N

N

On Quantitative Trait Locus mapping with an
interference phenomenom
Charles-Elie Rabier

» To cite this version:

Charles-Elie Rabier. On Quantitative Trait Locus mapping with an interference phenomenom. 2012.
hal-00658586v3

HAL Id: hal-00658586
https://hal.science/hal-00658586v3

Preprint submitted on 28 Sep 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00658586v3
https://hal.archives-ouvertes.fr

September 28, 2012

interferencestatisticsv2forhal

Vol. 00, No. 00, June 2012, 1-15

RESEARCH ARTICLE

On Quantitative Trait Locus mapping
with an interference phenomenon

Charles-Elie Rabier 2b*

a Unigversité de Toulouse, Institut de Mathématiques de Toulouse, U.P.S, 31062 Toulouse,
France; PINRA URG631, Station d’Amélioration Génétique des Animauzx, Chemin de
Borde-Rouge, 31326 Castanet-Tolosan, France

(v1 June 2012)

We consider the likelihood ratio test (LRT) process related to the test of the absence of QTL
(a QTL denotes a gene with quantitative effect on a trait) on the interval [0, T| representing a
chromosome. The observation is the trait and the composition of the genome at some locations
called “markers”. We focus on the interference phenomenon : a recombination event inhibits
the formation of another recombination event nearby. We give the asymptotic distribution of
the LRT process under the null hypothesis that there is no QTL on [0,7] and under local
alternatives with a QTL at t* on [0,7]. We show that the LRT process is asymptotically
the square of a “linear interpolated and normalized process ”. We prove that under the null
hypothesis, the law of the maximum of the LRT process is the same for a model with or
without interference. However, the powers of detection are totally different between the two
models.

Keywords: Gaussian process; Likelihood Ratio Test; Mixture models; Nuisance parameters
present only under the alternative; QTL detection; MCQMC

AMS Subject Classification: 62M86; 65C05; 62P10

1. Introduction

We study a backcross population: A x (A x B), where A and B are purely homozy-
gous lines and we address the problem of detecting a Quantitative Trait Locus,
so-called QTL (a gene influencing a quantitative trait which is able to be mea-
sured) on a given chromosome. The trait is observed on n individuals (progenies)
and we denote by Y;, j = 1,...,n, the observations, which we will assume to be
Gaussian, independent and identically distributed (i.i.d.). The mechanism of ge-
netics, or more precisely of meiosis, implies that among the two chromosomes of
each individual, one is purely inherited from A while the other (the “recombined”
one), consists of parts originated from A and parts originated from B, due to
crossing-overs.

The chromosome will be represented by the segment [0, 7']. The distance on [0, T']
is called the genetic distance, it is measured in Morgans (see for instance Wu et al.
[1] or Siegmund and Yakir [2]). K genetic markers are located at fixed locations
t1 =0 <ty < .. <tg =T. These markers will help us to find the QTL. X (tx)
refers to the genetic information at marker k. For one individual, X (x) takes the
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value +1 if, for example, the “recombined chromosome” is originated from A at
location t; and takes the value —1 if it is originated from B.

We use the Haldane [3] modeling for the genetic information at marker locations.
It can be represented as follows: X (0) is a random sign and X (t) = X (0)(—1)N )
where N(.) is a standard Poisson process on [0,77]. Due to the independence of
increments of Poisson process, this model allows double recombinations between
markers. For instance, if we consider 3 markers (i.e. K = 3), we can have the
scenario X (t1) = 1, X(t2) = —1 and X(t3) = 1, which means that there has
been a recombination between markers 1 and 2, and also a recombination between
markers 2 and 3. Obviously, in the same way, we can have the scenario X (¢1) = —1,
X(tg) =1 and X(tg) =-—1.

A QTL is lying at an unknown position ¢* between two genetic markers. U (t*)
is the genetic information at the QTL location. In the same way as for the genetic
information at marker locations, U(t*) takes value +1 if the “recombined chromo-
some” is originated from A at t*, and —1 if it is originated from B. Due to Mendel
law, U(t*) takes value +1 and —1 with equal probability. We assume an “analysis
of variance model” for the quantitative trait :

Y=p+ Ultr)qg + o¢ (1)

where ¢ is a Gaussian white noise. The key point is that we will have to guess the
value of U(t*), using only the information available, which is the information at
genetic markers.

The originality of this paper is that we focus on the model introduced by Rebai
et al. [4] (see in particular their Section 2) in which double recombination between
the QTL and its flanking markers is not allowed. For instance, if the QTL is lying
between the first two markers (i.e. t* €]t1, t2]), we can not have the scenario X (¢1) =
1, U(t*) = —1 and X (t2) = 1, which would have supposed that there had been a
recombination between the first marker and the QTL, and also a recombination
between the second marker and the QTL. In particular, the model considers that if
we have a recombination between the QTL and one of its flanking marker, we could
not have a recombination between the QTL and the other flanking marker. In other
words, if X (¢1) = 1 and U(t*) = —1, then we have automatically X (t2) = —1. In the
same way, if X(t2) =1 and U(t*) = —1, then we have automatically X (¢;) = —1.
We will explain in details this model in Section 2 and present the law of U(t*),
given its flanking markers.

This way, inside the marker interval which contains the QTL, we model the in-
terference phenomenon : a recombination event inhibits the formation of another
recombination event nearby. This phenomenon was noticed by geneticists work-
ing on the Drosophila (Sturtevant [5], Muller [6]). In McPeek and Speed [7], the
authors study several interference models and also mention the importance of mod-
eling interference. We focus here on the model proposed by Rebai et al. [4], and
then extended to a whole chromosome in Rebai et al. [8]. It will lead to original
mathematical results with a real impact for geneticists.

So, since only the Quantitative trait and the genetic information at marker lo-
cations are available, one observation will be

Y, X(t1), ..., X(tg)) -

We observe n observations (Y;, X;(t1), ..., X;(tk)) ii.d. It can be proved that,
conditionally to X (¢1),...,X(tx) , Y obeys to a mixture model with known weights
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p(t*)f(u+q,0)(') + {1 —p(t*)} f(,ufq,o)(')v (2)

where f(,, ») is the Gaussian density with parameters (m, o) and where the function
p(t*) is the probability P{U(t*) = 1} conditionally to the flanking markers (see
Section 2) .

The challenge is that the true location ¢t* is not known. So, we test the presence of
a QTL at each position ¢. A, (t) and S, (t) are respectively the likelihood ratio test
(LRT) statistic and the score test statistic (see Section 2 for a precise definition)
of the null hypothesis “q = 0”.

When t* is unknown, considering the maximum of A, (¢) still gives the LRT of
“q = 0”. This paper gives the exact asymptotic distribution of this LRT statistic
under the null hypothesis and under contiguous alternatives. These distributions
have been given using some approximations under the null hypothesis, by Rebail
et al. [4] and Rebal et al. [8]. In Cierco [9], Azais and Cierco-Ayrolles [10], Azals
and Wschebor [11], Chang et al. [12], Azais et al. [13], the authors focus on an-
other recombination model which does not model the interference phenomenon :
recombination events occur independently from each other.

The main result of the paper (Theorems 2.1 and 3.1) is that the distribution of
the LRT statistic is asymptotically that of the maximum of the square of a “lin-
ear normalized interpolated process”. It is a generalization of the results obtained
by Rebal et al. [4], Rebal et al. [8], where the authors focused only on the null
hypothesis and characterized the process only by its covariance function. The com-
putation of such a maximum is easy due to the interpolation. Note that recently, for
a model without interference, Azais et al. [13] have proved that the LRT statistic is
asymptotically that of the maximum of the square of a “non linear normalized in-
terpolated process”. The second important result is that, under the null hypothesis,
the maximum of the square of the “linear normalized interpolated process” is the
same as those of the square of the “non linear normalized interpolated process”
obtained by Azals et al. [13]. As a consequence, the Monte-Carlo Quasi Monte-
Carlo method proposed by Azals et al. [13] to compute thresholds is also suitable
for our interference model. So, for our interference model, we have now a method
to compute thresholds which is suitable whatever the genetic map is, which was
not the case of the method proposed in Rebal et al. [8] based on Davies [14]. With
the help of simulated data, we will see that, as expected, our method outperforms
Rebal’s method in terms of false positives. Finally, we will compare the theoretical
power of QTL detection, for a model without interference (Azais et al. [13]) and a
model with interference (this paper). We will show that it is largely more powerful
to detect a QTL under interference than without interference. To sum up, we prove
that we have exactly the same threshold with or without interference, but we have
a totally different power. This makes this paper original.

We refer to the book of Van der Vaart [15] for elements of asymptotic statistics
used in proofs.

2. Main results : two genetic markers

To begin, we suppose that there are only two markers (K = 2) located at 0 and
T:0=1t <ty="T. Furthermore, a QTL is lying between these two markers at
t* €]t1, t2[. Note that in order to make the reading easier, we consider that the QTL
is not located on markers. However, the result can be prolonged by countinuity at
marker locations.
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Let r(t1,t2) be the probability that there is a recombination between the two
markers. Calculations on the Poisson distribution show that :

r(t1,t2) = P(X (1) X (t2) = —1) = P(|N(t1) — N(t2)| odd) = = (1 — e‘2|t1_t2|).

| =

We will call r, (t*) (resp. 7,(t*)) the probability of recombination between the first
(resp. second) marker and the QTL. So,

o (1) = BOX()U () = —1), 74, (%) = BX (1)U () = —1).

As explained in Section 1, only one recombination is allowed between the QTL and
the two markers. We have :

{X(t1)X (t2) = -1} & {X (1)U (t*) = =1} U{X(t2)U(t*) = —1}.

Indeed, X (¢1)U(t*) = —1 means that there has been a recombination between
the first marker and the QTL, so the second marker is not allowed to recombine
with the QTL. As a consequence, X (t2) = U(t*) and we have X (t;)X (t2) = —1.
Same remark for X (t2)U(¢*) = —1 but this time, it is the first marker which is not
allowed to recombine with the QTL.

Note that since {X (¢1)U(t*) = =1} N{X(t2)U(t*) = —1} = @, we have

r(t1,t2) = 1, (£%) + 74, (7). (3)

In the same way as in Rebali et al. [4], we consider :

-1
) = t1,t ) =
T, (t°) PRS— r(t1,t2) 5 T, (t7) Pa—

This way, the probability of recombination of the marker and the QTL is propor-
tional to the probability of recombination of the two markers, and also proportional
to the distance between between the QTL and the marker. Note that formula (3)
stands with these expressions of ry, (t*) and 7y, (t*).

Let’s define now

p(t") =P{U(t") = 1| X (t1), X (t2) } -
Obviously, since U(t*) takes value +1 or —1, we have
1—p(t*) =P{U") = —1|X(t1), X(t2) } -

Since only one recombination is allowed between the QTL and its flanking markers,
we have

P{U)=1X(t1)=1,X(tz) =1} =1, P{UW") =1|X(t1) =—-1,X(ts) = -1} =0.
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Besides, according to Bayes rules

P{Ut") =1|X(t1) =1,X(ts) = -1}

CP{X(t1) = 1{U{#*) =1, X(tp) = -1} P{U(t*) = 1, X (t2) = —1}
B P{X(t1) =1,X(t3) = —1}

- ’I"t2(t*)/2 - T‘tz(t*) _tQ—t*

- T(tl,tg)/2 o ’r‘(tl,tg) o t2 —tl‘

In the same way,

)= )= 1) = 2D Pt

As a consequence,

ty — t* t— 1t

p(t") = Lx(y=1lx()=1 + P Ix()=11x(t)=—1 + P Ix(t)=—11lx(ts)=1 -

(4)

So, as explained in Section 1, conditionally to X(¢;) and X(t2), Y obeys to
the mixture model of formula (2). Note that, using the formula above for p(t*),
and using properties of conditional expectation, it is easy to check that we have
P{U(t*)} = 1/2, so U(t*) takes values +1 and —1 with equal probability (as ex-
plained in Section 1). As explained previouly, since the location t* of the QTL is
unknown, we will have to perform tests at each position ¢ between the two genetic
markers. We will consider only positions ¢ distinct of the marker locations and the
result can be prolonged by continuity on markers.

Let’s define now (with p(¢) given in formula (4))

u(t) =2p(t) — 1.
Let 0 = (g, p, o) be the parameter of the model at ¢ fixed. The likelihood of

the triplet (Y, X (¢1), X(t2)) with respect to the measure A ® N ® N, A being the
Lebesgue measure, N the counting measure on N, is :

Li(0) = [p(t) frq.00 @) + {1 = 2(O)} fu—g.0)(®)] 9(t) (5)
where the function
1, _
g(t) = B {7(t1,t2) Ix()=11x(t)=1 + 7(t1,t2) Ix=1lx(t)=—1}
1
T3 {r(t1,t2) 1x@)=—11x()=1 + 7(t1,t2) Ix()=—11x(t2)=—1}

can be removed because it does not depend on the parameters. By a small abuse
of notation we still denote L;(6) for the likelihood without this function. Thus we
set

Li(0) = [P(t) f(urq.0) ) + {1 = P} Flu—g,0) ()]

and [¢(#) will be the loglikelihood. We first compute the Fisher information at a
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point 6y that belongs to Hy.

ol _y—p

aq |90 - 0_2 U(t) (6)
oy _y—p O 1 (y—p)
a |9o - 2 ) a_ |9o_ —— + 3
ou o do o o

After some calculations, we find

u2
%:Dw4Etf”,;,i]. (7)

Our main result is the following :

Theorem 2.1: Suppose that the parameters (q, i, 0%) vary in a compact and that
o2 is bounded away from zero. Let Hy be the null hypothesis ¢ = 0 and define the
following local alternative

Ha : “the QTL is located at the position t* with effect ¢ = a/+/n where a #0 7.

With the previous defined notations,

Fd.

Sp() = W), An() ES W2, sup An(l) - sup W2()

as n tends to infinity, under Hy and Hqy+ where :

. Fd. . . . . L
e = is the weak convergence, = is the convergence of finite-dimensional distri-

. L. o
butions and — s the convergence in distribution
o W(.) is the Gaussian process with unit variance such as :

a(t)W(t1) + B(t)W (t2)

wi = VY {a)W(t) + B(E)W (t2)}

where

Cov {W(t1), W(t2)} = p(t1,t2) = exp(—2[t1 — ta]) ,

to — 1 t—1t
at) = =2 . B(t) = !
to — 11 to — 1

and with expectation :

e under Hy, m(t) =0

o under H -

__a(t) me (1) + B(E) mu- (t2)
VV{aOW (k) + W (t2)}

T~ (t)
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where
me (1) =~ {a(t) + B(E)p(tn, )}, mes(t2) = ~ {a(t*)p(ta, t2) + B(1)) -

As a consequence, W(.) will be called a ”linear normalized interpolated process”.

In Azais et al. [13], the authors present a lemma called Lemma 2.2, which is very

useful to compute the supremum of the square of an interpolated process. So, the

computation of the maximum of our process W2(.) can be obtained easily using
B(t)

their Lemma 2.2, since 5757 takes every value in [0,1] (c.f. Azais et al. [13]).

On the other hand, we have this interesting result :

Lemma 2.2: With the previous defined notations, under Hy,

max W2(t) = max Z2(t) ,
tE[t1,t2] tE€[t1,tz]

where Z(.) is the “non linear normalized interpolated process” obtained by Azais et
al. [13].

In other words, under the null hypothesis, our Lemma 2.2 says that the maximum
of the square of the “non linear normalized interpolated process” is the same as
the maximum of the square of the “linear normalized interpolated process”.

In order to prove this lemma, we just have to remark that under Hy at marker
locations, we have Z(t1) = W(t1) and Z(t2) = W(t2). Indeed, under Hy, the
processes overlap at marker locations since there is no QTL affecting the processes
and also because the recombination model (i.e. Haldane) is the same at marker
locations. Then, using Lemma 2.2 of Azais et al. [13], the computation of the
maximum of Z2(.) and W?(.) is the same.

Note that our Lemma 2.2 stands only under the null hypothesis and not under
the alternative.

Proof: Theorem 2.1
As said previously, we consider values of ¢ and t*, distinct of marker locations
and the result can be prolonged by continuity on markers.

Introducing the score process

The log likelihood at ¢, associated to n observations will be denoted by {*(¢). Since
the Fisher Information matrix is diagonal, the score statistics of the hypothesis
“q = 0” will be defined as

Study of the score process under the null hypothesis
The study is based on the key lemma :

Lemma 2.3:

u(t) = at) X (t1) + B(t) X (t2)
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with o(t) = t;—_l and B(t) = tg -

To prove this lemma, use formula (4) and check that both coincide whatever the

value of X (t1), X (t2) is
Now using formula (6), we have

alt ‘ ZY MU'(t):l/UZEjUj(t):a((jt)Z{:‘ij(tl)-i—B((f)Zé‘jX to
j=1

U J X -
]:1 ]:1
(8)

7j=1

this proves the interpolation.

On the other hand
- t
() E S Xite) 1,2

and a direct application of central limit theorem implies that these two variables
have a limit distribution which is Gaussian centered distribution with variance

1 exp(—2[t2 — t1)
exp(—2|te — t1]) 1 ’

This proves the expression of the covariance.

Study of the score process under the local alternative

Under the alternative

7%2 WZJW

The second term has the same distribution as under the null hypothesis and the
first one gives the expectation. We have

B(5 (1) =

According to Lemma 2.3, we have :
E{U()u®)} = o) E{X()U{)} + A(

So, we need now to calculate E {X (¢;)U(¢t*)} and E{U(t*)
L[ X(t1) = -1, X(t2) = 1} P{X(t1) = =1, X (t2) = 1}

L X(t) = -1, X(t

0 E{U(")X(t2)}

X(t2)}. We have

P{X(t)U(t") = -1} = P{U(t*

) )
+P{U(t) = ) =—1}P{X(t) = -1, X(tz) = —1}
+P{UE) = 1] X(t1) =1, X (t2) = 1} P{X(t1) = 1, X (t2) = 1}
+P{UE) = 1] X(t1) =1, X(t2) = —1}P{X(tr) = 1, X (t2) = —1}
At *)T(tl’b) to4oq AOhT) )Tétl’m = B(t*)r(t1, b) -
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As a consequence,

P{X(t)U(*) = 1} = 1 — B(*)r(t, t2) .
It comes
E{X(t)U(t*)} =1 = 28(t")r(t1,t2) = a(t*) + B(t*)p(t1, t2) with p(t, ta) = e 20 7tl
In the same way, we obtain

E{U(t) X (t2)} = a(t)p(t1, t2) + B(t") .

This gives the result.

About the LRT process

The likelihood ratio statistic at ¢, for n independent observations, will be defined
as

An(®) = 2{170) = 17 O)} -

where  is the maximum likelihood estimator (MLE), and é\| 1, the MLE under Hy.
Since the model with ¢ fixed is regular, it is easy to prove that for fixed ¢

An(t) = Sp(t) +op(1) (9)

under the null hypothesis.

Let us consider a local alternative defined by t* and ¢ = a/y/n. The model
with t* fixed is differentiable in quadratic mean, this implies that the alternative
defines a contiguous sequence of alternatives. By Le Cam’s first Lemma, relation
(9) remains true under the alternative. This gives the result for the convergence
of finite-dimensional distribution. Concerning the study of the supremum of the
LRT process, the proof is exactly the same as in Azals et al. [13] which is based on
results of Azals et al. [16] and Gassiat [17].

(]

3. Several markers : the “genome scan”

We suppose now that there are K markers 0 = ¢t; < to < ... < tg =T. A QTL
is lying at a position t*. So, in order to find the QTL, we will perform tests at
every positions ¢ on the chromosome. Note that we use the terminology “genome
scan” instead of “interval mapping”, since the “interval mapping” of Lander and
Botstein [19] is usually computed by geneticists with a model without interference
(Haldane [3]). So, in our case, since we consider an interference model, it will only
be a “genome scan”. We consider values ¢ or t* of the parameters that are distinct
of the markers positions, and the result will be prolonged by continuity at the
markers positions. For t € [t1,tx]\Tx where T = {t1,...,tx}, we define t* and ¢
as :

t'=sup{ty e Tr 1 tp <t} , t' =inf{t € T : ¢t < t5}.
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In other words, ¢ belongs to the “Marker interval” (t¢,t").

As explained in Section 1, in order to infer the value of U(t*), we just need to
keep the flanking markers. In others words, the information brought by the other
markers is useless. So, we have

P{U®#) =1|X (1), ..., X (tx)} = ]P’{U —1|x(#) X(t*?")} .

As a consequence, our problem becomes the same as the one with two genetic
markers (see Section 2). In order to perform our tests at every positions ¢, we
simply have to consider all the different marker intervals.

Theorem 3.1: We have the same results as in Theorem 2.1 except that the
following functions must be redefined :

o {1 becomes t' and ty becomes t” in all the expressions, except in the expressions
a(t*) and B(t*), where t; becomes t** and to becomes t*"

me (#) = a p(t', ) {a(t*) + BE)p(E, 7))} o if ¢ >t

mes (1) = a p(t, ) {a(t)p(t*7 1) + B(t)} [o if 1 < 1"

me- (1) = a p(t7, 1) {a(t*) + B, t7)} Jo if > ¥

me (t7) = a p(t", t*7) {a(t*)p(t*7, ) + B(t*) } [o if t* <t" .

Proof: The proof of the theorem is the same the proof of Theorem 2.1 as soon as

we can limit our attention to the interval (¢,¢") when considering a unique instant

t. So, under Hy, the result is straightforward. However, under the local alternative,

the proof is more complicated than the proof of Theorem 2.1. Indeed, the location

t* of the QTL and the location ¢, can belong to a different marker interval.
According to the proof of Theorem 2.1, under the alternative

0= 2 ey T T

As previously, the second term has the same distribution as under the null hypoth-
esis and the first one gives the expectation. We have

a E{U()u(t)}
Vd{u(t)}

We remark that we have u(t*) = E{U(t*) | X (t*) X (¢*") }. Besides, u(t) is a func-
tion of X (¢/) and X (¢"). As a consequence, by the properties of conditional ex-
pectancy, we have

E {Sn(t)} =

E{U")u(t)} = E{u(t)u(®)} .
According to Lemma, 2.3,
E {u(t")u(t)} = a(t*) a(t) E{ X (X } + Bt a(t) E {X(t*T)X(t‘])}
+a(t) B E{X ()XW} + B() B E{X ()X (¢))

:Mfwwnwﬁﬂ>+ﬁa>mwm%fw
a(t) B(E) p(t,87) + B(E") B(E) p(t", 7).

_|_
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In order to obtain E {u(t*)u(t*)}, we just have to use the dominated convergence
theorem. It comes

E{ua*)u(tf)} = a(t*) p(th, ) + B(t*) p(th, ) .

To conclude the proof, we just have to remark that

E {u(t*)u(#)} = p(tt, t*%) {a(t*) + B(t*)p(t*, t*?")} if t* >t

— p(t!, 1) {a(t*)p(t*r,t*f) v B(t*)} if < t!

In order to obtain E {u(t*)u(t")}, we just have to replace t* by ¢". This gives the
result. O

4. Application

In this Section, we present somme applications of our study. We first focus on the
null hypothesis and then we will move on to the alternative hypothesis.

4.1. Application to the computation of thresholds

In QTL detection, in order to conclude to the presence of a QTL or not, it is always
important to use an appropriate threshold for the statistical test. Our aim is to
show that with our theoretical study, we are now able to propose a threshold which
gives better performances than the classical threshold proposed by Rebai et al. [4]
and Rebai et al. [8] for the interference model.

To begin, we remind that W (.) is our “linear normalized interpolated process”
whereas Z(.) is the “non linear normalized interpolated process” of Azals et al. [13].
According to Lemma 2.2, when we consider only two genetic markers, the maximum
of W2(.) is the same as the maximum of Z2(.) under the null hypothesis. Since when
we deal with several markers, we just have to consider the different marker intervals,
it is easy to check that Lemma 2.2 is still true with several markers. This way, the
threshold will be the same for a model with interference (this paper) and for a
model without interference (Azais et al. [13]). In order to compute the threshold,
Azais et al. propose a Monte-Carlo Quasi Monte-Carlo (MCQMC) method, based
on Genz [18]. This method is very fast, and the advantage of MCQMC is that it
is more accurate than a simple Monte-Carlo method. We refer to Azais et al. [13]
and Genz [18] for more details.

Let’s explain now the method to compute thresholds, proposed by Rebail et al.
[4] and Rebal et al. [8]. In Rebal et al. [4], the authors consider only two markers.
They propose to use results of Davies [14] and Davies [20]. Indeed, in Davies,
we can find an upper bound for a threshold corresponding to the supremum of
a stochastic process (Gaussian process or Chi square process) which depends on
a nuisance parameter only present under the alternative. In QTL detection, the
nuisance parameter is the position of the QTL. Note that in Rebai et al. [4], the
authors use as a scale the recombination units whereas in this paper, we use the
genetic distance. In other words, if we call W'(.) the process studied in Rebai et
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al. [4] with only two markers, we have the relationship V¢ € [t1, o] :

In their paper, they show that

82Cov {W'(t), W'(t)}
Ot'2

4 T(tl,tQ) {1 — T(tl,tg)}

212
[T(tl, ta) — 4r2(t, ta) £ + 4 {T(tl, to) = } ]

t=t = —

Then, since

(t1,t2) 2 / 1(+/1
/ \/ 9?Cov {W'(t), W'(t)} ey dt:%rctan( 7’('51t2)>

8t/2 1— T'(tl, tg)

and using Davies formula, they find that

—c?/2
P{ sup W'(t) > C} < P(—c) + ‘ arctan( M) ;

[0,7(t1,t2)] @ 1 —7r(t1,t2)

where ® is the cumulative distributive function of a standardized normal distribu-
tion. Note that since

P{sup Wi(t) > c} :IP’{ sup W'(t) > c} ,
[t1,t2] [0,7(t1,t2)]

it gives also the threshold for our process W(.). In Rebal et al. [8], the authors
generalize their approach to several markers. Their formula adapated to our process
W (.) becomes :

P sup W(t) >cp < P(—c) + il Kzzl arctan _rth te1) (10)
[t1,tx] h 1—r(tg, teer) |

In order to obtain the threshold, we just have to find for which value of ¢, the right-

side of formula (10) is equal to /2, and we will obtain the threshold ¢? for the

supremum of our process W?2(.). Note that this threshold ¢? will only correspond

to a level lower or equal than «, due to the upper bound of formula (10).

In Figure 1, we propose to compare numerically the two approaches to compute
thresholds for the interference model : Azals et al. [13] and Rebai et al. [8]. For the
genetic map, we consider the same configurations as in Table 1 of Rebai et al. [8],
that is to say a chromosome of length T" = 1M, different numbers of markers, and a
level a equal to 5%. According to Figure 1, we can see that the two approaches give
different thresholds. It was expected since Rebai’s threshold corresponds only to a
level lower or equal to 5%. Besides, the more markers there are, the more different
the thresholds are. It is due to the fact that the derivative of the process W {.)
has a jump at each markers location, and Davies [14] formula is suitable when the
derivative of the process has a finite number of jumps. In other words, the more
markers there are, the less appropriate Rebai’s threshold will be.
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To conclude, since the two approaches are based on asymptotic results, we pro-
pose to check the asymptotic validity on simulated data. We simulated under the
null hypothesis and under the interference model, 10000 samples of n = 200 in-
dividuals. We analyzed data using Lemma 2.2 of Azais et al. [13] (still suitable
here, c.f. our Section 2), that is to say performing LRT on markers and performing
only one test in each marker interval if the ratio of the score statistics on markers
fulfilled a given condition. According to Figure 1, Azais’ method always gives a per-
centage of false positives close to 5% , whereas Rebai’s method is too conservative.
So, for our interference model, we have now a method to compute thresholds which
is suitable whatever the genetic map is, and which does not require the number of
indivuals n to be too large.

Note that in Azals et al. [13], using samples generated under a model without
interference, the authors already highlighted that Rebai’s method was too con-
servative. However, since they studied a model without interference and Rebai’s
method is for an interference model, the authors could not conclude if the method
was too conservative because the derivative of the process had too many jumps
or because of the two different models (with and without interference). Here, with
our study, since we study an interference model, we can now conclude that Rebai’s
method is too conservative because the derivative of the process has too many
jumps.

4.2. About the power

We focus now on the alternative hypothesis. In our paper, double recombination
between the QTL and its flanking markers is not allowed. This way, we model
the interference phenomenon. In Azais et al. [13], since the authors don’t model
interference, double recombination between the QTL and its flanking markers is
allowed. The main difference is that, for an interference model, the LRT process
is asymptotically the square of a linear interpolated and normalized process (i.e.
W (.)), whereas for a model without interference, the LRT process is asymptotically
the square of a non linear interpolated and normalized process (i.e. Z(.)). In Figure
2, we propose to compare the asymptotic power of the two approaches, using these
asymptotic processes. We consider a = 4 (i.e. the constant for the QTL effect) and
100000 paths of each process. The different genetic maps studied are detailed in
Figure 3. First, we consider some sparse maps : map 1, map 2 and map 3. For
map 1, we consider a chromosome of length 7' = 1M and 2 markers are located
at each extremity of the chromosome. We can see that when the QTL is located
at t* = 30cM and t* = 60cM, there are huge differences of power between the
model with interference and the model without interference. For instance, we have
85.10% chances of detecting a QTL located at 30cM with interference, whereas we
only have 49.77% chances of detecting the same QTL without interference. This
is due to the fact that the mean functions are totally differents between the two
asymptotic processes. We obtain the same kind of conclusions for map 2 and map
3. Map 4 is a more dense map : a chromosome of length 7' = 1M and 6 markers
equally spaced every 20cM. We can see that there is now only a little difference of
power. To conclude, in the same way as what has been done in the previous section,
we propose to check the asymptotic validity of our asymptotic results. So, in Figure
4, we consider map 1 : a chromosome of length T'= 1M and 2 markers located at
each extremity. We simulated 10000 samples of n = 50, n = 100, n = 200, n = 1000
individuals, according to the interference model. We can see that for n = 200, we
are close to the asymptotic results. It validates our asymptotic study.
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Table 1. Threshold and Percentage of False Positives (10000 samples
of n = 200) as a function of the number of markers and the method
considered.The chromosome is of length T" = 1 Morgan and the markers
are equally spaced.

number of markers 101 51 41 26 6

9.74 9.09 8.88 8.43 6.92
2.69% 3.23% 3.7% 4.04% 4.83%

8.41 8.27 8.16 7.91 6.76
5.03% 4.80% 5.32% 5.21% 5.19%

Rebai

Azais et al.

Table 2.  Asymptotic power of the Interval Mapping as a function
of the genetic map, the model considered and the location of the
QTL t* in Morgan (a = 4, o = 1, 100000 paths).

Genetic Map t* without interference interference

0.10 86.01% 92.89%

map 1* 0.30 49.77% 85.10%
p 0.60 47.46% 82.12%
0.80 70.90% 89.16%

0.20 74.82% 88.26%

man 2+ 0.70 64.57% 80.11%
b 0.90 28.68% 59.18%
1.2 9.52% 22.29%

0.40 49.49% 76.62%

man 3* 0.90 81.26% 88.75%
p 1.2 59.12% 79.46%
1.7 73.30% 83.27%

0.18 92.59% 93.52%

map 4* 0.44 91.34% 92.03%
0.70 89.18% 90.45%

*The different maps are described in Table 3.

Table 3. The different genetic maps considered (K is the number of markers, T is
the length of the chromosome in Morgan, tj is the location of marker k in Morgan).

T K marker locations
map 1 1 2 t1 =0,t2=1
map2 15 3 t1 =0, t2 = 0.50, t3 = 1.50
map 3 2 4 t1 =0, t2 = 0.80, t3 = 1.50, t4 = 2
map 4 1 6 t1=0,t2=0.20, t3 =0.40, t4 = 0.60, t5 = 0.80, tg = 1
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