

According to Theorem 1 and formula (5) of Azais et al. (2011), we have :

50— {@F =t sut) + {@it — Qb Su(t) .

E[{2p(t) - 1)*]

where

n P — 21 -1—1
V=12 S =3 Y “)ifﬁ“’““ L

This is the non linear interpolation of Azais et al. (2011), between statistics
on markers. The couple (S, (t1), S, (t2)) follow a standard bivariate normal dis-
tribution with covariance e~2(*2=%1). Tet’s now establish the link beween this
interpolation and the interpolation of Chang et al. (2009).

According to formula (5) of Azais et al. (2011) and using the fact that Q;"' =
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1-— Q;Lfl and Q%’71 =1- Q;l’l, we have

" (s — 1) { L, ()1 L5, ()=t — 1 (1)1 ()=
Su() = (1— 207y W ) {Lx =11 ()=1 = L) =11, (t)=—1
Jj=1

o Vi [E[{2p(t) - 1)°]

(1-20Q;" 1,1 zn: — 1) {1Xj(t1):11Xj(t2):*1 — 1Xj(t1):*11Xj(t2):1}
j=1

o Vi [E[{2p(t) - 1)°]

Let G1(t) and G2 be the quantities such as :

Gl = zn: (5 — 1) {x,0=11x,(t)=1 = Lx(e)=—11x, (t2)=—1}
" = o \/n f(tl,tg)
G2 — i (yj — 1) {1Xj(t1):11Xj(t2):*1 — 1Xj(t1):*11Xj(t2):1}

. o \/nr(ty,ts)

<.
Il

G} and G? are asymptotically independent standard normal variables under Hy.
Besides, it is clear that we have the following relationship between S, (t), GL and
G? :

Su(t) = {Viltr 1) (1 =2Q75 71 G + Vi) (1- 207 G2}/ JE [{20(0) - 11]
(3)

We will see later that this interpolation is the interpolation of Chang et al.
(2009) but rewritten without approximations. This interpolation is difficult to
describe graphically because it is an interpolation between two test statistics G
and G2, which boths include the genome information at the two markers. The
main difference is that G. and G2 are not points of the process S, (.), contrary
to Sy (t1) and Sy (t2) for the interpolation of Azais et al. (2011).

Note that if we want to obtain the score test, we just have to replace pu

1/2
by i :== 37 Y; and o by 6 := {ﬁ (Y — ﬂ)Q} in formulae (2) and
(3). These new expressions (ie with & and fi) of GL, G2, S,,(t1) and S, (t2) are

asymptotically equivalent to the previous ones. We will call respectively G and
G? the new expressions of G, G2.

Let’s now focus on the work of Chang et al. (2009). With our notations, the
score test statistic of formula (8) of Chang et al. (2009) is

Ua(t) = {Vilit) (1 =207 Gl + Vi) (1 -2 G2} JE [{2p(0) - 137

where
Gl — 22:1 Yi Lx;e)=11x,(t2)=1 — Z?:1 Yi 1x;00=—11x;(t2)=1
" o n f(tl,tg) ’
62 N Z?:l Y 1Xj(t1):11Xj(t2):*1 - Z?:l Yji 1Xj(t1):*11Xj(t2):1

o n f(tl,tg)
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Let op, (1) be a sequence of random vectors that converges to zero in probability
under Hy (i.e. no QTL on the whole interval studied) and let O, (1) be a sequence
bounded in probability. We have :

Gl =

A 2 ¥ {1 e)=11x =1 = 1, 0=—11x; (ta)=—1} 7}22?:1{1Xj<t1>:11Xj<tz>:1 - !

" 0 \/n f(tl,tg)

=Gl — {0,(1) + 0,(1/V)} O,(1) = GL + Op(1) + 0, (1) .
In the same way :
G2 = G2 + 0,(1) +op, (1) .

As a consequence, since G2 = G2 + op,, (1) and Gl =G+ op,, (1), we can
remark that Sy, (t) # Uy, (t )—|—0p9 (1). So, the interpolation introduced by Chang
et al. (2009) is only an approximatlon as said before. The interpolation of Chang
et al. (2009) rewritten without approximations is presented in formula (3).

2.2.  Under the alternative hypothesis
Let define the alternative hypothesis :

Hge 2 “the QTL is located at the position t* with effect ¢ = a/v/n where a # 0 7.

In Azais et al. (2011), the authors show that this alternative hypothesis is con-
tiguous to the null hypothesis. So, it makes the algebra easy under H.~. We
will still have the same interpolations as under Hy. In particular, for the non lin-
ear interpolation, according to Azals et al. (2011), we still have (S, (t1), Sn(t2))
which follows a bivariate normal distribution with covariance e=2(*2=*), How-
ever, S, (t1) and S, (t2) are not centered anymore : E{S,(t;)} = ae=2"~4) /o
and E{S,(t)} = ae~2(t2=t") /5.

Let’s focus now on the interpolation of Chang et al. (2009). After some
calculations and using the fact that Ql I - Qt_l’_l and Q%’_l =1- Qt_l’l,
we obtain

E{GL} = a/F(ti,t2) 2@ —1)/0
E{G%} =a \/r(ti,t2) 2Qu" " —1)/o .
Besides,
Cov{G;,Gi} =E{G,G:} —E{G,}E{G:} =0-E{G,}E{G.}
= —a® /P(t1,12)V/r(t1, £2) (2Q ™" —1) (2Q2" —1)/0?

So, under the alternative, G and G2 will still be asymptotically normal with
unit variance. However, GL and G2 are not independent anymore (contrary to
under the null hypothesis).

Note that here, we limited our study to only two genetic markers located on
the chromosome, but it can easily be generalized to several markers.

G /m Tty
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