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Summary. We consider the likelihood ratio test (LRT) process related to the test
of the absence of QTL (a QTL denotes a quantitative trait locus, i.e. a gene with
quantitative effect on a trait) on the interval [0, T ] representing a chromosome.
Recently, Azaïs et al. (2011) proved that the LRT process was the square of a non
linear interpolated process. However, in their study of the same problem, Chang
et al. (2009) introduced another interpolation. So, why do Azaïs et al. (2011) and
Chang et al. (2009) find different interpolations ? We correct errors present in
the interpolation of Chang et al. (2009) and establish the link between the two
interpolations. We finally generalize the interpolation of Chang et al. (2009) to the
alternative hypothesis of a QTL located at t⋆ ∈ [0, T ].

Keywords: Gaussian process, Likelihood Ratio Test, Mixture models, Nuisance
parameters present only under the alternative, QTL detection.

1. IntroductionWe fous on the famous �Interval Mapping" of Lander and Botstein (1989). Thatis to say, we address the problem of deteting a Quantitative Trait Lous, so-alled QTL (a gene in�uening a quantitative trait whih is able to be measured)on a given hromosome. We study a bakross population: A× (A×B), where
A and B are purely homozygous lines. The trait is observed on n individuals(progenies) and we denote by Yj , j = 1, ..., n, the observations, whih we willassume to be Gaussian, independent and identially distributed (i.i.d.). Themehanism of genetis, or more preisely of meiosis, implies that among the twohromosomes of eah individual, one is purely inherited from A while the other(the �reombined� one), onsists of parts originated from A and parts originatedfrom B, due to rossing-overs (see for instane Wu et al. (2007)).The hromosome will be represented by the segment [0, T ]. The distaneon [0, T ] is alled the geneti distane, it is measured in Morgans. 2 genetimarkers are loated at �xed loations t1 = 0 < t2 = T . The genome X(t) of oneindividual takes the value +1 if, for example, the �reombined hromosome� isoriginated from A at loation t and takes the value −1 if it is originated from B. We use the Haldane (1919) modeling that an be represented as follows: X(0)is a random sign and X(t) = X(0)(−1)N(t) where N(.) is a standard Poissonproess on [0, T ]. We assume an �analysis of variane model� for the quantitativetrait :

Y = µ + X(t⋆) q + σε (1)



2 C.E.Rabier et al.where ε is a Gaussian white noise and t∗ is the true loation of the QTL.In fat the �genome information� will be available only at the marker loationsand the observation will be
(Y, X(t1), X(t2)) .So, we observe n observations (Yj , Xj(t1), Xj(t2)) i.i.d. Calulation on thePoisson distribution show that

r(t, t′) := P(X(t)X(t′) = −1) = P(|N(t)−N(t′)| odd) = 1

2
(1− e−2|t−t′|),we set in addition

r̄(t, t′) = 1− r(t, t′).The hallenge is that the loation of the QTL t⋆ is unknown, so we will performa likelihood ratio test (LRT) in order to test the presene of a QTL (ie. q = 0)at every loation t ∈ [0, T ]. It leads to a proess {Λn(t), t ∈ [0, T ]} alled �LRTproess", and taking as test statisti the maximum of this proess omes downto perform a LRT in a model when the loalisation of the QTL is an extraparameter. A key point is that sine the "genome information" is only availableat marker loations, we have to deal with a mixture model, when we performa test at a loation t whih does not orrespond to a marker loation. Thismixture model has two Gaussian omponents : boths omponents have variane
σ2, but the �rst omponent has expeted value µ + q whereas the seond onehas expeted value µ − q. So, at suh a loation t, in order to obtain theweights of our mixture model, for the �rst (resp. seond) omponent, we haveto ompute the probability that X(t) = 1 (resp. X(t) = −1) given the "genomeinformation" at markers. In partiular, aording to Azaïs et al. (2011), if weall p(t) = P {X(t) = 1 | X(t1), X(t2)} (ie. the weight for the �rst omponent),we have :

p(t) = Q1,1
t 1X(t1)=11X(t2)=1 + Q1,−1

t 1X(t1)=11X(t2)=−1

+Q−1,1
t 1X(t1)=−11X(t2)=1 + Q−1,−1

t 1X(t1)=−11X(t2)=−1where :
Q1,1

t =
r̄(t1, t) r̄(t, t2)

r̄(t1, t2)
, Q1,−1

t =
r̄(t1, t) r(t, t2)

r(t1, t2)

Q−1,1
t =

r(t1, t) r̄(t, t2)

r(t1, t2)
, Q−1,−1

t =
r(t1, t) r(t, t2)

r̄(t1, t2)
.This problem has been studied under some approximations by Rebaï et al.(1995), Rebaï et al. (1994), Ciero (1998), Azaïs and Ciero-Ayrolles (2002),Azaïs and Wshebor (2009). Reently, Azaïs et al. (2011) have shown that theLRT proess was the square of a non linear interpolated proess. The aim ofthis present artile is to establish the link between this non linear interpola-tion and another interpolation introdued also reently by Chang et al. (2009).The interpolation of Azaïs et al. (2011) is a non linear interpolation betweentest statistis at marker loations : it means that all the test statistis insidea marker interval, an be dedued by interpolation from the test statistis at�anking markers. So, it explains why when people analyze data, they obtain a



On interpolations in QTL detection 3likelihood pro�le whih is smooth between markers. Besides, this interpolationleads to an easy formula for omputing the supremum of the LRT proess (seeLemma 1 of Azaïs et al. (2011)). The interpolation of Chang et al. (2009) is lessinteresting from a geneti point of view : it is very di�ult to interpret it graphi-ally. However, it is always interesting to understand why the two artiles Azaïset al. (2011) and Chang et al. (2009), whih study the same problem, presentdi�erent results. We will orret here tehnial errors present in Chang et al.(2009), and establish the link between the two interpolations. Finally, we willgeneralize the interpolation of Chang et al. (2009) to the alternative hypothesisof a QTL loated at t⋆ ∈ [0, T ], sine ontrary to Azaïs et al. (2011), Chang etal. (2009) foused only on the null hypothesis.We refer to the book of Van der Vaart (1998) for elements of asymptotistatistis used in proofs.
2. Two different interpolationsLet H0 be the null hypothesis q = 0. Sine in Chang et al. (2009), the authorsstudy only the null hypothesis, we will �rst fous only under the null hypothesis.Besides, it is well known that for a regular model, the sore test is equivalent tothe square of the LRT, so without loss of generality, we will limit our study tosore tests as in Chang et al. (2009).
2.1. Under the null hypothesisLet's onsider a loation t, distint from the marker loations, that is to say
t ∈]t1, t2[, and the result will be prolonged by ontinuity at marker loations.
Sn(t) will be the sore test statisti at loation t.Aording to Theorem 1 and formula (5) of Azaïs et al. (2011), we have :

Sn(t) =

{
Q1,1

t −Q−1,1
t

}
Sn(t1) +

{
Q1,1

t −Q1,−1
t

}
Sn(t2)

√
E

[
{2p(t)− 1}2

] , (2)where
∀k = 1, 2 Sn(tk) =

n∑

j=1

(yj − µ) (21X(tk)=1 − 1)

σ
√
n

,
E

[
{2p(t)− 1}2

]
=

{
Q1,1

t −Q−1,1
t

}2

+
{
Q1,1

t −Q1,−1
t

}2

+ 2
{
Q1,1

t −Q−1,1
t

}{
Q1,1

t −Q1,−1
t

}
e−2( .This is the non linear interpolation of Azaïs et al. (2011), between statistison markers. The ouple (Sn(t1), Sn(t2)) follow a standard bivariate normal dis-tribution with ovariane e−2(t2−t1). Let's now establish the link beween thisinterpolation and the interpolation of Chang et al. (2009).Aording to formula (5) of Azaïs et al. (2011) and using the fat that Q1,1

t =
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1−Q−1,−1

t and Q1,−1
t = 1−Q−1,1

t , we have
Sn(t) = (1 − 2Q−1,−1

t )

n∑

j=1

(yj − µ)
{
1Xj(t1)=11Xj(t2)=1 − 1Xj(t1)=−11Xj(t2)=−1

}

σ
√
n

√
E

[
{2p(t)− 1}2

]

+ (1− 2Q−1,1
t )

n∑

j=1

(yj − µ)
{
1Xj(t1)=11Xj(t2)=−1 − 1Xj(t1)=−11Xj(t2)=1

}

σ
√
n

√
E

[
{2p(t)− 1}2

] .Let G1
n(t) and G2

n be the quantities suh as :
G1

n =

n∑

j=1

(yj − µ)
{
1Xj(t1)=11Xj(t2)=1 − 1Xj(t1)=−11Xj(t2)=−1

}

σ
√
n r̄(t1, t2)

,
G2

n =

n∑

j=1

(yj − µ)
{
1Xj(t1)=11Xj(t2)=−1 − 1Xj(t1)=−11Xj(t2)=1

}

σ
√
n r(t1, t2)

.
G1

n and G2
n are asymptotially independent standard normal variables under H0.Besides, it is lear that we have the following relationship between Sn(t), G1

n and
G2

n :
Sn(t) =

{√
r̄(t1, t2) (1− 2Q−1,−1

t ) G1
n +

√
r(t1, t2) (1− 2Q−1,1

t ) G2
n

}
/

√
E

[
{2p(t)− 1}2

] .(3)We will see later that this interpolation is the interpolation of Chang et al.(2009) but rewritten without approximations. This interpolation is di�ult todesribe graphially beause it is an interpolation between two test statistis G1
nand G2

n, whih boths inlude the genome information at the two markers. Themain di�erene is that G1
n and G2

n are not points of the proess Sn(.), ontraryto Sn(t1) and Sn(t2) for the interpolation of Azaïs et al. (2011).Note that if we want to obtain the sore test, we just have to replae µby µ̂ := 1
n

∑n
j=1 Yj and σ by σ̂ :=

{
1

n−1

∑
(Yj − µ̂)2

}1/2 in formulae (2) and(3). These new expressions (ie with σ̂ and µ̂) of G1
n, G2

n, Sn(t1) and Sn(t2) areasymptotially equivalent to the previous ones. We will all respetively Ĝ1
n and

Ĝ2
n the new expressions of G1

n, G2
n.Let's now fous on the work of Chang et al. (2009). With our notations, thesore test statisti of formula (8) of Chang et al. (2009) is :

Un(t) =
{√

r̄(t1, t2) (1− 2Q−1,−1
t ) G̃1

n +
√
r(t1, t2) (1− 2Q−1,1

t ) G̃2
n

}
/

√
E

[
{2p(t)− 1}2

] ,where
G̃1

n =

∑n
j=1 yj 1Xj(t1)=11Xj(t2)=1 − ∑n

j=1 yj 1Xj(t1)=−11Xj(t2)=−1

σ̂
√
n r̄(t1, t2)

,
G̃2

n =

∑n
j=1 yj 1Xj(t1)=11Xj(t2)=−1 − ∑n

j=1 yj 1Xj(t1)=−11Xj(t2)=1

σ̂
√
n r̄(t1, t2)

.



On interpolations in QTL detection 5Let oPθ0
(1) be a sequene of random vetors that onverges to zero in probabilityunderH0 (i.e. no QTL on the whole interval studied) and let Op(1) be a sequenebounded in probability. We have :

Ĝ1
n =

∑n
j=1 yj

{
1Xj(t1)=11Xj(t2)=1 − 1Xj(t1)=−11Xj(t2)=−1

}

σ̂
√
n r̄(t1, t2)

− µ̂

∑n
j=1

{
1Xj(t1)=11Xj(t2)=1 − 1

σ̂
√
n r̄(t1, t

= G̃1
n −

{
Op(1) +Op(1/

√
n)
}
Op(1) = G̃1

n +Op(1) + oPθ0
(1) .In the same way :

Ĝ2
n = G̃2

n +Op(1) + oPθ0
(1) .As a onsequene, sine Ĝ2

n = G2
n + oPθ0

(1) and Ĝ1
n = G1

n + oPθ0
(1), we anremark that Sn(t) 6= Un(t)+ oPθ0

(1). So, the interpolation introdued by Changet al. (2009) is only an approximation as said before. The interpolation of Changet al. (2009) rewritten without approximations is presented in formula (3).
2.2. Under the alternative hypothesisLet de�ne the alternative hypothesis :
Hat⋆ : �the QTL is loated at the position t⋆ with e�et q = a/

√
n where a 6= 0 �.In Azaïs et al. (2011), the authors show that this alternative hypothesis is on-tiguous to the null hypothesis. So, it makes the algebra easy under Hat⋆ . Wewill still have the same interpolations as under H0. In partiular, for the non lin-ear interpolation, aording to Azaïs et al. (2011), we still have (Sn(t1), Sn(t2))whih follows a bivariate normal distribution with ovariane e−2(t2−t1). How-ever, Sn(t1) and Sn(t2) are not entered anymore : E {Sn(t1)} = ae−2(t⋆−t1)/σand E {Sn(t2)} = ae−2(t2−t⋆)/σ.Let's fous now on the interpolation of Chang et al. (2009). After somealulations and using the fat that Q1,1

t = 1 −Q−1,−1
t and Q1,−1

t = 1−Q−1,1
t ,we obtain

E
{
G1

n

}
= a

√
r̄(t1, t2) (2Q

1,1
t⋆ − 1)/σ ,

E
{
G2

n

}
= a

√
r(t1, t2) (2Q

1,−1
t⋆ − 1)/σ .Besides,

Cov
{
G1

n,G
2
n

}
= E

{
G1

nG
2
n

}
− E

{
G1

n

}
E
{
G2

n

}
= 0− E

{
G1

n

}
E
{
G2

n

}

= −a2
√
r̄(t1, t2)

√
r(t1, t2) (2Q

1,−1
t⋆ − 1) (2Q1,1

t⋆ − 1)/σ2 .So, under the alternative, G1
n and G2

n will still be asymptotially normal withunit variane. However, G1
n and G2

n are not independent anymore (ontrary tounder the null hypothesis).Note that here, we limited our study to only two geneti markers loated onthe hromosome, but it an easily be generalized to several markers.
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