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2 C.E.Rabier et al.
Summary. We consider the likelihood ratio test (LRT) process related to the test
of the absence of QTL (a QTL denotes a quantitative trait locus, i.e. a gene with
quantitative effect on a trait) on the interval [0, T ] representing a chromosome. The
observation is the trait and the composition of the genome at some locations called
“markers”. As in Rebai et al. (95), we focus on the interference phenomenom
: a recombination event inhibes the formation of another nearby. We give the
asymptotic distribution of the LRT process under the null hypothesis that there
is no QTL on [0, T ] and under local alternatives with a QTL at t⋆ on [0, T ]. We
show that the LRT process is asymptotically the square of a “linear interpolated
and normalized process ” whereas the LRT process obtained recently by Azais et
al., for a model without interference, was the square of a “non linear interpolated
and normalized process ”. The computation of the supremum of our LRT process
becomes easy due to the interpolation. Besides, we proove that the MCQMC
method to compute thresholds for QTL detection, proposed by Azais et al., is still
suitable for our model with interference.

Keywords: Gaussian process, Likelihood Ratio Test, Mixture models, Nuisance
parameters present only under the alternative, QTL detection, MCQMC.

1. IntroductionWe study a bakross population: A × (A × B), where A and B are purelyhomozygous lines and we address the problem of deteting a Quantitative TraitLous, so-alled QTL (a gene in�uening a quantitative trait whih is able tobe measured) on a given hromosome. The trait is observed on n individuals(progenies) and we denote by Yj , j = 1, ..., n, the observations, whih we willassume to be Gaussian, independent and identially distributed (i.i.d.). Themehanism of genetis, or more preisely of meiosis, implies that among the twohromosomes of eah individual, one is purely inherited from A while the other(the �reombined� one), onsists of parts originated from A and parts originatedfrom B, due to rossing-overs.The hromosome will be represented by the segment [0, T ]. The distaneon [0, T ] is alled the geneti distane, it is measured in Morgans. K genetimarkers are loated at �xed loations t1 = 0 < t2 < ... < tK = T . These markerswill help us to �nd the QTL. X(tk) refers to the geneti information at marker
k. For one individual, X(tk) takes the value +1 if, for example, the �reombinedhromosome� is originated from A at loation tk and takes the value −1 if it isoriginated from B.We use the Haldane modeling for the geneti information at marker loa-tions. It an be represented as follows: X(0) is a random sign and X(tk) =
X(0)(−1)N(tk) where N(.) is a standard Poisson proess on [0, T ]. Due to theindependene of inrements of Poisson proess, this model allow double reom-binations between markers. For instane, if we onsider 3 markers (ie. K = 3),we an have the senario X(t1) = 1, X(t2) = −1 and X(t3) = 1, whih meansthat there has been a reombination between markers 1 and 2, and also a re-ombination between markers 2 and 3. Obviously, in the same way, we an havethe senario X(t1) = −1, X(t2) = 1 and X(t3) = −1.A QTL is lying at an unknown position t⋆ between two geneti markers.
U(t⋆) is the geneti information at the QTL loation. In the same way as for thegeneti information at marker loations, U(t⋆) takes value +1 if the �reombinedhromosome� is originated from A at t⋆, and −1 if it is originated from B. Due



On Quantitative Trait Locus mapping with an interference phenomenom 3to Mendel law, U(t⋆) takes value +1 and −1 with equal probability. We assumean �analysis of variane model� for the quantitative trait :
Y = µ + U(t⋆) q + σε (1)where ε is a Gaussian white noise. The key point is that we will have to guessthe value of U(t⋆), using only the information available, whih is the informationat geneti markers.The originality of this paper is that we fous on the model introdued byRebaï et al. (1995) in whih double reombination between the QTL and its�anking markers is not allowed. For instane, if the QTL is lying between the�rst two markers (ie. t⋆ ∈]t1, t2[), we an not have the senario X(t1) = 1,

U(t⋆) = −1 and X(t2) = 1, whih would have supposed that there had been areombination between the �rst marker and the QTL, and also a reombinationbetween the seond marker and the QTL. In partiular, the model onsider thatif we have a reombination between the QTL and one of its �anking marker, weould not have a reombination between the QTL and the other �anking marker.In other words, if X(t1) = 1 and U(t⋆) = −1, then we have automatially
X(t2) = −1. In the same way, if X(t2) = 1 and U(t⋆) = −1, then we haveautomatially X(t1) = −1. We will explain in details this model in Setion 2and present the law of U(t⋆), given its �anking markers.This way, inside the marker interval whih ontains the QTL, we modelthe interferene phenomenom : a reombination event inhibes the formation ofanother nearby. This phenomenom was notied by genetiists working on theDrosophila (Sturtevant (1915), Muller (1916)). In MPeek and Speed (1995),the authors study several interferene models and also mention the importaneof modeling interferene. We fous here on the model proposed by Rebaï et al.(1995), and then extended to a whole hromosome in Rebaï et al. (1994). It willlead to original mathematial results with a real impat for genetiists.So, sine only the Quantitative trait and the geneti information at markerloations are available, one observation will be

(Y, X(t1), ..., X(tK)) .We observe n observations (Yj , Xj(t1), ..., Xj(tK)) i.i.d. It an be proved that,onditionally to X(t1), . . . , X(tK) , Y obeys to a mixture model with knownweights :
p(t∗)f(µ+q,σ)(.) + {1− p(t∗)} f(µ−q,σ)(.), (2)where f(m,σ) is the Gaussian density with parameters (m,σ) and where the fun-tion p(t⋆) is the probability P {U(t⋆) = 1} onditionally to the �anking markers(see Setion 2) .The hallenge is that the true loation t∗ is not known. So, we test thepresene of a QTL at eah position t. Λn(t) and Sn(t) are the likelihood ratio test(LRT) statisti and the sore test statisti (see Setion 2 for a preise de�nition)of the null hypothesis �q = 0�.When t∗ is unknown, onsidering the maximum of Λn(t) still gives the LRT of�q = 0�. This paper gives the exat asymptoti distribution of this LRT statistiunder the null hypothesis and under ontiguous alternatives. These distribu-tions have been given using some approximations under the null hypothesis, by



4 C.E.Rabier et al.Rebaï et al. (1995) and Rebaï et al. (1994). In Ciero (1998), Azaïs and Ciero-Ayrolles (2002), Azaïs and Wshebor (2009), Chang et al. (2009), Azaïs et al.(2006), the authors fous on another reombination model whih don't modelthe interferene phenomenom : reombination events our independently fromeah other.The main result of the paper (Theorems 1 and 2) is that the distributionof the LRT statisti is asymptotially that of the maximum of the square ofa �linear normalized interpolated proess�. It is a generalization of the resultsobtained by Rebaï et al. (1995), Rebaï et al. (1994). The omputation of suha maximum is easy due to the interpolation. Note that reently, for a modelwithout interferene, Azaïs et al. (2011) have prooved that the LRT statistiis asymptotially that of the maximum of the square of a �non linear normal-ized interpolated proess�. The seond important result is that, under the nullhypothesis, the maximum of the square of the �linear normalized interpolatedproess� is the same as those of the square of the �non linear normalized inter-polated proess� obtained by Azaïs et al. (2011). As a onsequene, the Monte-Carlo Quasi Monte-Carlo method proposed by Azaïs et al. (2011) to omputethresholds is also suitable for our interferene model. So, for our interferenemodel, we have now a method to ompute thresholds whih is suitable whateverthe geneti map is, whih was not the ase of the method proposed in Rebaïet al. (1994) based on Davies (1977). With the help of simulated data, we willsee that, as expeted, our method outperforms Rebaï's method in terms of falsepositives. Finally, we will ompare the theoretial power of QTL detetion, fora model with interferene (Azaïs et al. (2011)) and a model without interferene(this paper). We will see on a given example, that there is slightly an inrease ofpower for QTL detetion when we are under interferene. We refer to the bookof Van der Vaart (1998) for elements of asymptoti statistis used in proofs.
2. Main results : two genetic markersTo begin, we suppose that there are only two markers (K = 2) loated at 0 and
T : 0 = t1 < t2 = T . Furthermore, a QTL is lying between these two markersat t⋆ ∈]t1, t2[. Note that in order to make the reading easier, we onsider thatthe QTL is not loated on markers. However, the result an be prolonged byountinuity at makers loations.Let r(t1, t2) be the probability that there is a reombination between the twomarkers. Calulation on the Poisson distribution show that :
r(t1, t2) = P(X(t1)X(t2) = −1) = P(|N(t1)−N(t2)| odd) = 1

2
(1 − e−2|t1−t2|).We will all rt1(t⋆) (resp. rt2(t⋆)) the probability of reombination between the�rst (resp. seond) marker and the QTL. So,

rt1(t
⋆) = P(X(t1)U(t⋆) = −1) , rt2(t

⋆) = P(X(t2)U(t⋆) = −1).As explained in Setion 1, only one reombination is allowed between the QTLand the two markers. We have :
{X(t1)X(t2) = −1} ⇔ {X(t1)U(t⋆) = −1} ∪ {X(t2)U(t⋆) = −1} .



On Quantitative Trait Locus mapping with an interference phenomenom 5Indeed, X(t1)U(t⋆) = −1 means that there has been a reombination betweenthe �rst marker and the QTL, so the seond marker is not allowed to reombinewith the QTL. As a onsequene, X(t2) = U(t⋆) and we have X(t1)X(t2) = −1.Same remark for X(t2)U(t⋆) = −1 but this time, it is the �rst marker whih isnot allowed to reombine with the QTL.Note that sine {X(t1)U(t⋆) = −1} ∩ {X(t2)U(t⋆) = −1} = ⊘, we have
r(t1, t2) = rt1 (t

⋆) + rt2(t
⋆). (3)In the same way as in Rebaï et al. (1995), we onsider :

rt1(t
⋆) =

t⋆ − t1
t2 − t1

r(t1, t2) , rt2(t
⋆) =

t2 − t⋆

t2 − t1
r(t1, t2).This way, the probability of reombination of the marker and the QTL is pro-portional to the probability of reombination of the two markers, and also pro-portional to the distane between between the QTL and the marker. Note thatformula (3) stands with these expressions of rt1(t⋆) and rt2(t

⋆).Let de�ne now
p(t⋆) = P

{
U(t⋆) = 1

∣∣X(t1), X(t2)
}
.Obviously, sine U(t⋆) takes value +1 or −1, we have

1− p(t⋆) = P
{
U(t⋆) = −1

∣∣X(t1), X(t2)
}
.Sine only one reombination is allowed between the QTL and its �anking mark-ers, we have

P
{
U(t⋆) = 1

∣∣X(t1) = 1, X(t2) = 1
}
= 1 , P

{
U(t⋆) = 1

∣∣X(t1) = −1, X(t2) = −1
}
= 0.Besides, aording to Bayes rules

P
{
U(t⋆) = 1

∣∣X(t1) = 1, X(t2) = −1
}

=
P
{
X(t1) = 1

∣∣U(t⋆) = 1, X(t2) = −1
}
P {U(t⋆) = 1, X(t2) = −1}

P {X(t1) = 1, X(t2) = −1}

=
rt2(t

⋆)/2

r(t1, t2)/2
=

rt2(t
⋆)

r(t1, t2)
=

t2 − t⋆

t2 − t1
.In the same way,

P
{
U(t⋆) = 1

∣∣X(t1) = −1, X(t2) = 1
}
=

rt1 (t
⋆)

r(t1, t2)
=

t⋆ − t1
t2 − t1

.As a onsequene,
p(t⋆) = 1X(t1)=11X(t2)=1 +

t2 − t⋆

t2 − t1
1X(t1)=11X(t2)=−1 +

t⋆ − t1
t2 − t1

1X(t1)=−11X(t2)=1 .(4)So, as explained in Setion 1, onditionnally to X(t1) and X(t2), Y obeys tothe mixture model of formula (2). Note that, using the formula above for p(t⋆),and using properties of onditional expetation, it is easy to hek that we have
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P {U(t⋆)} = 1/2, so U(t⋆) takes values +1 and −1 with equal probability (asexplained in Setion 1). As explained previouly, sine the loation t⋆ of theQTL is unknown, we will have to perform tests at eah position t between thetwo geneti markers. We will onsider only positions t distint of the markerloations and the result an be prolonged by ontinuity on markers.Let de�ne now (with p(t) given in formula (4))

u(t) = 2p(t)− 1 .Let θ = (q, µ, σ) be the parameter of the model at t �xed. The likelihoodof the triplet (Y, X(t1), X(t2)) with respet to the measure λ⊗N ⊗N , λ beingthe Lebesgue measure, N the ounting measure on N, is :
Lt(θ) =

[
p(t)f(µ+q,σ)(y) + {1− p(t)} f(µ−q,σ)(y)

]
g(t) (5)where the funtion

g(t) =
1

2

{
r̄(t1, t2) 1X(t1)=11X(t2)=1 + r(t1, t2) 1X(t1)=11X(t2)=−1

}

+
1

2

{
r(t1, t2) 1X(t1)=−11X(t2)=1 + r̄(t1, t2) 1X(t1)=−11X(t2)=−1

}an be removed beause it does not depend on the parameters. By a small abuseof notation we still denote Lt(θ) for the likelihood without this funtion. Thuswe set
Lt(θ) =

[
p(t)f(µ+q,σ)(y) + {1− p(t)} f(µ−q,σ)(y)

]and lt(θ) will be the loglikelihood. We �rst ompute the Fisher information ata point θ0 that belongs to H0.
∂lt
∂q

|θ0 =
y − µ

σ2
u(t) (6)

∂lt
∂µ

|θ0 =
y − µ

σ2
,

∂lt
∂σ

|θ0= − 1

σ
+

(y − µ)2

σ3After some alulations, we �nd
Iθ0 = Diag

[
E
{
u2(t)

}

σ2
,

1

σ2
,

2

σ2

] . (7)Our main result is the following :Theorem 1. Suppose that the parameters (q, µ, σ2) vary in a ompat andthat σ2 is bounded away from zero. Let H0 be the null hypothesis q = 0 andde�ne the following loal alternative
Hat⋆ : �the QTL is loated at the position t⋆ with e�et q = a/

√
n where a 6= 0 � .With the previous de�ned notations,

Sn(.) ⇒ W (.) , Λn(.)
F.d.−→ W 2(.) , supΛn(.)

L−→ supW 2(.)as n tends to in�nity, under H0 and Hat⋆ where :
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• ⇒ is the weak onvergene, F.d.→ is the onvergene of �nite-dimensionaldistributions and L−→ is the onvergene in distribution
• W (.) is the Gaussian proess with unit variane suh as :

W (t) =
α(t)W (t1) + β(t)W (t2)√
V {α(t)W (t1) + β(t)W (t2)}where

Cov {W(t1),W(t2)} = ρ(t1, t2) = exp(−2|t1 − t2|)

α(t) =
t2 − t

t2 − t1
, β(t) =

t− t1
t2 − t1and with expetation :

• under H0, m(t) = 0,
• under Hat⋆

mt⋆(t) =
α(t) mt⋆(t1) + β(t) mt⋆(t2)√
V {α(t)W (t1) + β(t)W (t2)}where

mt⋆(t1) =
a

σ
{α(t⋆) + β(t⋆)ρ(t1, t2)} , mt⋆(t2) =

a

σ
{α(t⋆)ρ(t1, t2) + β(t⋆)} .As a onsequene, W (.) will be alled a "linear normalized interpolated pro-ess".In Azaïs et al. (2011), the authors present a lemma alled Lemma 1, whih isvery useful to ompute the supremum of the square of an interpolated proess.So, the omputation of the maximum of our proessW 2(.) an be obtained easilyusing their Lemma 1, sine β(t)

α(t)+β(t) takes every value in [0, 1] (f. Azaïs et al.(2011)).On the other hand, we have this interesting result :Lemma 1. With the previous de�ned notations, under H0,
max

t∈[t1,t2]
W 2(t) = max

t∈[t1,t2]
Z2(t) ,where Z(.) is the �non linear normalized interpolated proess" obtained by Azaïset al. (2011).In other words, under the null hypothesis, our Lemma 1 says that the maximumof the square of the �non linear normalized interpolated proess� is the same asthe maximum of the square of the �linear normalized interpolated proess�.In order to proove this lemma, we just have to remark that under H0 atmarker loations, we have Z(t1) = W (t1) and Z(t2) = W (t2). Indeed, under

H0, the proesses overlap at marker loations sine there are no QTL a�etingthe proesses and also beause the reombination model is the same at markerloations. Then, using Lemma 1 of Azaïs et al. (2011), the omputation of themaximum of Z2(.) and W 2(.) is the same.Note that our Lemma 1 stands only under the null hypothesis and not underthe alternative.Proof of Theorem 1 :



8 C.E.Rabier et al.
Introducing the score processThe log likelihood at t, assoiated to n observations will be denoted by lnt (θ).Sine the Fisher Information matrix is diagonal, the sore statistis of the hy-pothesis �q = 0� will be de�ned as

Sn(t) =

∂ln
t

∂q |θ0√
V

(
∂ln

t

∂q |θ0
) .

Study of the score process under the null hypothesisThe study is based on the key lemma :Lemma 2.
u(t) = α(t)X(t1) + β(t)X(t2)with α(t) = t2−t

t2−t1
and β(t) = t−t1

t2−t1
.To prove this lemma use formula (4) and hek that both oinide whatever thevalue of X(t1), X(t2) is.Now using ( 6), we have

∂lnt
∂q

|θ0=
n∑

j=1

Yj − µ

σ2
uj(t) = 1/σ

n∑

j=1

εjuj(t) =
α(t)

σ

n∑

j=1

εjXj(t1)+
β(t)

σ

n∑

j=1

εjXj(t2)(8)this proves the interpolation.On the other hand
Sn(tk) =

n∑

j=1

εjXj(tk)√
n

k = 1, 2and a diret appliation of entral limit theorem implies that these two variableshave a limit distribution whih is Gaussian entered distribution with variane
(

1 exp(−2|t2 − t1|)
exp(−2|t2 − t1|) 1

)
.This proves the expression of the ovariane.

Study of the score process under the local alternativeUnder the alternative
Sn(t) =

a

nσ

n∑

j=1

Uj(t
∗)uj(t)√

V {u(t)}
+

1√
n

n∑

j=1

εj
uj(t)√
V {u(t)}

.The seond term has the same distribution as under the null hypothesis and the�rst one gives the expetation. We have
E {Sn(t)} =

a E {U(t∗)u(t)}
σ
√
V {u(t)}

.



On Quantitative Trait Locus mapping with an interference phenomenom 9Aording to Lemma 2, we have :
E {U(t∗)u(t)} = α(t) E {X(t1)U(t∗)} + β(t) E {U(t∗)X(t2)} .So, we need now to alulate E {X(t1)U(t∗)} and E {U(t∗)X(t2)}. We have

P {X(t1)U(t⋆) = −1} = P {U(t⋆) = 1 | X(t1) = −1, X(t2) = 1}P {X(t1) = −1, X(t2) = 1}
+ P {U(t⋆) = 1 | X(t1) = −1, X(t2) = −1}P {X(t1) = −1, X(t2) = −1}
+ P {U(t⋆) = −1 | X(t1) = 1, X(t2) = 1}P {X(t1) = 1, X(t2) = 1}
+ P {U(t⋆) = −1 | X(t1) = 1, X(t2) = −1}P {X(t1) = 1, X(t2) = −1}

=
β(t⋆)r(t1, t2)

2
+ 0 + 0 +

β(t⋆)r(t1, t2)

2
= β(t⋆)r(t1, t2) .As a onsequene,

P {X(t1)U(t⋆) = 1} = 1− β(t⋆)r(t1, t2) .It omes
E {X(t1)U(t⋆)} = 1− 2β(t⋆)r(t1, t2) = α(t⋆) + β(t⋆)ρ(t1, t2) with ρ(t1, t2) = e−2|t1−t2| .In the same way, we obtain

E {U(t⋆)X(t2)} = α(t⋆)ρ(t1, t2) + β(t⋆) .This gives the result.
About the LRT processThe likelihood ratio statisti at t, for n independent observations, will be de�nedas

Λn(t) = 2
{
lnt (θ̂)− lnt (θ̂|H0

)
}

,where θ̂ is the maximum likelihood estimator (MLE), and θ̂|H0
the MLE under

H0.Sine the model with t �xed is regular, it is easy to prove that for �xed t

Λn(t) = S2
n(t) + oP (1) (9)under the null hypothesis.Let us onsider a loal alternative de�ned by t∗ and q = a/

√
n. The modelwith t∗ �xed is di�erentiable in quadrati mean, this implies that the alternativede�nes a ontiguous sequene of alternatives. By Le Cam's �rst Lemma, relation(9) remains true under the alternative. This gives the result for the onvergeneof �nite-dimensional distribution. Conerning the study of the supremum of theLRT proess, the proof is exatly the same as in Azaïs et al. (2011) whih isbased on reent results of Azaïs et al. (2006).
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3. Several markersIn that ase suppose that there are K markers 0 = t1 < t2 < ... < tK = T . AQTL is lying at a position t⋆. So, in order to �nd the QTL, we will performtests at every positions t on the hromosome. We onsider values t or t⋆ ofthe parameters that are distint of the markers positions, and the result willbe prolonged by ontinuity at the markers positions. For t ∈ [t1, tK ]\TK where
TK = {t1, ..., tK}, we de�ne tℓ and tr as :

tℓ = sup {tk ∈ TK : tk < t} , tr = inf {tk ∈ TK : t < tk} .In other words, t belongs to the �Marker interval" (tℓ, tr).As explained in Setion 1, in order to infer the value of U(t⋆), we just needto keep the �anking markers. In others words, the information brought by theother markers is useless. So, we have
P
{
U(t⋆) = 1

∣∣X(t1), ..., X(tK)
}
= P

{
U(t⋆) = 1

∣∣X(t⋆ℓ), X(t⋆r)
}

.As a onsequene, our problem beomes the same as the one with two genetimarkers (see Setion 2). In order to perform our tests at every positions t, wesimply have to onsider all the di�erent marker interval.Theorem 2. We have the same results as in Theorem 1 exept that the fol-lowing funtions must be rede�ned :
• t1 beomes tℓ and t2 beomes tr in all the expressions, exept in the expres-sions α(t⋆) and β(t⋆), where t1 beomes t⋆ℓ and t2 beomes t⋆r

• mt⋆(t
ℓ) = a

σ

{
α(t⋆)ρ(tℓ, t⋆ℓ) + β(t⋆)ρ(tℓ, t⋆r)

}

• mt⋆(t
r) = a

σ

{
α(t⋆)ρ(t⋆ℓ, tr) + β(t⋆)ρ(tr, t⋆r)

}.Proof of Theorem 2 :The proof of the theorem is the same the proof of Theorem 1 as soon as wean limit our attention to the interval (tℓ, tr) when onsidering a unique instant t.So, under H0, the result is straightforward. However, under loal the alternative,the proof is more ompliated than the proof of Theorem 1. Indeed, the loation
t⋆ of the QTL and the loation t, an belong to a di�erent marker interval.Aording to the proof of Theorem 1, under the alternative

Sn(t) =
a

nσ

n∑

j=1

Uj(t
∗)uj(t)√

V {u(t)}
+

1√
n

n∑

j=1

εj
uj(t)√
V {u(t)}

.As previously, the seond term has the same distribution as under the null hy-pothesis and the �rst one gives the expetation. We have
E {Sn(t)} =

a E {U(t∗)u(t)}
σ
√
V {u(t)}

.We remark that we have u(t⋆) = E
{
U(t⋆) | X(t⋆ℓ)X(t⋆r)

}. Besides, u(t) is afuntion of X(tℓ) and X(tr). As a onsequene, by the properties of onditionalexpetany, we have
E {U(t∗)u(t)} = E {u(t∗)u(t)} .
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E {u(t∗)u(t)} = α(t⋆) α(t) E

{
X(t⋆ℓ)X(tℓ)

}
+ β(t⋆) α(t) E

{
X(t⋆r)X(tℓ)

}

+ α(t⋆) β(t) E
{
X(t⋆ℓ)X(tr)

}
+ β(t⋆) β(t) E {X(t⋆r)X(tr)}

= α(t⋆) α(t) ρ(tℓ, t⋆ℓ) + β(t⋆) α(t) ρ(tℓ, t⋆r)

+ α(t⋆) β(t) ρ(t⋆ℓ, tr) + β(t⋆) β(t) ρ(tr, t⋆r) .In order to obtain E
{
u(t∗)u(tℓ)

}, we just have to use the dominated onvergenetheorem. It omes
E
{
u(t∗)u(tℓ)

}
= α(t⋆) ρ(tℓ, t⋆ℓ) + β(t⋆) ρ(tℓ, t⋆r) .In the same way,

E {u(t∗)u(tr)} = α(t⋆) ρ(t⋆ℓ, tr) + β(t⋆) ρ(tr, t⋆r) .This gives the result.
4. ApplicationIn this Setion, we present somme appliations of our study. We �rst fous onthe null hypothesis and then we will move on to the alternative hypothesis.
4.1. Application to the computation of thresholdsIn QTL detetion, in order to onlude to the presene of a QTL or not, it isalways important to use an appropriate threshold for the statistial test. Ouraim is to show that with our theoretial study, we are now able to propose athreshold whih gives better performanes than the lassial threshold proposedby Rebaï et al. (1995) and Rebaï et al. (1994) for the interferene model.To begin, we remind thatW (.) is our �linear normalized interpolated proess"whereas Z(.) is the �non linear normalized interpolated proess" of Azaïs et al.(2011). Aording to Lemma 1, when we onsider only two geneti markers,the maximum of W 2(.) is the same as the maximum of Z2(.) under the nullhypothesis. Sine when we deal with several markers, we just have to onsiderthe di�erent marker intervals, it is easy to hek that Lemma 1 is still truewith several markers. This way, the threshold will be the same for a modelwith interferene (this paper) and for a model without interferene (Azaïs et al.(2011)). In order to ompute the threshold, Azais et al. propose a Monte-CarloQuasi Monte-Carlo (MCQMC) method, based on Genz (1992). This method isvery fast, and the advantage of MCQMC is that it is more aurate that a simpleMonte-Carlo method. We refer to Azaïs et al. (2011) and Genz (1992) for moredetails.Let's explain now the method to ompute thresholds, proposed by Rebaï et al.(1995) and Rebaï et al. (1994). In Rebaï et al. (1995), the authors onsider onlytwo markers. They propose to use results of Davies (1977) and Davies (1987).Indeed, in Davies, we an �nd an upper bound for a threshold orresponding tothe supremum of a stohasti proess (Gaussian proess or Chi square proess)whih depends on a nuisane parameter only present under the alternative. In



12 C.E.Rabier et al.QTL detetion, the nuisane parameter is the position of the QTL. Note that inRebaï et al. (1995), the authors use as a sale the reombination units whereasin this paper, we use the geneti distane. In other words, if we all W ′(.)the proess studied in Rebaï et al. (1995) with only two markers, we have therelationship ∀t ∈ [t1, t2] :
W (t) = W ′

{
r(t1, t2)

t− t1
t2 − t1

} .In their paper, they show that
∂2Cov {W′(t),W′(t′)}

∂t′2
|t′=t = − 4 r(t1, t2) {1− r(t1, t2)}[

r(t1, t2)− 4r2(t1, t2)
t−t1
t2−t1

+ 4
{
r(t1, t2)

t−t1
t2−t1

}2
]2 .Then, sine

∫ r(t1,t2)

0

√
−∂2Cov {W′(t),W′(t′)}

∂t′2
|t′=t dt = 2 arctan

(√
r(t1, t2)

1− r(t1, t2)

)and using Davies formula, they �nd that
P

{
sup

[0,r(t1,t2)]

W ′(t) > c

}
6 Φ(−c) +

e−c2/2

π
arctan

(√
r(t1, t2)

1− r(t1, t2)

) ,where Φ is the umulative distributive funtion of a standardized normal distri-bution. Note that sine
P

{
sup
[t1,t2]

W (t) > c

}
= P

{
sup

[0,r(t1,t2)]

W ′(t) > c

} ,it gives also the threshold for our proess W (.). In Rebaï et al. (1994), theauthors generalize their approah to several markers. Their formula adapatedto our proess W (.) beomes :
P

{
sup

[t1,tK ]

W (t) > c

}
6 Φ(−c) +

e−c2/2

π

K−1∑

k=1

arctan

(√
r(tk, tk+1)

1− r(tk, tk+1)

) .(10)In order to obtain the threshold, we just have to �nd for whih value of c, theright-side of formula (10) is equal to α/2, and we will obtain the threshold c2for the supremum of our proess W 2(.). Note that this threshold c2 will onlyorrespond to a level lower or equal than α, due to the upper bound of formula(10).In Figure 1, we propose to ompare numerially, the two approahs to om-pute thresholds for the interferene model : Azaïs et al. (2011) and Rebaï et al.(1994). For the geneti map, we onsider the same on�gurations as in Table1 of Rebaï et al. (1994), that is to say a hromosome of length T = 1M, di�er-ent numbers of markers, and a level α equal to 5%. Aording to Figure 1, wean see that the two approahs give di�erent thresholds. It was expeted sine



On Quantitative Trait Locus mapping with an interference phenomenom 13Rebaï's threshold orrespond only to a level lower or equal to 5%. Besides, themore markers there are, the more di�erent the thresholds are. It is due to thefat that the derivative of the proess W (.) has a jump at eah markers loation,and Davies (1977) formula is suitable when the derivative of the proess has a�nite number of jumps. In other words, the more markers there are, the lessappropriate Rebai's threshold will be.To onlude, sine the two approahs are based on asymptoti results, wepropose to hek the asymptoti validity on simulated data. We simulated underthe null hypothesis, 10000 samples of n = 200 individuals. We analyzed datausing Lemma 1 of Azaïs et al. (2011) (still suitable here, f. our Setion 2),that is to say performing LRT on markers and performing only one test in eahmarker interval if the ratio of the sore statistis on markers ful�lled a givenondition. Aording to Figure 1, Azaïs' method always gives a perentage offalse positives lose to 5% , whereas Rebai's method is too onservative. So, forour interferene model, we have now a method to ompute thresholds whih issuitable whatever the geneti map is, and whih do not require the number ofindivuals n to be too large.
4.2. About the powerWe fous now on the alternative hypothesis. In our paper, double reombina-tion between the QTL and its �anking markers is not allowed. This way, wemodel the interferene phenomenom. In Azaïs et al. (2011), sine the authorsdon't model interferene, double reombination between the QTL and its �ank-ing markers is allowed. The main di�erene is that, for an inteferene model, theLRT proess is asymptotially the square of a linear interpolated and normalizedproess, whereas for a model without interferene, the LRT proess is asymptot-ially the square of a non linear interpolated and normalized proess. In Figure2, we propose to ompare the asymptoti power of the two approahs, usingthese asymptoti proesses. We onsider a hromosome of length T = 1M and 6markers are equally spaed every 20M. For the QTL e�et, we onsider sues-sively a = 4 and a = 2 (between brakets). Besides, we onsider 100000 pathsof eah proess. We an see that whatever the loation the QTL (t⋆ = 18M,
t⋆ = 44M or t⋆ = 70M), there is slightly an inrease of power when we areunder interferene.
hhhhhhhhhhhhhhh
Method number of markers

101 51 41 26 6Rebai 9.74 9.09 8.88 8.43 6.92
2.69% 3.23% 3.77% 4.04% 4.83%Azais et al. 8.41 8.27 8.16 7.91 6.76
5.03% 4.80% 5.32% 5.21% 5.19%

Fig. 1. Threshold and Percentage of False Positives as a function of the number of
markers and the method considered. The chromosome is of length T = 1M and the
markers are equally spaced.
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P
P
P

P
P
P
PP

Model t⋆
18M 44M 70Minterferene 93.52% (35.62%) 92.03% (35.33%) 90.45% (33.88%)without interferene 92.59% (35.14%) 91.34% (34.65%) 89.18% (32.56%)

Fig. 2. Asymptotic power of the Interval Mapping as a function of the model considered
and the location of the QTL t⋆. The chromosome is of length T = 1M and 6 markers are
equally spaced every 20cM (a = 4 and a = 2 between brackets).
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