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Summary. We consider the likelihood ratio test (LRT) process related to the test
of the absence of QTL (a QTL denotes a quantitative trait locus, i.e. a gene with
quantitative effect on a trait) on the interval [0, T ] representing a chromosome.
Recently, Azaïs et al. (2011) proved that the LRT process was the square of a non
linear interpolated process. However, in their study of the same problem, Chang
et al. (2009) introduced another interpolation. So, why do Azaïs et al. (2011) and
Chang et al. (2009) find different interpolations ? We correct errors present in
the interpolation of Chang et al. (2009) and establish the link between the two
interpolations. We finally generalize the interpolation of Chang et al. (2009) to the
alternative hypothesis of a QTL located at t⋆ ∈ [0, T ].

Keywords: Gaussian process, Likelihood Ratio Test, Mixture models, Nuisance
parameters present only under the alternative, QTL detection.

1. IntroductionWe fo
us on the famous �Interval Mapping" of Lander and Botstein (1989). Thatis to say, we address the problem of dete
ting a Quantitative Trait Lo
us, so-
alled QTL (a gene in�uen
ing a quantitative trait whi
h is able to be measured)on a given 
hromosome. We study a ba
k
ross population: A× (A×B), where
A and B are purely homozygous lines. The trait is observed on n individuals(progenies) and we denote by Yj , j = 1, ..., n, the observations, whi
h we willassume to be Gaussian, independent and identi
ally distributed (i.i.d.). Theme
hanism of geneti
s, or more pre
isely of meiosis, implies that among the two
hromosomes of ea
h individual, one is purely inherited from A while the other(the �re
ombined� one), 
onsists of parts originated from A and parts originatedfrom B, due to 
rossing-overs (see for instan
e Wu et al. (2007)).The 
hromosome will be represented by the segment [0, T ]. The distan
eon [0, T ] is 
alled the geneti
 distan
e, it is measured in Morgans. 2 geneti
markers are lo
ated at �xed lo
ations t1 = 0 < t2 = T . The genome X(t) of oneindividual takes the value +1 if, for example, the �re
ombined 
hromosome� isoriginated from A at lo
ation t and takes the value −1 if it is originated from B. We use the Haldane (1919) modeling that 
an be represented as follows: X(0)is a random sign and X(t) = X(0)(−1)N(t) where N(.) is a standard Poissonpro
ess on [0, T ]. We assume an �analysis of varian
e model� for the quantitativetrait :

Y = µ + X(t⋆) q + σε (1)



2 C.E.Rabier et al.where ε is a Gaussian white noise and t∗ is the true lo
ation of the QTL.In fa
t the �genome information� will be available only at the marker lo
ationsand the observation will be
(Y, X(t1), X(t2)) .So, we observe n observations (Yj , Xj(t1), Xj(t2)) i.i.d. Cal
ulation on thePoisson distribution show that

r(t, t′) := P(X(t)X(t′) = −1) = P(|N(t)−N(t′)| odd) = 1

2
(1− e−2|t−t′|),we set in addition

r̄(t, t′) = 1− r(t, t′).The 
hallenge is that the lo
ation of the QTL t⋆ is unknown, so we will performa likelihood ratio test (LRT) in order to test the presen
e of a QTL (ie. q = 0)at every lo
ation t ∈ [0, T ]. It leads to a pro
ess {Λn(t), t ∈ [0, T ]} 
alled �LRTpro
ess", and taking as test statisti
 the maximum of this pro
ess 
omes downto perform a LRT in a model when the lo
alisation of the QTL is an extraparameter. A key point is that sin
e the "genome information" is only availableat marker lo
ations, we have to deal with a mixture model, when we performa test at a lo
ation t whi
h does not 
orrespond to a marker lo
ation. Thismixture model has two Gaussian 
omponents : boths 
omponents have varian
e
σ2, but the �rst 
omponent has expe
ted value µ + q whereas the se
ond onehas expe
ted value µ − q. So, at su
h a lo
ation t, in order to obtain theweights of our mixture model, for the �rst (resp. se
ond) 
omponent, we haveto 
ompute the probability that X(t) = 1 (resp. X(t) = −1) given the "genomeinformation" at markers. In parti
ular, a

ording to Azaïs et al. (2011), if we
all p(t) = P {X(t) = 1 | X(t1), X(t2)} (ie. the weight for the �rst 
omponent),we have :

p(t) = Q1,1
t 1X(t1)=11X(t2)=1 + Q1,−1

t 1X(t1)=11X(t2)=−1

+Q−1,1
t 1X(t1)=−11X(t2)=1 + Q−1,−1

t 1X(t1)=−11X(t2)=−1where :
Q1,1

t =
r̄(t1, t) r̄(t, t2)

r̄(t1, t2)
, Q1,−1

t =
r̄(t1, t) r(t, t2)

r(t1, t2)

Q−1,1
t =

r(t1, t) r̄(t, t2)

r(t1, t2)
, Q−1,−1

t =
r(t1, t) r(t, t2)

r̄(t1, t2)
.This problem has been studied under some approximations by Rebaï et al.(1995), Rebaï et al. (1994), Cier
o (1998), Azaïs and Cier
o-Ayrolles (2002),Azaïs and Ws
hebor (2009). Re
ently, Azaïs et al. (2011) have shown that theLRT pro
ess was the square of a non linear interpolated pro
ess. The aim ofthis present arti
le is to establish the link between this non linear interpola-tion and another interpolation introdu
ed also re
ently by Chang et al. (2009).The interpolation of Azaïs et al. (2011) is a non linear interpolation betweentest statisti
s at marker lo
ations : it means that all the test statisti
s insidea marker interval, 
an be dedu
ed by interpolation from the test statisti
s at�anking markers. So, it explains why when people analyze data, they obtain a
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h is smooth between markers. Besides, this interpolationleads to an easy formula for 
omputing the supremum of the LRT pro
ess (seeLemma 1 of Azaïs et al. (2011)). The interpolation of Chang et al. (2009) is lessinteresting from a geneti
 point of view : it is very di�
ult to interpret it graphi-
ally. However, it is always interesting to understand why the two arti
les Azaïset al. (2011) and Chang et al. (2009), whi
h study the same problem, presentdi�erent results. We will 
orre
t here te
hni
al errors present in Chang et al.(2009), and establish the link between the two interpolations. Finally, we willgeneralize the interpolation of Chang et al. (2009) to the alternative hypothesisof a QTL lo
ated at t⋆ ∈ [0, T ], sin
e 
ontrary to Azaïs et al. (2011), Chang etal. (2009) fo
used only on the null hypothesis.We refer to the book of Van der Vaart (1998) for elements of asymptoti
statisti
s used in proofs.
2. Two different interpolationsLet H0 be the null hypothesis q = 0. Sin
e in Chang et al. (2009), the authorsstudy only the null hypothesis, we will �rst fo
us only under the null hypothesis.Besides, it is well known that for a regular model, the s
ore test is equivalent tothe square of the LRT, so without loss of generality, we will limit our study tos
ore tests as in Chang et al. (2009).
2.1. Under the null hypothesisLet's 
onsider a lo
ation t, distin
t from the marker lo
ations, that is to say
t ∈]t1, t2[, and the result will be prolonged by 
ontinuity at marker lo
ations.
Sn(t) will be the s
ore test statisti
 at lo
ation t.A

ording to Theorem 1 and formula (5) of Azaïs et al. (2011), we have :

Sn(t) =

{
Q1,1

t −Q−1,1
t

}
Sn(t1) +

{
Q1,1

t −Q1,−1
t

}
Sn(t2)

√
E

[
{2p(t)− 1}2

] , (2)where
∀k = 1, 2 Sn(tk) =

n∑

j=1

(yj − µ) (21X(tk)=1 − 1)

σ
√
n

,
E

[
{2p(t)− 1}2

]
=

{
Q1,1

t −Q−1,1
t

}2

+
{
Q1,1

t −Q1,−1
t

}2

+ 2
{
Q1,1

t −Q−1,1
t

}{
Q1,1

t −Q1,−1
t

}
e−2( .This is the non linear interpolation of Azaïs et al. (2011), between statisti
son markers. The 
ouple (Sn(t1), Sn(t2)) follow a standard bivariate normal dis-tribution with 
ovarian
e e−2(t2−t1). Let's now establish the link beween thisinterpolation and the interpolation of Chang et al. (2009).A

ording to formula (5) of Azaïs et al. (2011) and using the fa
t that Q1,1

t =
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1−Q−1,−1

t and Q1,−1
t = 1−Q−1,1

t , we have
Sn(t) = (1 − 2Q−1,−1

t )

n∑

j=1

(yj − µ)
{
1Xj(t1)=11Xj(t2)=1 − 1Xj(t1)=−11Xj(t2)=−1

}

σ
√
n

√
E

[
{2p(t)− 1}2

]

+ (1− 2Q−1,1
t )

n∑

j=1

(yj − µ)
{
1Xj(t1)=11Xj(t2)=−1 − 1Xj(t1)=−11Xj(t2)=1

}

σ
√
n

√
E

[
{2p(t)− 1}2

] .Let G1
n(t) and G2

n be the quantities su
h as :
G1

n =

n∑

j=1

(yj − µ)
{
1Xj(t1)=11Xj(t2)=1 − 1Xj(t1)=−11Xj(t2)=−1

}

σ
√
n r̄(t1, t2)

,
G2

n =

n∑

j=1

(yj − µ)
{
1Xj(t1)=11Xj(t2)=−1 − 1Xj(t1)=−11Xj(t2)=1

}

σ
√
n r(t1, t2)

.
G1

n and G2
n are asymptoti
ally independent standard normal variables under H0.Besides, it is 
lear that we have the following relationship between Sn(t), G1

n and
G2

n :
Sn(t) =

{√
r̄(t1, t2) (1− 2Q−1,−1

t ) G1
n +

√
r(t1, t2) (1− 2Q−1,1

t ) G2
n

}
/

√
E

[
{2p(t)− 1}2

] .(3)We will see later that this interpolation is the interpolation of Chang et al.(2009) but rewritten without approximations. This interpolation is di�
ult todes
ribe graphi
ally be
ause it is an interpolation between two test statisti
s G1
nand G2

n, whi
h boths in
lude the genome information at the two markers. Themain di�eren
e is that G1
n and G2

n are not points of the pro
ess Sn(.), 
ontraryto Sn(t1) and Sn(t2) for the interpolation of Azaïs et al. (2011).Note that if we want to obtain the s
ore test, we just have to repla
e µby µ̂ := 1
n

∑n
j=1 Yj and σ by σ̂ :=

{
1

n−1

∑
(Yj − µ̂)2

}1/2 in formulae (2) and(3). These new expressions (ie with σ̂ and µ̂) of G1
n, G2

n, Sn(t1) and Sn(t2) areasymptoti
ally equivalent to the previous ones. We will 
all respe
tively Ĝ1
n and

Ĝ2
n the new expressions of G1

n, G2
n.Let's now fo
us on the work of Chang et al. (2009). With our notations, thes
ore test statisti
 of formula (8) of Chang et al. (2009) is :

Un(t) =
{√

r̄(t1, t2) (1− 2Q−1,−1
t ) G̃1

n +
√
r(t1, t2) (1− 2Q−1,1

t ) G̃2
n

}
/

√
E

[
{2p(t)− 1}2

] ,where
G̃1

n =

∑n
j=1 yj 1Xj(t1)=11Xj(t2)=1 − ∑n

j=1 yj 1Xj(t1)=−11Xj(t2)=−1

σ̂
√
n r̄(t1, t2)

,
G̃2

n =

∑n
j=1 yj 1Xj(t1)=11Xj(t2)=−1 − ∑n

j=1 yj 1Xj(t1)=−11Xj(t2)=1

σ̂
√
n r̄(t1, t2)

.
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(1) be a sequen
e of random ve
tors that 
onverges to zero in probabilityunderH0 (i.e. no QTL on the whole interval studied) and let Op(1) be a sequen
ebounded in probability. We have :

Ĝ1
n =

∑n
j=1 yj

{
1Xj(t1)=11Xj(t2)=1 − 1Xj(t1)=−11Xj(t2)=−1

}

σ̂
√
n r̄(t1, t2)

− µ̂

∑n
j=1

{
1Xj(t1)=11Xj(t2)=1 − 1

σ̂
√
n r̄(t1, t

= G̃1
n −

{
Op(1) +Op(1/

√
n)
}
Op(1) = G̃1

n +Op(1) + oPθ0
(1) .In the same way :

Ĝ2
n = G̃2

n +Op(1) + oPθ0
(1) .As a 
onsequen
e, sin
e Ĝ2

n = G2
n + oPθ0

(1) and Ĝ1
n = G1

n + oPθ0
(1), we 
anremark that Sn(t) 6= Un(t)+ oPθ0

(1). So, the interpolation introdu
ed by Changet al. (2009) is only an approximation as said before. The interpolation of Changet al. (2009) rewritten without approximations is presented in formula (3).
2.2. Under the alternative hypothesisLet de�ne the alternative hypothesis :
Hat⋆ : �the QTL is lo
ated at the position t⋆ with e�e
t q = a/

√
n where a 6= 0 �.In Azaïs et al. (2011), the authors show that this alternative hypothesis is 
on-tiguous to the null hypothesis. So, it makes the algebra easy under Hat⋆ . Wewill still have the same interpolations as under H0. In parti
ular, for the non lin-ear interpolation, a

ording to Azaïs et al. (2011), we still have (Sn(t1), Sn(t2))whi
h follows a bivariate normal distribution with 
ovarian
e e−2(t2−t1). How-ever, Sn(t1) and Sn(t2) are not 
entered anymore : E {Sn(t1)} = ae−2(t⋆−t1)/σand E {Sn(t2)} = ae−2(t2−t⋆)/σ.Let's fo
us now on the interpolation of Chang et al. (2009). After some
al
ulations and using the fa
t that Q1,1

t = 1 −Q−1,−1
t and Q1,−1

t = 1−Q−1,1
t ,we obtain

E
{
G1

n

}
= a

√
r̄(t1, t2) (2Q

1,1
t⋆ − 1)/σ ,

E
{
G2

n

}
= a

√
r(t1, t2) (2Q

1,−1
t⋆ − 1)/σ .Besides,

Cov
{
G1

n,G
2
n

}
= E

{
G1

nG
2
n

}
− E

{
G1

n

}
E
{
G2

n

}
= 0− E

{
G1

n

}
E
{
G2

n

}

= −a2
√
r̄(t1, t2)

√
r(t1, t2) (2Q

1,−1
t⋆ − 1) (2Q1,1

t⋆ − 1)/σ2 .So, under the alternative, G1
n and G2

n will still be asymptoti
ally normal withunit varian
e. However, G1
n and G2

n are not independent anymore (
ontrary tounder the null hypothesis).Note that here, we limited our study to only two geneti
 markers lo
ated onthe 
hromosome, but it 
an easily be generalized to several markers.
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