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Summary. We consider the likelihood ratio test (LRT) process related to the test
of the absence of QTL (a QTL denotes a quantitative trait locus, i.e. a gene with
quantitative effect on a trait) on the interval [0, T ] representing a chromosome. The
observation is the trait and the composition of the genome at some locations called
“markers”. As in Rebai et al. (95), we focus on the interference phenomenom : a
recombination event inhibes the formation of another nearby. We give the asymp-
totic distribution of the LRT process under the null hypothesis that there is no QTL
on [0, T ] and under local alternatives with a QTL at t? on [0, T ]. We show that the
LRT process is asymptotically the square of a “linear interpolated and normalized
process ” whereas the LRT process obtained recently by Azais et al., for a model
without interference, was the square of a “non linear interpolated and normalized
process ”. The computation of the supremum of our LRT process becomes easy
due to the interpolation. Besides, we proove that we have asymptotically exactly
the same thresholds for a model with or without interference. However, we also
proove that the powers of detection are totally different between the two models.

Keywords: Gaussian process, Likelihood Ratio Test, Mixture models, Nuisance
parameters present only under the alternative, QTL detection, MCQMC.

1. Introduction

We study a backcross population: A × (A × B), where A and B are purely
homozygous lines and we address the problem of detecting a Quantitative Trait
Locus, so-called QTL (a gene in�uencing a quantitative trait which is able to
be measured) on a given chromosome. The trait is observed on n individuals
(progenies) and we denote by Yj , j = 1, ..., n, the observations, which we will
assume to be Gaussian, independent and identically distributed (i.i.d.). The
mechanism of genetics, or more precisely of meiosis, implies that among the two
chromosomes of each individual, one is purely inherited from A while the other
(the �recombined� one), consists of parts originated from A and parts originated
from B, due to crossing-overs.

The chromosome will be represented by the segment [0, T ]. The distance
on [0, T ] is called the genetic distance, it is measured in Morgans. K genetic
markers are located at �xed locations t1 = 0 < t2 < ... < tK = T . These markers
will help us to �nd the QTL. X(tk) refers to the genetic information at marker
k. For one individual, X(tk) takes the value +1 if, for example, the �recombined
chromosome� is originated from A at location tk and takes the value −1 if it is
originated from B.

We use the Haldane modeling for the genetic information at marker loca-
tions. It can be represented as follows: X(0) is a random sign and X(tk) =
X(0)(−1)N(tk) where N(.) is a standard Poisson process on [0, T ]. Due to the
independence of increments of Poisson process, this model allow double recom-
binations between markers. For instance, if we consider 3 markers (ie. K = 3),
we can have the scenario X(t1) = 1, X(t2) = −1 and X(t3) = 1, which means
that there has been a recombination between markers 1 and 2, and also a re-
combination between markers 2 and 3. Obviously, in the same way, we can have
the scenario X(t1) = −1, X(t2) = 1 and X(t3) = −1.

A QTL is lying at an unknown position t? between two genetic markers.
U(t?) is the genetic information at the QTL location. In the same way as for the
genetic information at marker locations, U(t?) takes value +1 if the �recombined
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chromosome� is originated from A at t?, and −1 if it is originated from B. Due
to Mendel law, U(t?) takes value +1 and −1 with equal probability. We assume
an �analysis of variance model� for the quantitative trait :

Y = µ + U(t?) q + σε (1)

where ε is a Gaussian white noise. The key point is that we will have to guess
the value of U(t?), using only the information available, which is the information
at genetic markers.

The originality of this paper is that we focus on the model introduced by
Rebaï et al. (1995) in which double recombination between the QTL and its
�anking markers is not allowed. For instance, if the QTL is lying between the
�rst two markers (ie. t? ∈]t1, t2[), we can not have the scenario X(t1) = 1,
U(t?) = −1 and X(t2) = 1, which would have supposed that there had been a
recombination between the �rst marker and the QTL, and also a recombination
between the second marker and the QTL. In particular, the model consider that
if we have a recombination between the QTL and one of its �anking marker, we
could not have a recombination between the QTL and the other �anking marker.
In other words, if X(t1) = 1 and U(t?) = −1, then we have automatically
X(t2) = −1. In the same way, if X(t2) = 1 and U(t?) = −1, then we have
automatically X(t1) = −1. We will explain in details this model in Section 2
and present the law of U(t?), given its �anking markers.

This way, inside the marker interval which contains the QTL, we model
the interference phenomenom : a recombination event inhibes the formation of
another nearby. This phenomenom was noticed by geneticists working on the
Drosophila (Sturtevant (1915), Muller (1916)). In McPeek and Speed (1995),
the authors study several interference models and also mention the importance
of modeling interference. We focus here on the model proposed by Rebaï et al.
(1995), and then extended to a whole chromosome in Rebaï et al. (1994). It will
lead to original mathematical results with a real impact for geneticists.

So, since only the Quantitative trait and the genetic information at marker
locations are available, one observation will be

(Y, X(t1), ..., X(tK)) .

We observe n observations (Yj , Xj(t1), ..., Xj(tK)) i.i.d. It can be proved that,
conditionally to X(t1), . . . , X(tK) , Y obeys to a mixture model with known
weights :

p(t∗)f(µ+q,σ)(.) + {1− p(t∗)} f(µ−q,σ)(.), (2)

where f(m,σ) is the Gaussian density with parameters (m,σ) and where the func-
tion p(t?) is the probability P {U(t?) = 1} conditionally to the �anking markers
(see Section 2) .

The challenge is that the true location t∗ is not known. So, we test the
presence of a QTL at each position t. Λn(t) and Sn(t) are the likelihood ratio test
(LRT) statistic and the score test statistic (see Section 2 for a precise de�nition)
of the null hypothesis �q = 0�.

When t∗ is unknown, considering the maximum of Λn(t) still gives the LRT of
�q = 0�. This paper gives the exact asymptotic distribution of this LRT statistic
under the null hypothesis and under contiguous alternatives. These distributions
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have been given using some approximations under the null hypothesis, by Rebaï
et al. (1995) and Rebaï et al. (1994). In Cierco (1998), Azaïs and Cierco-Ayrolles
(2002), Azaïs and Wschebor (2009), Chang et al. (2009), Azaïs et al. (2011),
the authors focus on another recombination model which does not model the
interference phenomenom : recombination events occur independently from each
other.

The main result of the paper (Theorems 1 and 2) is that the distribution
of the LRT statistic is asymptotically that of the maximum of the square of
a �linear normalized interpolated process�. It is a generalization of the results
obtained by Rebaï et al. (1995), Rebaï et al. (1994), where the authors focused
only on the null hypothesis and characterized the process only by its covariance
function. The computation of such a maximum is easy due to the interpolation.
Note that recently, for a model without interference, Azaïs et al. (2011) have
prooved that the LRT statistic is asymptotically that of the maximum of the
square of a �non linear normalized interpolated process�. The second important
result is that, under the null hypothesis, the maximum of the square of the
�linear normalized interpolated process� is the same as those of the square of the
�non linear normalized interpolated process� obtained by Azaïs et al. (2011). As
a consequence, the Monte-Carlo Quasi Monte-Carlo method proposed by Azaïs
et al. (2011) to compute thresholds is also suitable for our interference model.
So, for our interference model, we have now a method to compute thresholds
which is suitable whatever the genetic map is, which was not the case of the
method proposed in Rebaï et al. (1994) based on Davies (1977). With the help
of simulated data, we will see that, as expected, our method outperforms Rebaï's
method in terms of false positives. Finally, we will compare the theoretical power
of QTL detection, for a model with interference (Azaïs et al. (2011)) and a model
without interference (this paper). We will show that it is largely more powerful
to detect a QTL under interference than without interference. To sum up, we
proove that we have exactly the same threshold with or without interference,
but we have a totally di�erent power. This makes this paper original.

We refer to the book of Van der Vaart (1998) for elements of asymptotic
statistics used in proofs.

2. Main results : two genetic markers

To begin, we suppose that there are only two markers (K = 2) located at 0 and
T : 0 = t1 < t2 = T . Furthermore, a QTL is lying between these two markers
at t? ∈]t1, t2[. Note that in order to make the reading easier, we consider that
the QTL is not located on markers. However, the result can be prolonged by
countinuity at makers locations.

Let r(t1, t2) be the probability that there is a recombination between the two
markers. Calculation on the Poisson distribution show that :

r(t1, t2) = P(X(t1)X(t2) = −1) = P(|N(t1)−N(t2)| odd) =
1

2
(1− e−2|t1−t2|).

We will call rt1(t?) (resp. rt2(t?)) the probability of recombination between the
�rst (resp. second) marker and the QTL. So,

rt1(t?) = P(X(t1)U(t?) = −1) , rt2(t?) = P(X(t2)U(t?) = −1).
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As explained in Section 1, only one recombination is allowed between the QTL
and the two markers. We have :

{X(t1)X(t2) = −1} ⇔ {X(t1)U(t?) = −1} ∪ {X(t2)U(t?) = −1} .

Indeed, X(t1)U(t?) = −1 means that there has been a recombination between
the �rst marker and the QTL, so the second marker is not allowed to recombine
with the QTL. As a consequence, X(t2) = U(t?) and we have X(t1)X(t2) = −1.
Same remark for X(t2)U(t?) = −1 but this time, it is the �rst marker which is
not allowed to recombine with the QTL.

Note that since {X(t1)U(t?) = −1} ∩ {X(t2)U(t?) = −1} = �, we have

r(t1, t2) = rt1(t?) + rt2(t?). (3)

In the same way as in Rebaï et al. (1995), we consider :

rt1(t?) =
t? − t1
t2 − t1

r(t1, t2) , rt2(t?) =
t2 − t?

t2 − t1
r(t1, t2).

This way, the probability of recombination of the marker and the QTL is pro-
portional to the probability of recombination of the two markers, and also pro-
portional to the distance between between the QTL and the marker. Note that
formula (3) stands with these expressions of rt1(t?) and rt2(t?).

Let de�ne now

p(t?) = P
{
U(t?) = 1

∣∣X(t1), X(t2)
}
.

Obviously, since U(t?) takes value +1 or −1, we have

1− p(t?) = P
{
U(t?) = −1

∣∣X(t1), X(t2)
}
.

Since only one recombination is allowed between the QTL and its �anking mark-
ers, we have

P
{
U(t?) = 1

∣∣X(t1) = 1, X(t2) = 1
}

= 1 , P
{
U(t?) = 1

∣∣X(t1) = −1, X(t2) = −1
}

= 0.

Besides, according to Bayes rules

P
{
U(t?) = 1

∣∣X(t1) = 1, X(t2) = −1
}

=
P
{
X(t1) = 1

∣∣U(t?) = 1, X(t2) = −1
}
P {U(t?) = 1, X(t2) = −1}

P {X(t1) = 1, X(t2) = −1}

=
rt2(t?)/2

r(t1, t2)/2
=

rt2(t?)

r(t1, t2)
=
t2 − t?

t2 − t1
.

In the same way,

P
{
U(t?) = 1

∣∣X(t1) = −1, X(t2) = 1
}

=
rt1(t?)

r(t1, t2)
=
t? − t1
t2 − t1

.

As a consequence,

p(t?) = 1X(t1)=11X(t2)=1 +
t2 − t?

t2 − t1
1X(t1)=11X(t2)=−1 +

t? − t1
t2 − t1

1X(t1)=−11X(t2)=1 .

(4)
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So, as explained in Section 1, conditionnally to X(t1) and X(t2), Y obeys to
the mixture model of formula (2). Note that, using the formula above for p(t?),
and using properties of conditional expectation, it is easy to check that we have
P {U(t?)} = 1/2, so U(t?) takes values +1 and −1 with equal probability (as
explained in Section 1). As explained previouly, since the location t? of the
QTL is unknown, we will have to perform tests at each position t between the
two genetic markers. We will consider only positions t distinct of the marker
locations and the result can be prolonged by continuity on markers.

Let de�ne now (with p(t) given in formula (4))

u(t) = 2p(t)− 1 .

Let θ = (q, µ, σ) be the parameter of the model at t �xed. The likelihood
of the triplet (Y, X(t1), X(t2)) with respect to the measure λ⊗N ⊗N , λ being
the Lebesgue measure, N the counting measure on N, is :

Lt(θ) =
[
p(t)f(µ+q,σ)(y) + {1− p(t)} f(µ−q,σ)(y)

]
g(t) (5)

where the function

g(t) =
1

2

{
r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1

}
+

1

2

{
r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1

}
can be removed because it does not depend on the parameters. By a small abuse
of notation we still denote Lt(θ) for the likelihood without this function. Thus
we set

Lt(θ) =
[
p(t)f(µ+q,σ)(y) + {1− p(t)} f(µ−q,σ)(y)

]
and lt(θ) will be the loglikelihood. We �rst compute the Fisher information at
a point θ0 that belongs to H0.

∂lt
∂q
|θ0 =

y − µ
σ2

u(t) (6)

∂lt
∂µ
|θ0 =

y − µ
σ2

,
∂lt
∂σ
|θ0= − 1

σ
+

(y − µ)2

σ3

After some calculations, we �nd

Iθ0 = Diag

[
E
{
u2(t)

}
σ2

,
1

σ2
,

2

σ2

]
. (7)

Our main result is the following :

Theorem 1. Suppose that the parameters (q, µ, σ2) vary in a compact and
that σ2 is bounded away from zero. Let H0 be the null hypothesis q = 0 and
de�ne the following local alternative

Hat? : �the QTL is located at the position t? with e�ect q = a/
√
n where a 6= 0 �.

With the previous de�ned notations,

Sn(.)⇒W (.) , Λn(.)
F.d.−→W 2(.) , sup Λn(.)

L−→ supW 2(.)

as n tends to in�nity, under H0 and Hat? where :
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• ⇒ is the weak convergence,
F.d.→ is the convergence of �nite-dimensional

distributions and
L−→ is the convergence in distribution

• W (.) is the Gaussian process with unit variance such as :

W (t) =
α(t)W (t1) + β(t)W (t2)√
V {α(t)W (t1) + β(t)W (t2)}

where
Cov {W(t1),W(t2)} = ρ(t1, t2) = exp(−2|t1 − t2|)

α(t) =
t2 − t
t2 − t1

, β(t) =
t− t1
t2 − t1

and with expectation :

• under H0, m(t) = 0,

• under Hat?

mt?(t) =
α(t) mt?(t1) + β(t) mt?(t2)√
V {α(t)W (t1) + β(t)W (t2)}

where

mt?(t1) =
a

σ
{α(t?) + β(t?)ρ(t1, t2)} , mt?(t2) =

a

σ
{α(t?)ρ(t1, t2) + β(t?)} .

As a consequence, W (.) will be called a "linear normalized interpolated pro-
cess".

In Azaïs et al. (2011), the authors present a lemma called Lemma 1, which is
very useful to compute the supremum of the square of an interpolated process.
So, the computation of the maximum of our processW 2(.) can be obtained easily

using their Lemma 1, since β(t)
α(t)+β(t) takes every value in [0, 1] (cf. Azaïs et al.

(2011)).
On the other hand, we have this interesting result :

Lemma 1. With the previous de�ned notations, under H0,

max
t∈[t1,t2]

W 2(t) = max
t∈[t1,t2]

Z2(t) ,

where Z(.) is the �non linear normalized interpolated process" obtained by Azaïs
et al. (2011).

In other words, under the null hypothesis, our Lemma 1 says that the maximum
of the square of the �non linear normalized interpolated process� is the same as
the maximum of the square of the �linear normalized interpolated process�.

In order to proove this lemma, we just have to remark that under H0 at
marker locations, we have Z(t1) = W (t1) and Z(t2) = W (t2). Indeed, under
H0, the processes overlap at marker locations since there are no QTL a�ecting
the processes and also because the recombination model (ie Haldane) is the
same at marker locations. Then, using Lemma 1 of Azaïs et al. (2011), the
computation of the maximum of Z2(.) and W 2(.) is the same.

Note that our Lemma 1 stands only under the null hypothesis and not under
the alternative.

Proof of Theorem 1 :
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Introducing the score process
The log likelihood at t, associated to n observations will be denoted by lnt (θ).
Since the Fisher Information matrix is diagonal, the score statistics of the hy-
pothesis �q = 0� will be de�ned as

Sn(t) =

∂lnt
∂q |θ0√

V
(
∂lnt
∂q |θ0

) .

Study of the score process under the null hypothesis
The study is based on the key lemma :

Lemma 2.

u(t) = α(t)X(t1) + β(t)X(t2)

with α(t) = t2−t
t2−t1 and β(t) = t−t1

t2−t1 .

To prove this lemma use formula (4) and check that both coincide whatever the
value of X(t1), X(t2) is.

Now using ( 6), we have

∂lnt
∂q
|θ0=

n∑
j=1

Yj − µ
σ2

uj(t) = 1/σ

n∑
j=1

εjuj(t) =
α(t)

σ

n∑
j=1

εjXj(t1)+
β(t)

σ

n∑
j=1

εjXj(t2)

(8)
this proves the interpolation.
On the other hand

Sn(tk) =

n∑
j=1

εjXj(tk)√
n

k = 1, 2

and a direct application of central limit theorem implies that these two variables
have a limit distribution which is Gaussian centered distribution with variance(

1 exp(−2|t2 − t1|)
exp(−2|t2 − t1|) 1

)
.

This proves the expression of the covariance.

Study of the score process under the local alternative
Under the alternative

Sn(t) =
a

nσ

n∑
j=1

Uj(t
∗)uj(t)√

V {u(t)}
+

1√
n

n∑
j=1

εj
uj(t)√
V {u(t)}

.

The second term has the same distribution as under the null hypothesis and the
�rst one gives the expectation. We have

E {Sn(t)} =
a E {U(t∗)u(t)}
σ
√
V {u(t)}

.
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According to Lemma 2, we have :

E {U(t∗)u(t)} = α(t) E {X(t1)U(t∗)} + β(t) E {U(t∗)X(t2)} .

So, we need now to calculate E {X(t1)U(t∗)} and E {U(t∗)X(t2)}. We have

P {X(t1)U(t?) = −1} = P {U(t?) = 1 | X(t1) = −1, X(t2) = 1}P {X(t1) = −1, X(t2) = 1}
+ P {U(t?) = 1 | X(t1) = −1, X(t2) = −1}P {X(t1) = −1, X(t2) = −1}
+ P {U(t?) = −1 | X(t1) = 1, X(t2) = 1}P {X(t1) = 1, X(t2) = 1}
+ P {U(t?) = −1 | X(t1) = 1, X(t2) = −1}P {X(t1) = 1, X(t2) = −1}

=
β(t?)r(t1, t2)

2
+ 0 + 0 +

β(t?)r(t1, t2)

2
= β(t?)r(t1, t2) .

As a consequence,

P {X(t1)U(t?) = 1} = 1− β(t?)r(t1, t2) .

It comes

E {X(t1)U(t?)} = 1− 2β(t?)r(t1, t2) = α(t?) + β(t?)ρ(t1, t2) with ρ(t1, t2) = e−2|t1−t2| .

In the same way, we obtain

E {U(t?)X(t2)} = α(t?)ρ(t1, t2) + β(t?) .

This gives the result.

About the LRT process
The likelihood ratio statistic at t, for n independent observations, will be de�ned
as

Λn(t) = 2
{
lnt (θ̂)− lnt (θ̂|H0

)
}

,

where θ̂ is the maximum likelihood estimator (MLE), and θ̂|H0
the MLE under

H0.

Since the model with t �xed is regular, it is easy to prove that for �xed t

Λn(t) = S2
n(t) + oP (1) (9)

under the null hypothesis.

Let us consider a local alternative de�ned by t∗ and q = a/
√
n. The model

with t∗ �xed is di�erentiable in quadratic mean, this implies that the alternative
de�nes a contiguous sequence of alternatives. By Le Cam's �rst Lemma, relation
(9) remains true under the alternative. This gives the result for the convergence
of �nite-dimensional distribution. Concerning the study of the supremum of the
LRT process, the proof is exactly the same as in Azaïs et al. (2011) which is
based on recent results of Azaïs et al. (2006).
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3. Several markers

In that case suppose that there are K markers 0 = t1 < t2 < ... < tK = T . A
QTL is lying at a position t?. So, in order to �nd the QTL, we will perform
tests at every positions t on the chromosome. We consider values t or t? of
the parameters that are distinct of the markers positions, and the result will
be prolonged by continuity at the markers positions. For t ∈ [t1, tK ]\TK where
TK = {t1, ..., tK}, we de�ne t` and tr as :

t` = sup {tk ∈ TK : tk < t} , tr = inf {tk ∈ TK : t < tk} .

In other words, t belongs to the �Marker interval" (t`, tr).

As explained in Section 1, in order to infer the value of U(t?), we just need
to keep the �anking markers. In others words, the information brought by the
other markers is useless. So, we have

P
{
U(t?) = 1

∣∣X(t1), ..., X(tK)
}

= P
{
U(t?) = 1

∣∣X(t?`), X(t?r)
}
.

As a consequence, our problem becomes the same as the one with two genetic
markers (see Section 2). In order to perform our tests at every positions t, we
simply have to consider all the di�erent marker interval.

Theorem 2. We have the same results as in Theorem 1 except that the fol-
lowing functions must be rede�ned :

• t1 becomes t` and t2 becomes tr in all the expressions, except in the expres-
sions α(t?) and β(t?), where t1 becomes t?` and t2 becomes t?r

• mt?(t`) = a
σ

{
α(t?)ρ(t`, t?`) + β(t?)ρ(t`, t?r)

}
• mt?(tr) = a

σ

{
α(t?)ρ(t?`, tr) + β(t?)ρ(tr, t?r)

}
.

Proof of Theorem 2 :
The proof of the theorem is the same the proof of Theorem 1 as soon as we

can limit our attention to the interval (t`, tr) when considering a unique instant t.
So, under H0, the result is straightforward. However, under local the alternative,
the proof is more complicated than the proof of Theorem 1. Indeed, the location
t? of the QTL and the location t, can belong to a di�erent marker interval.

According to the proof of Theorem 1, under the alternative

Sn(t) =
a

nσ

n∑
j=1

Uj(t
∗)uj(t)√

V {u(t)}
+

1√
n

n∑
j=1

εj
uj(t)√
V {u(t)}

.

As previously, the second term has the same distribution as under the null hy-
pothesis and the �rst one gives the expectation. We have

E {Sn(t)} =
a E {U(t∗)u(t)}
σ
√
V {u(t)}

.

We remark that we have u(t?) = E
{
U(t?) | X(t?`)X(t?r)

}
. Besides, u(t) is a

function of X(t`) and X(tr). As a consequence, by the properties of conditional
expectancy, we have

E {U(t∗)u(t)} = E {u(t∗)u(t)} .
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According to Lemma 2,

E {u(t∗)u(t)} = α(t?) α(t) E
{
X(t?`)X(t`)

}
+ β(t?) α(t) E

{
X(t?r)X(t`)

}
+ α(t?) β(t) E

{
X(t?`)X(tr)

}
+ β(t?) β(t) E {X(t?r)X(tr)}

= α(t?) α(t) ρ(t`, t?`) + β(t?) α(t) ρ(t`, t?r)

+ α(t?) β(t) ρ(t?`, tr) + β(t?) β(t) ρ(tr, t?r) .

In order to obtain E
{
u(t∗)u(t`)

}
, we just have to use the dominated convergence

theorem. It comes

E
{
u(t∗)u(t`)

}
= α(t?) ρ(t`, t?`) + β(t?) ρ(t`, t?r) .

In the same way,

E {u(t∗)u(tr)} = α(t?) ρ(t?`, tr) + β(t?) ρ(tr, t?r) .

This gives the result.

4. Application

In this Section, we present somme applications of our study. We �rst focus on
the null hypothesis and then we will move on to the alternative hypothesis.

4.1. Application to the computation of thresholds
In QTL detection, in order to conclude to the presence of a QTL or not, it is
always important to use an appropriate threshold for the statistical test. Our
aim is to show that with our theoretical study, we are now able to propose a
threshold which gives better performances than the classical threshold proposed
by Rebaï et al. (1995) and Rebaï et al. (1994) for the interference model.

To begin, we remind thatW (.) is our �linear normalized interpolated process"
whereas Z(.) is the �non linear normalized interpolated process" of Azaïs et al.
(2011). According to Lemma 1, when we consider only two genetic markers,
the maximum of W 2(.) is the same as the maximum of Z2(.) under the null
hypothesis. Since when we deal with several markers, we just have to consider
the di�erent marker intervals, it is easy to check that Lemma 1 is still true
with several markers. This way, the threshold will be the same for a model
with interference (this paper) and for a model without interference (Azaïs et al.
(2011)). In order to compute the threshold, Azais et al. propose a Monte-Carlo
Quasi Monte-Carlo (MCQMC) method, based on Genz (1992). This method is
very fast, and the advantage of MCQMC is that it is more accurate that a simple
Monte-Carlo method. We refer to Azaïs et al. (2011) and Genz (1992) for more
details.

Let's explain now the method to compute thresholds, proposed by Rebaï et al.
(1995) and Rebaï et al. (1994). In Rebaï et al. (1995), the authors consider only
two markers. They propose to use results of Davies (1977) and Davies (1987).
Indeed, in Davies, we can �nd an upper bound for a threshold corresponding to
the supremum of a stochastic process (Gaussian process or Chi square process)
which depends on a nuisance parameter only present under the alternative. In
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QTL detection, the nuisance parameter is the position of the QTL. Note that in
Rebaï et al. (1995), the authors use as a scale the recombination units whereas
in this paper, we use the genetic distance. In other words, if we call W ′(.)
the process studied in Rebaï et al. (1995) with only two markers, we have the
relationship ∀t ∈ [t1, t2] :

W (t) = W ′
{
r(t1, t2)

t− t1
t2 − t1

}
.

In their paper, they show that

∂2Cov {W′(t),W′(t′)}
∂t′2

|t′=t = − 4 r(t1, t2) {1− r(t1, t2)}[
r(t1, t2)− 4r2(t1, t2) t−t1t2−t1 + 4

{
r(t1, t2) t−t1t2−t1

}2
]2 .

Then, since∫ r(t1,t2)

0

√
−∂

2Cov {W′(t),W′(t′)}
∂t′2

|t′=t dt = 2 arctan

(√
r(t1, t2)

1− r(t1, t2)

)

and using Davies formula, they �nd that

P

{
sup

[0,r(t1,t2)]

W ′(t) > c

}
6 Φ(−c) +

e−c
2/2

π
arctan

(√
r(t1, t2)

1− r(t1, t2)

)
,

where Φ is the cumulative distributive function of a standardized normal distri-
bution. Note that since

P

{
sup
[t1,t2]

W (t) > c

}
= P

{
sup

[0,r(t1,t2)]

W ′(t) > c

}
,

it gives also the threshold for our process W (.). In Rebaï et al. (1994), the
authors generalize their approach to several markers. Their formula adapated
to our process W (.) becomes :

P

{
sup

[t1,tK ]

W (t) > c

}
6 Φ(−c) +

e−c
2/2

π

K−1∑
k=1

arctan

(√
r(tk, tk+1)

1− r(tk, tk+1)

)
.

(10)

In order to obtain the threshold, we just have to �nd for which value of c, the
right-side of formula (10) is equal to α/2, and we will obtain the threshold c2

for the supremum of our process W 2(.). Note that this threshold c2 will only
correspond to a level lower or equal than α, due to the upper bound of formula
(10).

In Figure 1, we propose to compare numerically, the two approachs to com-
pute thresholds for the interference model : Azaïs et al. (2011) and Rebaï et al.
(1994). For the genetic map, we consider the same con�gurations as in Table
1 of Rebaï et al. (1994), that is to say a chromosome of length T = 1M, di�er-
ent numbers of markers, and a level α equal to 5%. According to Figure 1, we
can see that the two approachs give di�erent thresholds. It was expected since
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Rebaï's threshold correspond only to a level lower or equal to 5%. Besides, the
more markers there are, the more di�erent the thresholds are. It is due to the
fact that the derivative of the processW (.) has a jump at each markers location,
and Davies (1977) formula is suitable when the derivative of the process has a
�nite number of jumps. In other words, the more markers there are, the less
appropriate Rebai's threshold will be.

To conclude, since the two approachs are based on asymptotic results, we
propose to check the asymptotic validity on simulated data. We simulated under
the null hypothesis, 10000 samples of n = 200 individuals. We analyzed data
using Lemma 1 of Azaïs et al. (2011) (still suitable here, cf. our Section 2),
that is to say performing LRT on markers and performing only one test in each
marker interval if the ratio of the score statistics on markers ful�lled a given
condition. According to Figure 1, Azaïs' method always gives a percentage of
false positives close to 5% , whereas Rebai's method is too conservative. So, for
our interference model, we have now a method to compute thresholds which is
suitable whatever the genetic map is, and which does not require the number of
indivuals n to be too large.

4.2. About the power
We focus now on the alternative hypothesis. In our paper, double recombination
between the QTL and its �anking markers is not allowed. This way, we model
the interference phenomenom. In Azaïs et al. (2011), since the authors don't
model interference, double recombination between the QTL and its �anking
markers is allowed. The main di�erence is that, for an inteference model, the
LRT process is asymptotically the square of a linear interpolated and normalized
process (ie. W(.)), whereas for a model without interference, the LRT process
is asymptotically the square of a non linear interpolated and normalized process
(ie. V(.)). In Figures 2, 3, 4 and 5, we propose to compare the asymptotic power
of the two approachs, using these asymptotic processes. We consider a = 4 (ie.
the constant for the QTL e�ect) and 100000 paths of each process. First, in
Figures 2, 3, 4 , we consider some sparse maps. In Figure 2, we consider a
chromosome of length T = 1M and 2 markers are located at each extremity
of the chromosome. We can see that when the QTL is located at t? = 30cM
and t? = 60cM, there are huge di�erences of power between the model with
interference and the model without interference. For instance, we have 85.10%
chances of detecting a QTL located at 30cM with interference, whereas we have
only 49.77% chances of detecting the same QTL without interference. This is
due to the fact that the mean functions are totally di�erents between the two
asymptotic processes. We obtain the same kind of conclusions in Figures 3
and 4 for other sparse maps. In Figure 5, we consider a more dense map : a
chromosome of length T = 1M and 6 markers equally spaced every 20cM. We
can see that there is now only a little di�erence of power. To conclude, in the
same way as what has been done in the previous section, we propose to check
the asymptotic validity of our asymptotic results. So, in Figure 6, we consider
the same con�guration as in Figure 2 : a chromosome of length T = 1M and
2 markers located at each extremity. We simulated 10000 samples of n = 50,
n = 100, n = 200, n = 1000 individuals, according to the interference model.
We can see that for n = 200, we are close to the asymptotic results. It validates
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our asymptotic study.

hhhhhhhhhhhhhhhMethod
number of markers

101 51 41 26 6

Rebai
9.74 9.09 8.88 8.43 6.92

2.69% 3.23% 3.77% 4.04% 4.83%

Azais et al.
8.41 8.27 8.16 7.91 6.76

5.03% 4.80% 5.32% 5.21% 5.19%

Fig. 1. Threshold and Percentage of False Positives as a function of the number of
markers and the method considered. The chromosome is of length T = 1M and the
markers are equally spaced.

PPPPPPPPModel
t?

10cM 30cM 60cM 80cM

interference 92.89% 85.10% 82.12% 89.16%
without interference 86.01% 49.77% 47.46% 70.90%

Fig. 2. Asymptotic power of the Interval Mapping as a function of the model considered
and the location of the QTL t?. The chromosome is of length T = 1M and 2 markers are
located at each extremity (a = 4, σ = 1).

PPPPPPPPModel
t?

20cM 70cM 90cM 1.2M

interference 88.26% 80.11% 59.18% 22.29%
without interference 74.82% 64.57% 28.68% 9.52%

Fig. 3. Asymptotic power of the Interval Mapping as a function of the model considered
and the location of the QTL t?. The chromosome is of length T = 1.5M and 3 markers
are located at t1 = 0cM, t2 = 50cM, t3 = 1.5M (a = 4, σ = 1).

PPPPPPPPModel
t?

40cM 90cM 1.2M 1.7M

interference 76.62% 88.75% 79.46% 83.27%
without interference 49.49% 81.26% 59.12% 73.30%

Fig. 4. Asymptotic power of the Interval Mapping as a function of the model considered
and the location of the QTL t?. The chromosome is of length T = 2M and 4 markers are
located at t1 = 0cM, t2 = 80cM, t3 = 1.5M, t4 = 2M (a = 4, σ = 1).
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PPPPPPPPModel

t?
18cM 44cM 70cM

interference 93.52% 92.03% 90.45%
without interference 92.59% 91.34% 89.18%

Fig. 5. Asymptotic power of the Interval Mapping as a function of the model considered
and the location of the QTL t?. The chromosome is of length T = 1M and 6 markers are
equally spaced every 20cM (a = 4, σ = 1).

HHH
HHn
t?

10cM 30cM 60cM 80cM

1000 92.76% 85.10% 81.20% 88.12%
200 92.18% 83.81% 80.29% 87.94%
100 91.50% 81.89% 78.45% 86.75%
50 89.70% 78.90% 74.46% 83.53%

theoretical power 92.89% 85.10% 82.12% 89.16%

Fig. 6. Asymptotic power and Empirical power as a function of n and the location of the
QTL t? (interference model). The chromosome is of length T = 1M and 2 markers are
located at each extremity (a = 4, σ = 1).
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