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Abstract

In Quantitative Trait Locus detection, selective genotyping is a way to reduce
costs due to genotyping : only individuals with extreme phenotypes are geno-
typed. We focus here on statistical inference for selective genotyping. We pro-
pose different statistical tests suitable for selective genotyping and we compare
their performances in a very large framework. We prove that the non extreme
phenotypes (i.e. the phenotypes for which the genotypes are missing) don’t
bring any information for statistical inference. We also prove that we have to
genotype symmetrically, that is to say the same percentage of large and small
phenotypes whatever the proportions of the two genotypes in the population.
Same results are obtained in the case of a selective genotyping with two corre-
lated phenotypes.

Keywords: Hypothesis testing, Asymptotic properties of tests, Asymptotic
Relative Efficiency, Selective genotyping, Quantitative Trait Locus detection

1. Introduction

1.1. Introducing our study

We address the problem of detecting a Quantitative Trait Locus, so-called
QTL, that is to say a gene influencing a quantitative trait which is able to be
measured (see for instance Wu et al. [2007] and Siegmund and Yakir [2007]).
Statistical methods are crucial in QTL detection. They have enabled the discov-
ery of thousands of genes in animals, humans and plants. For example, we can
mention the work of Lander and Botstein [1989], Feingold et al. [1993], Churchill
and Doerge [1994], Rebäı et al. [1995], Rebäı et al. [1994], Cierco [1998], Piepho
[2001], Chang et al. [2009], Azäıs and Wschebor [2009], Azäıs et al. [2013].
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In this study, we focus only on a single locus which is a genetic marker.
Indeed, in a recent study, Azäıs et al. [2013] have proved that the mathematical
theory can be developed, without loss of generality, considering only one marker
location. We suppose that the QTL is located on the genetic marker. X denotes
the random variable (r.v.) which corresponds to the genotype at the QTL (i.e.
at the marker). We consider 2 genotypes at the QTL : +1 with probability p,
and −1 with probability 1− p. Typically, the case p = 1/2 refers to a backcross
population A×(A×B), where A and B are purely homozygous lines. Indeed, for
a backcross population, there are only two genotypes at the QTL, each one with
probability 1/2 (under Hardy-Weinberg assumptions). The case p 6= 1/2 refers
to a cross, between an homozygous population and an heterozygous population,
and for which the Hardy-Weinberg law has been violated. According to the
Hardy-Weinberg law, the heterozygous parent produces two kind of gametes in
equal number. If this is not the case, the probability of the two genotypes are
not equal (i.e. p 6= 1/2).

Y is the r.v. refering to the phenotype (i.e. the quantitative trait). We
assume an “analysis of variance model” for the quantitative trait : Y = µ+qX+ε
where ε is a Gaussian noise with mean 0 and variance σ2. q refers to the QTL
effect. A QTL is present if and only if the QTL effect q is different from zero.
We consider a sample of n observations (Xj , Yj) i.i.d.

The problem is that genotyping, that is to say collecting the marker infor-
mation X for all the individuals, is very expensive. In such a context, Lebowitz
et al. [1987] proposed to genotype only the individuals who present an extreme
phenotype (i.e. the smallest and the largest Y ), since they noticed that most of
the information about the QTL is present in the extreme phenotypes. This way,
at a given power, a large increase of the number of individuals leads to a decrease
of the number of individuals genotyped. Later, Lander and Botstein [1989] for-
malized this approach and called it “selective genotyping”. The singularity of
selective genotyping is that standard theory is not applicable : the model is not
an “analysis of variance model” anymore, due to missing genotypes. In addi-
tion, the extremes phenotypes corresponding to one given genotype don’t follow
a classical Gaussian distribution any longer but a truncated Gaussian distribu-
tion. Until now, different topics have been investigated. Muranty and Goffinet
[1997] focused on the estimation of the QTL effect for selective genotyping.
Rabbee et al. [2004] studied different strategies for analyzing data in selective
genotyping and gave the power associated to each strategy. Manichaikul et
al. [2007] focused on permutation tests for selective genotyping ... However,
although there have been many papers on selective genotyping, the theory of
statistical inference for selective genotyping is still missing. In a very famous
article, Darvasi and Soller [1992] proposed to perform a comparison of means be-
tween the extreme individuals (i.e. with extreme phenotypes) for which X = +1
at the marker and those for which X = −1. It is such a nice idea since it is
very intuitive. However, some errors are present in this paper. In this context,
the aim of this article is to study statistical inference for selective genotyping
in a mathematical point of view. Our main goal is to propose easy and optimal
statistical tests, that is to say statistical tests easy to perform (e.g. without EM
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algorithm) and with the best performances.
Our study justifies some practice of geneticists and gives new ways of analysing

data. Selective genotyping has been motivated by agronomy but there are many
areas where the data analysis is crucial but under economic pressures (aeronau-
tics for instance). That’s why we study selective genotyping here in a large
framework : contrary to Lander and Botstein [1989], Darvasi and Soller [1992],
Muranty and Goffinet [1997], Rabbee et al. [2004], we don’t focus only on the
case p = 1/2 which refers to a backcross population (see Wu et al. [2007] for
some genetic background). On the other hand, we present a study as a function
of the unknown parameters µ, q, σ since in some articles on selective genotyp-
ing (for instance Darvasi and Soller [1992]), people consider that without loss of
generality, the global mean µ and the variance σ2 are known. In fact, is there
a loss of generality ? Finally, we will address the question of the sample size
required and the optimal proportion of individuals to genotype, in order to help
geneticists in their experimental designs.

In a second part of this article, we will focus on selective genotyping with
two correlated phenotypes : Y and Z. Sometimes, it is difficult to measure
the phenotype Z of interest : it can be expensive or it can require a lot of
work. In such a situation, a second phenotype, Y , correlated to the phenotype
of interest, can be measured more easily (see the examples given in Medugorac
and Soller [2001]). In order to reduce the costs due to genotyping and due to
phenotyping, a selective genotyping is performed on Y (as previously), and Z
is measured only on the genotyped individuals (i.e. with extreme phenotypes
Y ). Obviously, in such a situation, the interest is on finding a QTL which
has an effect on Z. Some theoretical results about this design are presented in
Muranty and Goffinet [1997] and Medugorac and Soller [2001], but the theory
of statistical inference is still missing. As a consequence, in our study, as in the
part dealing with only one phenotype, we will focus on statistical inference and
try to propose to geneticists easy and optimal statistical tests. To conclude, in
the same way as what has been done in the first part, we will give advice to
geneticists on the proportion of individuals to genotype.

1.2. Roadmap and main results

Our study begins with only one phenotype Y (Sections 2 and 3). In Section
2, we consider the classical situation where no genotypes are missing. We call it
“oracle situation” since all the genotypes are known. We propose a simple test
(“oracle test”) which is optimal and which will be considered as the test of refer-
ence. In Section 3, starts our study of selective genotyping. We study different
strategies for the data analysis. These strategies are inspired by Darvasi and
Soller [1992] and Rabbee et al. [2004]. The different tests (corresponding to the
different strategies) are compared in terms of Asymptotic Relative Efficiciency
(ARE), which determines for each test, the sample size required to obtain the
same local asymptotic power as the one of the oracle test. Theorem 1, which
gives the different ARE for the different tests, is the main result of the first part
of this article which deals with only one phenotype. According to Theorem 1,
we have the same ARE whether we keep or not the non extreme phenotypes Y
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(i.e. the phenotypes for which the genotypes are missing) in the data analysis.
We have to keep in mind that these non extreme phenotypes are available when
we collect data in selective genotyping. Lemma 1 is a direct consequence of The-
orem 1. We present in this lemma the different test statistics, corresponding to
the different tests studied. Since the non extreme phenotypes don’t bring any
information for statistical inference, an easy and optimal test is presented. It is
based on the comparison of means of the extreme phenotypes.

On the other hand, a very important result of Theorem 1 is the following
: if we want to genotype only a percentage γ of the population, we have to
genotype symmetrically, that is to say the γ/2% individuals with the largest
phenotypes and the γ/2% individuals with the smallest phenotypes. This result
holds whatever the proportion p (i.e. the probability that X = +1). For
p = 1/2, this result was expected : theory confirms what geneticists do in
practice. However, when p 6= 1/2, this result is original : we didn’t know
how to analyze such data. Lemma 2 gives the sample size required in order to
reach a given power. As expected, the number of individuals required increases
when the QTL effect q decreases and when the variance σ2 increases. The
worst configuration corresponds to the unbalanced design, that is to say more
individuals are required when |p− 1/2| increases. In Section 3.4, we address the
question of the optimal percentage γ⋆ of individuals to genotype. We show that
γ⋆ highly depends on the cost ratio (i.e. cost of genotyping divided by cost of
phenotyping). However, if we assume that genotyping is at least two times more
costly than phenotyping, according to our study, we should not genotype more
than 30% of the individuals, even if the selective genotyping is not performed
symmetrically. Section 3 ends with an illustration of the asymptotic results
using extensive simulations. We show that we have a good agreement between
the theoretical power and the empirical power even for small sample sizes and
whatever the percentage γ of individuals genotyped. We also illustrate the fact
that our test of comparison of means in selective genotyping is much more faster
than a test which requires an EM algorithm.

The second part of this article, Section 4, deals with two correlated pheno-
types Y and Z. Same kind of analysis is given, as in the first part which deals
with one phenotype. Theorem 2 is the main result. According to this theorem,
we still have to genotype symmetrically and the non extreme phenoypes Y don’t
bring any information for statistical inference on the QTL effect on Z. Theorem
2 also establishes the relationship between the ARE of a selective genotyping
with two phenotypes and a selective genotyping with one phenotype. On the
other hand, Lemma 3 presents the different test statistics, corresponding to the
different tests studied. We leave the choice to geneticists between two optimal
statistical tests. Note that these two tests require to perform respectively a
Newton method and an EM algorithm in order to obtain the Maximum Likeli-
hood Estimators (MLE). This way, contrary to the case of a selective genotyping
with only one phenotype, we were not able to propose a test which can be per-
formed easily (i.e. without EM algorithm or Newton method). Lemma 4 gives
the sample size required in order to reach a given power. As expected, the
number of individuals required increases when the QTL effect on Z decreases.
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As previously, the unbalanced design corresponds to the worst configuration.
Note also that when the selective genotyping is performed symmetrically, the
more correlated the phenotypes Y and Z are, the less individuals are needed. In
Section 4.4, we show that the optimal percentage γ̃⋆ of individuals to genotype
highly depends on the correlation between the two phenotypes as well as on the
cost ratio. Finally, we check the validity of our asymptotic study with the help
of simulated data.

Note that this paper deals with Le Cam [1986]’s work on contiguity. We
refer to the book of Van der Vaart [1998] for elements of asymptotic statistics
used in proofs. We join “Online Ressource 1” which contains some proofs not
needed at first reading of this paper.

2. Oracle situation : all the genotypes are known (i.e. no selective
genotyping)

To begin with, we consider the situation with no missing genotypes : the
oracle situation. The study of such a situation will be interesting in order to
quantify the loss of information due to missing genotypes. We present here a
simple test (oracle test), which is optimal and which will be considered as our
reference test for our future study on selective genotyping.

2.1. Model

X denotes the random variable (r.v.) which corresponds to the genotype at
the QTL (i.e. at the marker). We consider 2 genotypes at the QTL :

X =

{
−1 with probability 1− p

1 with probability p.

We suppose p ∈]0, 1[. Y is the r.v. refering to the phenotype :

Y = µ+ qX + ε

where ε is a Gaussian r.v. zero-centered with variance σ2 and q is the QTL
effect. We consider a sample of n observations (Xj , Yj) i.i.d. .

2.2. Oracle statistical test (µ, q, σ)

We consider a statistical model with 3 unknown parameters (µ, q, σ). In
order to test the presence of a QTL, we consider the two following hypotheses :

H0 : q = 0 vs H1 : q 6= 0.

We will consider in particular, a local alternative Ha : q = a√
n

where a is a

constant different from zero. Intuitively, when there are more and more obser-
vations, the power of detection becomes more and more trivial. As a result, we
need to consider a QTL effect q which decreases when n increases, in order to
make the problem harder.
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In this context, an easy test to perform is based on the test statistic

T =
√
p (1 − p)

{∑n
j=1

1
p (Yj − Y ) 1Xj=1 − 1

1−p (Yj − Y ) 1Xj=−1

σ̂
√
n

}

where σ̂ = 1√
n

{∑n
j=1(Yj − Y )2

}1/2

and Y = 1
n

∑n
j=1 Yj .

The asymptotic laws are :

T
H0→ N (0, 1) and T

Ha→ N

(
2a
√
p (1 − p)

σ
, 1

)
.

This test, which is almost a comparison of means between the two genotypes at
the QTL, is the most powerful test we can perform : it has the same asymptotic
properties as the Wald test, which corresponds to a weighted estimate of the
standard error times the QTL effect size. A proof is given in Appendix A. Note
that in this paper, we will use the terminology “comparison of means” even if
our tests are only almost “comparison of means”.

3. Selective genotyping

3.1. Motivation

As written before, our main goal is to propose to geneticists the easiest
statistical test. Obviously, this test has to be optimal in order to detect the QTL.
As a consequence, in this section, we answer the following questions relevant to
selective genotyping :

• What is the loss of information due to missing genotypes in a general
framework ?

• Do the non extreme phenotypes (i.e. the phenotypes for which the geno-
types are missing) bring any extra information for statistical inference
?

• If we want to genotype only a percentage γ of the individuals, how should
we genotype ? Should we genotype only the γ% individuals with the
largest phenotypes? Or the γ% with the smallest phenotypes? Or some
individuals with the largest phenotypes and some with the smallest phe-
notypes ?

• Do we have the same results when the number of unknown parameters
varies ?
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3.2. Model and strategies

We consider two real thresholds (constant) S− and S+ such as S− ≤ S+.
We consider that the genotype X is known if and only if the phenotype Y is
extreme, i.e. if and only if Y ≤ S− or Y ≥ S+. In order to make the reading
easier, we define a new r.v. X such as :

X =

{
X if Y /∈ [S− , S+]

0 otherwise.

In other words, X = 0 refers to the case where the genotype is missing. As in
the oracle situation, we want to test the presence of a QTL (q = 0 vs q 6= 0)
and we deal with a local alternative Ha : q = a√

n
. We consider here 3 different

strategies suitable for the data analysis in selective genotyping :

• 1. we keep all the phenotypes (even the phenotypes which are non ex-
tremes, i.e. the phenotypes for which the genotypes are missing) and we
perform a Wald test

• 2. we keep only the extreme phenotypes (i.e. the phenotypes for which the
genotypes are available) and we perform a comparison of means between
the two genotypes at the QTL

• 3. we keep only the extreme phenotypes (i.e. the phenotypes for which
the genotypes are available) and we perform a Wald test

Each test corresponding to each strategy will be compared to the oracle test
in terms of ARE, which determines for each test, the sample size required to
obtain the same local asymptotic power as the oracle test. The study of such
strategies will help us to give answers to our questions of Section 3.1. Note that
strategy 2 is inspired by Darvasi and Soller [1992], whereas strategies 1 and 3
are inspired by the simulation study of Rabbee et al. [2004]. Obviously, strategy
2 is the easiest to compute.

3.3. Results

Our main theorem is Theorem 1 :

Theorem 1. Let κ1, κ2 and κ3 be the efficiencies corresponding respectively to
strategies one, two and three. Let γ, γ+ and γ− be respectively the following
quantities : PH0

(Y /∈ [S−, S+]), PH0
(Y > S+) and PH0

(Y < S−). Then, if we
consider a statistical model with 3 unknown parameters (µ, q, σ), ∀p ∈]0, 1[ :

i) κ1 = κ2 = κ3 = γ + zγ+
ϕ(zγ+

) − z1−γ
−

ϕ(z1−γ
−

)

ii) κ1, κ2 and κ3 reach their maximum, M , when γ+ = γ− =
γ

2
, with

M = γ + 2 zγ/2 ϕ(zγ/2)

where ϕ(x) and zα denote respectively the density of a standard normal distri-
bution taken at the point x, and the quantile of order 1−α of a standard normal
distribution.
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The proof is given in Appendix B. Before interpreting this theorem, we have
to give some precisions on the quantities γ, γ+ and γ−. According to the law of
large numbers, under the null hypothesis H0 and under the local alternative Ha,
1
n

∑
1Xj 6=0 → γ. So, γ corresponds asymptotically to the percentage of indi-

viduals genotyped. In the same way, γ+ (resp. γ−) corresponds asymptotically
to the percentage of individuals genotyped with the largest (resp. the smallest)
phenotypes.

Let’s explain now Theorem 1. According to i), the three strategies have
exactly the same ARE. It comes out two consequences. First, since κ1 = κ3,
the non extreme phenotypes don’t bring any extra information for statistical
inference. Secondly, since κ2 = κ3, there is no loss of power between a compar-
ison of means and the Wald test based on the extreme phenotypes. In other
words, we should perform the comparison of means : it is an easy and optimal
test. However, we will see in Lemma 1, that a small adjustment has to be done
in order to make this test easy. On the other hand, i) presents the ARE in
a general framework. We can see that the ARE is independent of p (i.e. the
probability that X = +1) and a (i.e. the constant linked to the QTL effect). It
only depends on γ, γ+ and γ−.

According to ii) of Theorem 1, the ARE is maximum for γ+ = γ− = γ/2.
That is to say, if we want to genotype only a percentage γ of the population,
we should genotype the γ/2% individuals with the largest phenotypes and the
γ/2% individuals with the smallest phenotypes. It is true for any p. When
p = 1/2, this result was expected : the theory confirms what geneticists do in
practice. However, when p 6= 1/2, this result is original : we didn’t know how
to analyze such data.

We introduce now Lemma 1, which presents explicitly, contrary to Theorem
1, the different tests corresponding to the different strategies.

Lemma 1. If we consider a statistical model with 3 unknown parameters (µ, q, σ),
the Wald test statistic W1, the test statistic of comparison of means T2, and the
Wald test statistic W3, which correspond respectively to strategies one, two and
three :

W1 :=
2
√
n

σ̂2

√
Â1 p(1− p) q̂1

T2 :=
√
p(1− p)

{∑n
j=1

1
p (Yj − µ̂3)1Xj=1 − 1

1−p (Yj − µ̂3)1Xj=−1√
n Â3

}

W3 :=
2
√
n

σ̂2
3

√
Â3 p(1− p) q̂3

have the same asymptotic laws under H0 and under Ha, that is to say

N(0, 1) and N

(
2a
√
A p(1− p)

σ2
, 1

)
,

where q̂1 and q̂3 denote the MLE respective of q for strategies one and three, µ̂3

and σ̂2
3 the MLE repective of µ and σ2 for strategy three,
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A = σ2
{
γ + zγ+

ϕ(zγ+
)− z1−γ

−

ϕ(z1−γ
−

)
}
, Â1 = 1

n

∑n
j=1(Yj − Y )21Xj 6=0

Â3 = 1
n

∑n
j=1(Yj − µ̂3)

21Xj 6=0 , σ̂2 is given in Section 2.2.

For the proof, we refer to the proof of Theorem 1 in Appendix B. Note that
the estimators σ̂2 and σ̂2

3 are also consistent under Ha by contiguity. The same
remark holds for Â1 and Â3, which are estimators of A.

As previously mentioned, we want to propose an easy and optimal test. In
order to compute the MLE q̂1 and q̂3, we need to use respectively an EM algo-
rithm and a Newton method (c.f. Rabier [2010]). As a consequence, the tests
corresponding to strategies one and three are difficult to perform. According to
Lemma 1, the test based on T2, i.e. the comparison of means between the two
genotypes at the QTL, is not so easy to perform. Indeed, we have to compute
the estimator µ̂3 which is not straightforward. However, instead of using µ̂3, we
can use the empirical mean Y , because this estimator is

√
n consistent. In the

same way, we can also replace Â3 by Â1. Then, the test is very easy to compute
:

T2 =
√
p(1− p)n





∑n
j=1

1
p (Yj − Y )1Xj=1 − 1

1−p (Yj − Y )1Xj=−1√∑n
j=1(Yj − Y )21Xj 6=0



 .

The asymptotic laws are unchanged. Note that we use now the non extreme
phenotypes in this expression of T2 (contrary to the definition of strategy 2).
Besides, we can see that this test statistic is a generalization of our oracle test
statistic introduced in Section 2.2. To conclude, when we analyze data, we
should use this test and genotype symmetrically. In Table 1, is given the CPU
time as a function of the statistical test used. As expected, the comparison of
means is largely faster than the test which requires the use of an EM algorithm.

n = 30 n = 50 n = 100 n = 200
QTL number W1 T2 W1 T2 W1 T2 W1 T2

1 0.0012 0.0005 0.0020 0.0005 0.0041 0.0005 0.0090 0.0006
1000 1.8369 0.1228 2.7871 0.1267 5.1131 0.1384 9.7150 0.1535

Table 1: CPU time (in seconds), for a selective genotyping with one phenotype, as a function
of the test statistic used, and as a function of the number of individuals n, and the number
of QTL to analyse (q = 0.3, µ = 0, σ = 1, γ+/γ = 1/2, p = 1/2, EM ends when the absolute
difference between old estimates and new estimates is less than 0.01).

Until now, we have focused on the most interesting configuration : all the
parameters (i.e. µ, q, σ) were unknown. Let’s focus now on statistical models
with respectively one unknown parameter (q) and two unknown parameters (µ,
q). The idea is to check whether we obtain the same results as previously :
strategy 2 is maybe not optimal anymore when the number of unknown pa-
rameters varies. We will consider the same strategies as before. For strategy
2, when only q is unknown, we have to keep in mind that A is known. In-
deed, according to the proof of Theorem 1 (see Appendix B.2.2), we have
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A = EH0

{
(Y − µ)21Y /∈[S

−
, S+]

}
. As a consequence, we will consider the test

statistic T2 of Lemma 1 except that µ̂3 is replaced by µ and Â3 by A. Note
that when we consider (µ, q) unknown, we will use same test statistic T2 as
in Lemma 1. Besides, in order to calculate the different ARE for the different
strategies, we will obviously consider the appropriate oracle test (i.e. the oracle
test with only q unknown, and the one with (µ, q) unknown).

Corollary 1. If we consider a statistical model with one unknown parameter
(q), then (with the previous notations) :

i) κ1 = γ + zγ+
ϕ(zγ+

) − z1−γ
−

ϕ(z1−γ
−

) + (2p− 1)2
{
1− γ − zγ+

ϕ(zγ+
) + z1−γ

−

ϕ(z1−γ
−

)
}

ii) κ2 = 4 p (1− p)
{
γ − z1−γ

−

ϕ(z1−γ
−

) + zγ+
ϕ(zγ+

)
}

iii) κ3 = γ + zγ+
ϕ(zγ+

) − z1−γ
−

ϕ(z1−γ
−

) +
(2p− 1)2

1 − γ

{
ϕ(z1−γ

−

) − ϕ(zγ+
)
}2 ∀γ 6= 1

iv) κ1 = κ2 = κ3 ⇔ p =
1

2

v) ∀p ∈]0, 1[ κ1, κ2 and κ3 reach their maximum for γ+ = γ− =
γ

2
.

Corollary 2. If we consider a statistical model with two unknown parameters
(µ, q), then the results are the same as in Theorem 1.

The proof of Corollary 1 is given in Section 2 of “Online Ressource 1”. The
proof of Corollary 2 is obvious according to the proof of Theorem 1.

According to Corollary 2, when only the variance σ2 is known, we have the
same results as found previously. So, there is no loss of generality to consider the
variance known. However, according to Corollary 1, there is a loss of generality
to consider the mean µ known. Indeed, when we consider only q unknown, the
three strategies have the same ARE if and only if p = 1/2 (i.e. backcross in
genetics). In other words, when p 6= 1/2, the non extreme phenotypes Y bring
some extra information for statistical inference. So, in this case, we have to use
strategy 1. Note that we still have to genotype symmetrically for all strategies.

3.4. Sample size required and optimal percentage of individuals to genotype

In order to help geneticists in their experimental designs, we propose to focus
here, on the sample size required to reach a given power β, considering a test
at the α level.

Lemma 2. If we consider a statistical model with 3 unknown parameters (µ, q, σ),
the sample size required to reach a given power β, considering a test at the α
level, is the quantity nα,β which verifies :

nα,β =
σ4 (zα − zβ)

2

4 q2 A p(1− p)
.
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Note that this lemma assumes nα,β large and q small. The proof is given in
Appendix C.

On the other hand, another important aspect in practice, is how to choose
the percentage γ of individuals to genotype. In other words, what should be the
threshold for the scientist to decide whether the phenotype is extreme ? Let cX
(resp. cY ) denote the cost of genotyping (resp. phenotyping) one individual,
and let C denote the ratio cX/cY . In order to give an answer to this important
aspect, we have to minimize the following function :

F (γ) = nα,β γ cX + nα,β cY =
σ4 (zα − zβ)

2 cY (γ C + 1)

4 q2 A p(1 − p)
.

In other words, in order to find the optimal γ, called γ⋆, we have to minimize
the quantity

F ⋆(γ) =
γ C + 1

γ + zγ+
ϕ(zγ+

)− z1−γ
−

ϕ(z1−γ
−

)

which is independent of p, q and σ. This quantity is the same as formula (29)
of Darvasi and Soller [1992] as soon as we genotype symmetrically (i.e. γ+ =
γ− = γ/2). We refer to the next section for differences between our study and
the previous study of Darvasi and Soller [1992]. In Figure 1, is represented γ⋆

as a function of the cost ratio C and as a function of the ratio γ+/γ. According
to the figure, as mentioned in Darvasi and Soller [1992], the optimal proportion
selected is a very sensitive function of C. It also depends on how the selective
genotyping has been performed. Let us consider for instance a cost ratio C
equal to 2. Then, if the selective genotyping is performed symmetrically, γ⋆ is
equal to 0.322, that is to say we have to genotype the 16.10% individuals with
the largest phenotypes and the 16.10% individuals with the smallest phenotypes
(same result as in Darvasi and Soller [1992]). If for some biological reasons, the
selective genotyping can not be performed symmetrically (when, for example,
it is easier to genotype the individuals with the largest phenotypes), γ⋆ is equal
to 0.308 (resp. 0.283) when γ+/γ = 3/4 (resp. γ+/γ = 7/8). On the other
hand, if we want to genotype only the individuals with the largest phenotypes
(or only the smallest phenotypes), γ⋆ is now equal to 1, that is to say we should
genotype all the individuals. Note that, our Figure 1 was obtained assuming
the ratio C independent of γ (as in Figure 4 of Darvasi and Soller [1992]), but
as mentioned by these authors, we can also imagine a ratio C which depends
on γ (cf. comments below their formula (29)).

3.5. Remark on the work of Darvasi and Soller [1992]

In our study, in order to model selective genotyping, two real thresholds
(constant) S− and S+ have been considered. An individual is genotyped if and
only if Y /∈ [S−, S+] (i.e. X 6= 0). As said previously, under H0 and Ha,
1
n

∑
1Xj 6=0 → γ where γ = PH0

(Y /∈ [S−, S+]). This way, our modelization
agrees with the usual definition of selective genotyping : selective genotyping
consists in genotyping only the γ% individuals with extreme phenotypes.
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Figure 1: Optimal γ, for a selective genotyping with one phenotype, as a function of the cost
ratio C = cX/cY and as a function of the ratio γ+/γ.

In Darvasi and Soller [1992], the authors focus on a comparison of means,
between the extreme individuals, only when p = 1/2. They consider µ and σ
known without loss of generality (which is true according to our study since
p = 1/2). Besides, the main difference with our approach, is that they consider
thresholds which vary with the QTL effect. Indeed, they consider γ = P(Y /∈
[S−, S+]). The problem is that since the QTL effect is such as q = a/

√
n, S−

and S+ depend on n. As a consequence, the authors make an error when using
classical central limit theorem : they should use Lindeberg-Feller central limit
theorem. Furthermore, they use approximations about thresholds (see their
formulae (1) and (2)).

Note that in their paper, Darvasi and Soller [1992] suppose symmetry, i.e.
P(Y > S+) = P(Y < S−) = γ/2. Anyway, if we consider the same configuration
as Darvasi and Soller [1992] (i.e. p = 1/2 and symmetry), our treatment gives
the same ARE as that obtained in formula (27) of Darvasi and Soller [1992].
However, it is important to recall that our comparison of means based on the
test statistic T2 is totally new and was not present in Darvasi and Soller [1992].
Indeed, we consider p ∈]0, 1[, not only symmetry, and µ and σ unknown. In the
same way, our sample size required to reach a given power (cf. Lemma 2) is
more general than the one present in formula (26) of Darvasi and Soller [1992]
: our formula is obtained without any symmetry, assuming σ and µ unknown,
and considering the genotype frequency p.

3.6. Illustration

In this Section, we propose to illustrate our theoretical results. We con-
sider one-sided tests at the 5% level and the situation where all the parameters
are unknown. To begin with, Figure 2 represents the efficiency with respect
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to the oracle test. This efficiency corresponds to Theorem 1. Note that the
efficiency does not depend on the QTL effect (see Theorem 1) and the genotype
frequency p. We study here the efficiency as a function of the percentage γ of
individuals genotyped and also as a function of the ratio γ+/γ (i.e. the percent-
age of individuals genotyped with large phenotypes among all the individuals
genotyped). For instance, γ+/γ = 1/2 means that we genotype symmetrically
whereas γ+/γ = 1/4 means that we genotype three times more individuals with
small phenotypes than with large phenotypes. According to the graph, geno-
typing symmetrically yields to the best results. The worst is obtained when
genotyping only the largest phenotypes (see γ+/γ = 1) or genotyping only the
smallest phenotypes (same curve as the one for γ+/γ = 1). Obviously, it can
be seen that when γ = 1, all the efficiencies are equal to one, since all the
individuals are genotyped.

In Figure 3, the sample size required in order to reach a power β of 60%,
70%, or 80% is shown as a function of the genotype frequency p at the QTL
(left-side) and as a function of the percentage γ of individuals genotyped (right-
side). Note that we consider here the optimal configuration, that is to say the
selective genotyping is performed symmetrically. On the left-side, we genotype
only 30% of the population. We can notice that the sample size required is
minimal when p = 1/2. For instance, for p = 1/2, we need respectively 116, 151
and 200 individuals in order to reach a power of 60%, 70%, and 80%. The worst
configuration corresponds to the unbalanced design : the sample size required
increases when |p−1/2| increases. On the right-side of Figure 3, as expected, the
sample size required decreases with γ. For instance, in order to reach a power
of 60%, the sample sizes required are respectively 140, 116, 105, 98 and 95 if
we consider respectively γ = 0.2, γ = 0.3, γ = 0.4, γ = 0.5 and γ = 0.6. This
way, it seems on this example, that the gain in power is not substantial when
we genotype more than 40% of the population. It is consistent with results of
Figure 1 (cf. curve under symmetry). However, we have to keep in mind that
results of Figure 1 are more general since they deal with a cost ratio.

In Figures 4, 5, 6 and 7, we propose to check the validity of our theoreti-
cal results using simulated data (10000 samples considered). We consider the
statistical test based on the statistic T2. It is quite easy to perform since it
is a comparison of means, between the two genotypes at the QTL. Note that
we consider the easiest expression of T2 (see the remark below Lemma 1). In
Figure 4, we consider a QTL effect q = 0.2, p = 1/2 (backcross in genetics),
and different values of n : n = 30, n = 50, n = 100 and n = 200. The selective
genotyping is performed symmetrically and we consider different values of the
percentage γ of individuals genotyped. According to Figure 4, the empirical
power is close to the theoretical power even for small sample sizes. In Figure 5,
we study different coefficients of variation q/σ. When the coefficient of varia-
tion is equal to 0.3, a slight difference occurs between the empirical power and
the theoretical power, for n = 50 and n = 30. We recall that our theoretical
results are established under the hypothesis of a small q and a large n values.
We obtain the same kind of conclusions when we consider p = 1/4 (cf. Figure
6). Finally in Figure 7, the selective genotyping is not performed symmetrically
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anymore. There is still a good agreement between the theoretical power and
the empirical power when γ+/γ = 1/4, γ+/γ = 1/8 and γ+/γ = 1.

To conclude, in Figure 8 and in Tables 2 and 3, we study how an estimated p
affects respectively the power, the percentage of false positives and the accuracy
of the QTL effect estimate. We use

∑
1Xj=1/

∑
1Xj 6=0 as an estimator of p in

our test statistic T2. According to Figure 8, for large sample sizes (see n = 100
and n = 200), the power seems to be unaffected. However, for small sample
sizes (see n = 30 and n = 50), we denote a loss of power, in particular when p
is small (cf. p = 0.1). In the same way, according to Table 2, the statistical test
seems to be too conservative, for small values of p and small sample sizes. In
Table 3, we present a comparison between the QTL effect estimates when p is
known and when p is unknown. Note that when p is known, the estimated QTL
effect can be obtained according to a classical EM algorithm. When dealing
with the case p unknown, we used the same EM algorithm but the proportions
were estimated. The true value of q considered here is 0.3. According to Table
3, as expected, the EM algorithm presents very good performances when p is
known. However, a slight bias is observed when p is unknown. In particular, a
small p leads to underestimate q, whereas a large p leads to overestimate q.
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Figure 2: Efficiency, for a selective genotyping with one phenotype, as a function of the
percentage γ of individuals genotyped and as a function of the ratio γ+/γ.

4. Selective genotyping with two correlated phenotypes

Sometimes, it is difficult to measure the phenotype of interest : it can be
expensive or it can require a lot of work. In such a situation, a second pheno-
type correlated to the phenotype of interest, can be measured more easily (see
the examples given by Medugorac and Soller [2001]). In the following, Z will
denote the phenotype of interest and Y will refer to the second phenotype. In
order to reduce costs due to genotyping and due to phenotyping, a selective
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p n = 30 n = 50 n = 100 n = 200

0.1
1.87% 2.67% 4.10% 5.19%
(5.48%) (5.02%) (5.14%) (5.09%)

0.2
3.50% 4.44% 4.93% 4.90%
(5.07%) (4.80%) (5.12%) (5.16%)

0.3
4.08% 5.20% 4.90% 5.26%
(4.96%) (5.25%) (4.89%) (4.87%)

0.4
5.30% 5.31% 5.14% 4.95%
(5.21%) (4.74%) (4.78%) (5.13%)

0.5
5.42% 5.16% 4.83% 4.90%
(4.61%) (4.67%) (4.97%) (5.20%)

Table 2: Percentage of false positives when p is unknown, for a selective genotyping with one
phenotype, as a function of n and p (10000 samples, q = 0, µ = 0, σ = 1, γ+/γ = 1/2). In
brackets is given the percentage of false positives when p is known.

n = 30 n = 50 n = 100 n = 200
p EM EM(p?) EM EM(p?) EM EM(p?) EM EM(p?)

0.1
0.2885 0.28 0.2935 0.2758 0.2955 0.2718 0.2990 0.2708
(0.3405) (0.2108) (0.2704) (0.1610) (0.1921) (0.1105) (0.1318) (0.0789)

0.2
0.2964 0.3065 0.2917 0.2997 0.2967 0.3006 0.2988 0.2996
(0.2577) (0.2288) (0.2024) (0.1714) (0.1416) (0.1210) (0.0997) (0.0833)

0.3
0.2894 0.3249 0.2972 0.3215 0.2998 0.3249 0.2993 0.3207
(0.2179) (0.2456) (0.1611) (0.1851) (0.1235) (0.1255) (0.0878) (0.0893)

0.4
0.2901 0.3473 0.2964 0.3475 0.2976 0.3473 0.2999 0.3409
(0.2067) (0.2626) (0.1610) (0.1979) (0.1140) (0.1355) (0.0815) (0.0947)

0.5
0.2979 0.3620 0.2982 0.3625 0.2972 0.3620 0.2991 0.3558
(0.2019) (0.2831) (0.1572) (0.2148) (0.1119) (0.1457) (0.0780) (0.1027)

Table 3: Estimated values of the QTL effect q when p is known (EM) and when p is unknown
(EM p?), for a selective genotyping with one phenotype, as a function of n and p (10000
samples, q = 0.3, µ = 0, σ = 1, γ+/γ = 1/2). In brackets is given the standard deviation.
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Figure 3: Number of individuals required in order to reach a power β of 60%, 70%, or 80%, for
a selective genotyping with one phenotype, as a function of the genotype frequency p at the
QTL (left side) and as a function of the percentage γ of individuals genotyped (right side).
Other parameters are γ+ = γ− = γ/2, q = 0.2 and σ = 1.
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Figure 4: Theoretical power (theo) and empirical power (emp), for a selective genotyping
with one phenotype, as a function of the number of individuals n and as a function of the
percentage γ of individuals genotyped (10000 samples, q = 0.2, σ = 1, γ+ = γ− = γ/2,
p = 1/2, µ = 0).

genotyping is performed on Y , and Z is measured only on the genotyped indi-
viduals (i.e. with extreme phenotypes Y ). In such a situation, the interest is on
finding a QTL which has an effect on Z. Obviously, Y and Z have to be corre-
lated otherwise this selective genotyping has no sense. This way, we will focus
here on statistical inference for selective genotyping with two correlated pheno-
types. Note that some theoretical results about this design are already present
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Figure 5: Theoretical power (theo) and empirical power (emp), for a selective genotyping
with one phenotype, as a function of the coefficient of variation q/σ and as a function of the
percentage γ of individuals genotyped (10000 samples, γ+ = γ− = γ/2, p = 1/2, µ = 0).

in Muranty and Goffinet [1997] and Medugorac and Soller [2001]. However, the
theory of statistical inference is still missing, since Muranty and Goffinet [1997]
focused only on the estimation of the QTL effects and Medugorac and Soller
[2001] focused on the power of the design using approximations.
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Figure 6: Same graphs as in Figure 5, except that we consider now p = 1/4.

4.1. Oracle situation : model and oracle statistical test (µZ , qZ)

As previously, we begin by considering the situation with no missing geno-
types. We present here our model and the optimal oracle test, which will be
considered as our reference test for our future study on selective genotyping.
X is still the r.v. corresponding to the genotype at the QTL. We consider the
following model : (

Y
Z

)
=

(
µY + qY X
µZ + qZX

)
+ ε
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Figure 7: Theoretical power (theo) and empirical power (emp), for a selective genotyping with
one phenotype, as a function of the percentage γ of individuals genotyped and as a function
of the ratio γ+/γ (10000 samples, q = 0.3, µ = 0, σ = 1, n = 100, p = 1/2).
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Figure 8: Theoretical power (theo), empirical power with p known (emp), and empirical
power with p unknown (emp p?), for a selective genotyping with one phenotype, as a function
of the genotype frequency p (10000 samples, q = 0.3, µ = 0, σ = 1, p = 1/2, γ = 0.3,
γ+ = γ− = γ/2).
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where

ε ∼ N

((
0
0

)
,

(
σ2 r σ2

r σ2 σ2

))
.

We suppose r ∈]−1, 1[. Besides, we consider that r and σ2 are known. µYX and
µZX will be the following quantities : µYX = µY + qY X and µZX = µZ + qZX .
We consider a sample of n observations (Xj , Yj , Zj) i.i.d. . Note that qZ and
qY are respectively the QTL effects on the phenotypes Z and Y .

In order to test the presence of a QTL with effect on the phenotype Z, we
consider the two following hypotheses :

H0Z : qZ = 0 vs H1Z : qZ 6= 0.

We will consider in particular, a local alternative HbZ : qZ = b√
n
where b is a

constant different from zero. According to what has been done with only one
phenotype (c.f. Section 2.2 and Appendix A), an easy and optimal test to
perform is based on the following statistic

T =

∑n
j=1

1
p (Zj − Z)1Xj=1 − 1

1−p (Zj − Z)1Xj=−1

σ
√

n
p(1−p)

.

The asymptotic laws are :

T
H0Z→ N(0, 1) , T

HbZ→ N

(
2 b
√
p(1− p)

σ
, 1

)

where Z = 1
n

∑n
j=1 Zj .

4.2. Model and strategies under selective genotyping

We consider the same model as previously (see Section 3.2). As in the oracle
situation, we want to test the presence of a QTL which affects Z (qZ = 0 vs
qZ 6= 0) and we deal with a local alternative HbZ : qZ = b√

n
. Since Z and Y are

correlated, we will have to deal with hypotheses on qY . So, the new notations
will be, H0Y for qY = 0, and HaY for qY = a√

n
.

We consider here 2 strategies suitable for the data analysis :

• 1. we keep all the phenotypes Y (even the phenotypes which are non
extremes, i.e. the phenotypes for which the genotypes are missing) and
we perform a Wald test on qZ .

• 2. we keep only the extreme phenotypes Y (i.e. the phenotypes for which
the genotypes are available) and we perform a Wald test on qZ .

Each test corresponding to each strategy will be compared to the oracle test in
terms of ARE, which determines for each strategy, the sample size required to
obtain the same local asymptotic power as the one of the oracle test. The study
of such strategies will help us to give answers to the same kind of questions as
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for a selective genotyping with one phenotype. Note that we don’t consider the
comparison of means on Z : this test won’t be optimal since it only uses the
phenotypes Z and does not use explicitely the phenotypes Y . As a consequence,
here, strategy 2 is analogous to strategy 3 of the first part.

4.3. Results

Our main theorem is Theorem 2, which is the analogue of Corollary 2 for two
phenotypes (the covariance matrix is known here). However, since Corollary 2
and Theorem 1 give same results, Theorem 2 can be also viewed as the analogue
of Theorem 1.

Theorem 2. Let κ̃1 and κ̃2 be the efficiencies corresponding to strategies one
and two. Let γ, γ+ and γ− be respectively the following quantities
PH0Y

(Y /∈ [S−, S+]) , PH0Y
(Y > S+) and PH0Y

(Y < S−). Then, if we con-
sider a statistical model with 4 unknown parameters (µZ , qZ , µY , qY ), we have
under H0Y and under HaY , ∀p ∈]0, 1[ :

i) κ̃1 = κ̃2 =

{
1− r2

γ
+

r2

κ1

}−1

ii) κ̃1 and κ̃2 reach their maximum, M̃ , for γ+ = γ− =
γ

2
, with

M̃ =

{
1− r2

γ
+

r2

M

}−1

where κ1 and M are the quantities of Theorem 1.

The proof is given in Appendix D. According to Theorem 2, the non extreme
phenotypes Y (i.e. for which the genotypes are missing) don’t bring any extra
information for statistical inference on qZ . So, using strategy 1 instead of strat-
egy 2 does not lead to an increase of power. Besides, we still have to genotype
symmetrically for a selective genotyping with two phenotypes. Note that Theo-
rem 2 establishes the relationship between the ARE of selective genotyping with
one and two phenotypes.

On the other hand, as expected, the ARE increases with γ. Besides, the
ARE increases with r2 as soon as zγ+

ϕ(zγ+
)−z1−γ

−

ϕ(z1−γ
−

) > 0. This is true
in most cases. When the selective genotyping is performed symmetrically, the
ARE increases with r2 since this quantity is equal to 2 zγ/2 ϕ(zγ/2) which is
greater than 0. However, for instance, if we genotype only the individuals with
the largest phenotypes Y and if γ is greater than 50%, then the ARE does not
increase with r2. We now introduce Lemma 3 which presents the different tests
corresponding to the different strategies.

Lemma 3. If we consider a statistical model with 4 unknown parameters (µZ , qZ , µY , qY )
and if we are under H0Y or under HaY , then the Wald test statistic W̃1 and the
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Wald test statistic W̃2, which correspond respectively to strategy one and two :

W̃1 :=
√
n q̂1Z

{
σ2 (1− r2)

4 p (1 − p) γ
+

σ4 r2

4 p (1 − p) Â1

}−1/2

W̃2 :=
√
n q̂2Z

{
σ2 (1− r2)

4 p (1 − p) γ
+

σ4 r2

4 p (1 − p) Â3

}−1/2

have the same asymptotic laws under H0Z and HbZ , that is to say

N(0, 1) and N

(
b

{
σ2 (1− r2)

4 p (1 − p) γ
+

σ4 r2

4 p (1 − p) A

}−1/2

, 1

)
,

with q̂iZ MLE of qZ for strategy i. A, Â1 and Â3 are given in Lemma 1.

For the proof, we refer to the proof of Theorem 2 in Appendix D. So, according
to Lemma 3, we have two different test statistics, W̃1 and W̃2, corresponding to
the two different strategies. These two test statistics differ only by the MLE,
q̂Z , of the QTL effect on Z. In particular, if we call q̂iZ (resp. q̂iY ) the MLE of
qZ (resp. qY ) for strategy i, after some algebra (see the proof in Appendix D),
we obtain

q̂iZ =
σ

2

√
1− r2 (µ̂⋆

Z1 − µ̂⋆
Z−1) + r q̂iY

where

µ̂⋆
Z1 =





n∑

j=1

(Zj − rYj)1Xj=1

σ
√
1− r2



 /

n∑

j=1

1Xj=1

µ̂⋆
Z−1 =





n∑

j=1

(Zj − rYj)1Xj=−1

σ
√
1− r2



 /

n∑

j=1

1Xj=−1 .

The key thing is that for strategy 1, q̂1Y can be computed by the EM algo-
rithm, whereas for strategy 2, q̂2Y can be computed by a Newton method. So,
although we have proved that the non extreme phenotypes don’t bring any ex-
tra information, the tests suitable for a selective genotyping with two correlated
phenotypes, are not so simple. As said previously, the test of comparison of
means on Z won’t be optimal. Indeed, according to the formula above, the
MLE of qZ depends on the phenotypes Y . As a consequence, we leave to ge-
neticists the choice between the two statisticals tests, which are optimal and
asymptotically equivalent.

We introduce now Corollary 3 which is the analogue of Corollary 1. Only
qZ and qY are now unknown.
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Corollary 3. If we consider a statistical model with two unknown parameters
(qZ , qY ), then under H0Y and under HaY :

i) κ̃1 =

{
1− r2

γ
+

r2

κ1

}−1

ii) κ̃2 =

{
1− r2

γ
+

r2

κ3

}−1

iii) κ̃1 = κ̃2 ⇔ p =
1

2

iv) ∀p ∈]0, 1[ κ̃1 and κ̃2 reach their maximum for γ+ = γ− =
γ

2

where κ1 and κ3 are the quantities of Corollary 1.

The proof is given in Section 3 of “Online Ressource 1”. According to this Corol-
lary, the two strategies have same ARE if and only if p = 1/2. When p 6= 1/2,
the non extreme phenotypes Y bring some extra information for statistical in-
ference on qZ . As a consequence, there is a loss of generality to consider the
parameters µY and µZ known. However, we still have to genotype symmetri-
cally. In other words, we have to use strategy 1 and genotype symmetrically.
Note that Corollary 3 establishes a link with the ARE of Corollary 1.

To conclude, in the following Corollary 4, we consider all the parameters
known except qZ .

Corollary 4. If we consider a statistical model with one unknown parameter
(qZ), then ∀p ∈]0, 1[ :

κ̃1 = κ̃2 =
P (Y /∈ [S−, S+])

1− r2
.

The proof is given in Section 4 of “Online Ressource 1”. Here, qY is a known
constant : contrary to Theorem 2 and Corollary 3, qY does not depend on n. The
quantity P (Y /∈ [S−, S+]) depends on qY , and is asymptotically the percentage
of individuals genotyped. According to Corollary 4, we don’t have to genotype
symmetrically anymore when qY is known : we can genotype only the individuals
with the largest (or smallest) phenotypes. Note that as previously, the non-
extreme phenotypes Y do not bring any information for statistical inference on
qZ . Another interesting result is that, when P (Y /∈ [S−, S+]) > 1− r2, selective
genotyping becomes more powerful than the oracle test. This surprising result
is due to the fact that qY is a known quantity in the model studied. Indeed,
the MLE q̂Z of qZ , that we have to compute in order to perform our Wald tests
in selective genotyping (for both strategies), depends on qY which is a known
quantity in the model studied (cf. Section of the 4.2 of “Online Ressource 1”).
The oracle test does not use the fact that this quantity is known, and as a
consequence, some information is lost.

We finally propose to explain more in details Corollary 4, focusing on the
extreme cases. First, when r = 0, the Wald tests in selective genotyping (for the
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two strategies) are both a comparison of means on Z. To prove this, just consider
the expression of q̂Z with r = 0 (cf. Section of the 4.2 of “Online Ressource
1”). Then, since Z | X is not affected by the fact that Y | X is extreme,
the Wald tests correspond to a comparison of means on Z, but only based
on an average of nP(Y /∈ [S−, S+]) individuals randomly sampled (contrary to
the oracle test which is based on n individuals). This way, the efficiency is
equal to P(Y /∈ [S−, S+]) when r = 0. Then, let us consider the extreme case
P (Y /∈ [S−, S+]) = 1, that is to say the genotype X and the phenotype Z of
each individual are collected. When r = 0, the efficiency is equal to 1 since the
Wald test in selective genotyping is the same as the oracle test. When r > 0,
the efficiency is equal to 1

1−r2 which is greater than 1. As a consequence, the
Wald test in selective genotyping becomes more powerful than the oracle test.
As previously said, it is due to the fact that qY is known.

4.4. Sample size required

In the same way as what has been done before for a selective genotyping
with only one phenotype, we propose to focus on the sample size required to
reach a given power β, considering a test at the α level.

Lemma 4. If we consider a statistical model with 4 unknown parameters (µZ , qZ , µY , qY ),
under H0Y and under HaY , the sample size required to reach a given power β,
considering a test at the α level, is the quantity ñα,β which verifies :

ñα,β =

(
zα − zβ

qZ

)2{
σ2 (1 − r2)

4 p (1− p) γ
+

σ4 r2

4 p (1 − p) A

}
.

Note that this lemma assumes ñα,β large and qZ small (qY has also to be small
if we are under HaY ). The proof is given in Appendix E.

As previously, the next question is how to choose the percentage γ of indi-
viduals to genotype. We recall that cX (resp. cY ) denotes the cost of genotyping
(resp. phenotyping) one individual. In the same way, cZ will denote the cost of
collecting the phenotype Z for one individual. We will use the notation CXY ,
instead of C, to denote the ratio cX/cY . CZY will denote the ratio cZ/cY .
Then, we have to minimize the following function :

F̃ (γ) = ñα,β γ (cX + cZ) + ñα,β cY

=

(
zα − zβ

qZ

)2 {
σ2 (1− r2)

4 p (1 − p) γ
+

σ4 r2

4 p (1− p) A

}
cY {γ(CXY + CZY ) + 1} .

In other words, in order to find the optimal γ, called γ̃⋆, we have to minimize
the quantity

F̃ ⋆(γ) =

{
(1− r2)

γ
+

r2

γ + zγ+
ϕ(zγ+

)− z1−γ
−

ϕ(z1−γ
−

)

}
{γ(CXY + CZY ) + 1}

which is independent of p, qZ , qY , and σ.
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In Figure 9, is represented γ̃⋆ as a function of the cost ratios CXY and CZY

and as a function of r. The selective genotyping is performed symmetrically.
According to the figure, the optimal proportion selected is a very sensitive func-
tion of CXY , CZY and r. We can notice that γ̃⋆ decreases when r increases.
In other words, the better the proxy Y is for Z, the less individuals have to
be genotyped. Note also that γ̃⋆ decreases when CZY increases : since the
phenotype Z of each genotyped individual has to be collected, we do not want
to genotype too many individuals when collecting Z is expensive. In the same
way, γ̃⋆ decreases when CXY increases : we do not want to genotype too many
individuals when genotyping is expensive.
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Figure 9: Optimal γ, for a selective genotyping with two phenotypes, as a function of the cost
ratios CXY and CZY and as a function of r (γ+ = γ− = γ/2).

4.5. Illustration

In this Section, we propose to illustrate our theoretical results about a se-
lective genotyping with two phenotypes. We consider one-sided tests at the 5%
level and we consider the model with 4 unknown parameters (µZ , qZ , µY , qY ).
Figure 10 represents the efficiency with respect to the oracle test (cf. Theorem
2). According to the graph, we can see that we have to genotype symmetri-
cally. The worst configuration is to genotype only the largest phenotypes (see
γ+/γ = 1) or to genotype only the smallest phenotypes (same curve as the one
for γ+/γ = 1).

In Figure 11, is represented the sample size required in order to reach a power
of 60%, 70% and 80%, as a function of p, γ and r. Note that we consider here
the optimal configuration, that is to say the selective genotyping is performed
symmetrically. As for a selective genotyping with one phenotype, the sample
size required is minimal when p = 1/2 and the sample size required decreases
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Figure 10: Efficiency, for a selective genotyping with two phenotypes, as a function of the
percentage γ of individuals genotyped and as a function of the ratio γ+/γ.

when γ increases. Note also that the sample size required decreases when r
increases : this design is interesting when the proxy Y is good for Z. In Figures
12, 13 and 14, we propose to compare the theoretical power and the empirical
power (10000 samples). We focus here on the test based on the test statistic
W̃1 of Lemma 3. It has to be reminded that, in order to obtain the MLE q̂Z ,
we need to compute the MLE q̂Y , which can be obtained by EM (resp. Newton
method) for strategy 1 (resp. strategy 2) (see Appendix D for details). So,
we decided here to use the EM algorithm. According to Figure 12 (obtained
under symmetry), there is a good agreement between the theoretical power and
the empirical power even for small values of n and whatever the values of r
and qY . We also observe a good agreement between the theoretical power and
the empirical power when γ varies (see Figure 13). However, when γ and n
are very small (see γ = 0.1, γ = 0.2 for n = 30 and n = 50), there are some
differences. Finally, in Figure 14, the selective genotyping is not performed
symmetrically anymore. The empirical power (n = 100) and the theoretical
power are similar whatever the ratio γ+/γ is. To conclude, in Table 4, we focus
on the null hypothesis, that is to say the situation where the QTL has no effect
on the phenotype Z (i.e. qZ = 0). We compute the percentage of false positives
for different values of r, n and qY , under symmetry and assuming γ = 0.3. We
can see that, for n = 100 and n = 200, the percentage of false positives is always
close to 5%. However, when n = 30 (or n = 50) and qY = 0, the percentage of
false positives is found to be overestimated.
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Figure 11: Number of individuals required in order to reach a power β of 60%, 70%, or 80%, for
a selective genotyping with two phenotypes, as a function of the genotype frequency p (upper
left-side), as a function of the percentage γ of individuals genotyped (upper right-side), and
as a function of r (bottom). Other parameters are γ+ = γ− = γ/2, qZ = 0.2 and σ = 1.
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Figure 12: Theoretical power (theo) and empirical power (emp), for a selective genotyping
with two phenotypes, as a function of the number of individuals n and as function of r (10000
samples, qZ = 0.3, µZ = 0, µY = 0, σ = 1, p = 1/2, γ = 0.3, γ+ = γ− = γ/2).

n = 30 n = 50 n = 100 n = 200
r qY = 0 qY = 0.3 qY = 0 qY = 0.3 qY = 0 qY = 0.3 qY = 0 qY = 0.3
0.1 6.31% 5.81% 5.56% 5.41% 5.26% 4.98% 5.33% 4.58%
0.2 6.85% 5.85% 6.06% 5.61% 5.46% 4.66% 4.70% 4.85%
0.3 7.21% 6.02% 5.88% 5.23% 5.22% 4.74% 4.97% 4.34%
0.4 6.77% 5.80% 5.87% 4.95% 5.25% 5.01% 5.16% 4.58%
0.5 6.87% 5.10% 5.87% 4.78% 5.32% 4.66% 4.89% 4.88%
0.6 6.37% 5.02% 5.78% 4.96% 5.45% 4.51% 5.12% 4.38%
0.7 6.35% 4.80% 5.61% 4.87% 5.31% 4.62% 5.13% 4.65%
0.8 6.03% 5.08% 5.36% 4.66% 5.32% 4.84% 5.32% 4.73%
0.9 5.41% 5.11% 5.60% 4.29% 5.21% 4.65% 4.66% 4.64%

Table 4: Percentage of false positives as a function of qY , r and n (10000 samples, qZ = 0,
µZ = 0, µY = 0, σ = 1, p = 1/2, γ = 0.3, γ+/γ = 1/2).
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Figure 13: Theoretical power (theo) and empirical power (emp), for a selective genotyping with
two phenotypes, as a function of the percentage γ of individuals genotyped (10000 samples,
qZ = 0.4, µZ = 0, µY = 0, σ = 1, p = 1/2, γ+ = γ− = γ/2).

29



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.5

0.6

0.7

0.8

0.9

1

γ

β

 

 

theo γ
+
=γ/4

emp γ
+
=γ/4

theo γ
+
=γ/8 

emp γ
+
=γ/8

theo γ
+
=γ

emp γ
+
=γ

Figure 14: Theoretical power (theo) and empirical power (emp), for a selective genotyping
with two phenotypes, as a function of the percentage γ of individuals genotyped and as a
function of the ratio γ+/γ (10000 samples, qZ = 0.3, µZ = 0, qY = 0.2, µY = 0, r = 0.8,
σ = 1, n = 100, p = 1/2).
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Appendix A. Proof for the oracle statistical test (µ, q, σ)

A natural estimator of the QTL effect q is the following comparison of means
:

1

2

{∑n
j=1 Yj 1Xj=1∑n
j=1 1Xj=1

−
∑n

j=1 Yj 1Xj=−1∑n
j=1 1Xj=−1

}
.

However, this estimator is not convenient because of the random denominators.
So, we want to build an easier estimator. Let η = qX + ε, we can remark that
under the local alternative Ha :

EHa

{
1
2n

(∑n
j=1

ηj

p 1Xj=1 − ηj

1−p 1Xj=−1

)}
= q.

Besides under H0, EH0

(
η
p 1X=1 − η

1−p 1X=−1

)
= 0 and

EH0

{(
η
p 1X=1 − η

1−p 1X=−1

)2}
= EH0

(
η2

p2 1X=1 + η2

(1−p)2 1X=−1

)
= σ2

p(1−p) .
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As a consequence, VH0

(
η
p 1X=1 − η

1−p 1X=−1

)
= σ2

p(1−p) .

Besides, under the local alternative Ha :

EHa

(
η

p
1X=1 − η

1− p
1X=−1

)
= 2q , (A.1)

EHa

{(
η
p 1X=1 − η

1−p 1X=−1

)2}
= 1

p (σ
2 + q2) + 1

1−p (σ
2 + q2) → σ2

p(1−p) ,

VHa

(
η
p 1X=1 − η

1−p 1X=−1

)
= 1

p (σ
2 + q2) + 1

1−p (σ
2 + q2) − 4q2.

We remark that VHa

(
η
p 1X=1 − η

1−p 1X=−1

)
→ VH0

(
η
p 1X=1 − η

1−p 1X=−1

)
.

As a consequence, let T̃ be the following test statistic :

T̃ =

∑n
j=1

ηj

p 1Xj=1 − ηj

1−p 1Xj=−1

σ
√

n
p (1−p)

.

The asymptotic laws are : T̃
H0→ N (0, 1) and T̃

Ha→ N

(
2a

√
p (1−p)

σ , 1

)
.

However, we don’t observe the r.v. η but the phenotypes Y . Let Y and η be
the empirical means : Y = 1

n

∑
Yj and η = 1

n

∑
ηj . Then, Y = µ + η and

Y − Y = η − η. Let T be the following test statistic :

T =

∑n
j=1

1
p (Yj − Y ) 1Xj=1 − 1

1−p (Yj − Y ) 1Xj=−1

σ
√

n
p (1−p)

. (A.2)

We have

T = T̃ + η

∑n
j=1

1
1−p 1Xj=−1 − 1

p 1Xj=1

σ
√

n
p (1−p)

.

Notations 1. oP (1) will be a sequence of random vectors which tend to 0 in
probability and OP (1) will be a sequence bounded in probability.

According to Prohorov, η = OP (
1√
n
) and

∑n
j=1

1
1−p1Xj=−1− 1

p 1Xj=1 = OP (
√
n).

As a result,

η

∑n
j=1

1
1−p 1Xj=−1 − 1

p 1Xj=1

σ
√

n
p (1−p)

→ 0.

As a consequence (we remind that we are under H0 or under Ha):

T = T̃ + oP (1).

So, T has the same asymptotic laws as T̃ . We need now to estimate the variance
σ2 which is unknown in the model studied. We will consider the empirical
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variance σ̂2 = 1
n

{∑n
j=1(Yj − Y )2

}
with Y = 1

n

∑n
j=1 Yj . σ̂2 is a consistent

estimator under H0 and Ha by contiguity. We just have to adapt the previous
test statistic T . T is now such as :

T =

∑n
j=1

1
p (Yj − Y ) 1Xj=1 − 1

1−p (Yj − Y ) 1Xj=−1

σ̂
√

n
p (1−p)

.

The asymptotic laws are unchanged : T
H0→ N (0, 1) and T

Ha→ N

(
2a

√
p (1−p)

σ , 1

)
.

This test has the same asymptotic laws as the Wald test (proof given in Section
1 of “Online Ressource 1”).

Appendix B. Proof of Theorem 1

Notations 2. Iθ will be the Fisher information matrix taken at the point θ .
Iij(θ) refers to the element ij of Iθ. I−1

ij (θ) refers to the element ij of I−1
θ , the

inverse of Iθ.

Appendix B.1. Theoretical elements needed for the study

To begin, we introduce a theorem. It will be very convenient to calculate
the power for the Wald tests.

Theorem 3. Let C1, ..., Cn be an independent and identically distributed sample
from a probability distribution Pθ. We suppose that Θ is an open subset of Rd

and that the model (Pθ : θ ∈ Θ) is regular. Let θ̂ be the Maximum Likelihood
Estimator (MLE) of θ and θ0 ∈ Θ, then for every converging sequence hn → h,
as n → +∞, we have :

i) under Pθ0 ,
√
n(θ̂ − θ0) → N(0, I−1(θ0))

ii) under Pθ0+hn/
√
n ,

√
n(θ̂ − θ0) → N(h, I−1(θ0)).

Proof :
Let Pn be the law corresponding to P ⊗n

θ0
, Qn the law corresponding to

P ⊗n
θ0+hn/

√
n
and dQn

dPn
the likelihood ratio.

Since the model is regular, we have i). Besides, we can use Theorem 7.2 of Van
der Vaart [1998] which gives an explicit expression of the log likelihood under
Pn. According to the central limit theorem, the law of large numbers and the
properties of the Fisher Information matrix, we have (with ht the transpose of
h):

log

(
dQn

dPn

)
Pn→ N(−1

2
ν2, ν2) with ν2 = htIθ0h.

Notations 3. Qn ⊳Pn will mean the sequence Qn is contiguous with the respect
to the sequence Pn.
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By the iii) of Le Cam’s first lemma, we have Qn ⊳ Pn. So, we can use Le Cam’s
third lemma. Since the model is regular, we can use Theorem 5.39 of Van der
Vaart [1998] :

√
n(θ̂ − θ0) = I−1

θ0

1√
n

n∑

j=1

ℓ̇θ0(Cj) + oPθ0
(1)

where ℓ̇θ0(Cj) denotes the score function taken at θ0, for an observation Cj .
According to Theorem 7.2 of Van der Vaart [1998] :

log

(
dQn

dPn

)
=

1√
n

n∑

j=1

htℓ̇θ0(Cj) − 1

2
htIθ0h + oPθ0

(1).

Let h(i) be the ith component of h. At the ith line, we have :

Cov

(
log

(
dQn

dPn

)
,

√
n(θ̂ − θ0)

)
=

d∑

k=1

h(k)

{
I−1
i1 (θ0)I1k(θ0) + ...+ I−1

id (θ0)Idk(θ0)
}

+ oPθ0
(1)

= h(i) + oPθ0
(1).

Then, according to Le Cam’s third lemma :

√
n(θ̂ − θ0)

Qn→ N(h, I−1(θ0)).

This gives the result.

Appendix B.2. First strategy (Wald test using all the phenotypes)

Appendix B.2.1. Likelihood

To begin, we remind that the r.v. X is such as :

X =

{
X if Y /∈ [S− , S+]

0 otherwise.

So, X = 0 refers to the case where the genotype is missing. (X , Y ) has a
density with respect to the counting measure × the Lebesgue measure.

Notations 4. ∀ i ∈ {−1, 1} and ∀ k ∈ {−1, 0, 1}, P {i | k} and P {k | i} are the
quantities such as :

P {i | k} = P(X = i | X = k) and P {k | i} = P(X = k | X = i).

Notations 5. q−1, q1 and q0 are the quantities such as :
q−1 = P(X = −1) , q1 = P(X = 1) and q0 = P(X = 0).
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As a result, P {i | i} = Φ
(

S
−
−µ−iq
σ

)
+1−Φ

(
S+−µ−iq

σ

)
where Φ is the cumula-

tive distribution of a standard normal distribution, q−1 = P {−1 | −1} (1 − p)
, q1 = P {1 | 1} p and
q0 = (1− P {−1 | −1}) (1− p) + (1− P {1 | 1}) p.
As a consequence :

P {−1 | k} =
P {k | −1} (1− p)

qk
, P {1 | k} =

P {k | 1} p

qk
.

According to Bayes theorem, ∀ k ∈ {−1, 1}, ∀ y ∈ R, we have

P(Y ∈ [y , y + dy] | X = k) = P(Y ∈ [y , y + dy] | X = k ∩ X 6= 0) =
ϕ(y−µ−kq

σ )1y/∈[S
−

, S+]

σ P {k | k} dy ,

P(Y ∈ [y , y + dy] ∩ X = k) =
ϕ(y−µ−kq

σ )1y/∈[S
−

, S+]

σ P {k | k} qk dy ,

where ϕ(.) denotes the density of a standard normal distribution.
So,

P(Y ∈ [y , y + dy] ∩ X = −1) =
1− p

σ
ϕ

(
y − µ+ q

σ

)
1y/∈[S

−
, S+] dy ,

P(Y ∈ [y , y + dy] ∩ X = 1) =
p

σ
ϕ

(
y − µ− q

σ

)
1y/∈[S

−
, S+] dy .

Besides,

P(Y ∈ [y , y + dy] | X = 0) =
∑

i∈{−1,1}
P(Y ∈ [y , y + dy] ∩ X = i | X = 0)

=
p ϕ(y−µ−q

σ )1y∈[S
−

, S+]

σ q0
dy +

(1 − p) ϕ(y−µ+q
σ )1y∈[S

−
, S+]

σ q0
dy .

Then,

P(Y ∈ [y , y + dy] ∩ X = 0) =
p

σ
ϕ

(
y − µ− q

σ

)
1y∈[S

−
, S+] dy

+
1− p

σ
ϕ

(
y − µ+ q

σ

)
1y∈[S

−
, S+] dy .

Finally, the likelihood L for an observation
(
X,Y

)
is such as :

L =
1− p

σ
ϕ

(
y − µ+ q

σ

)
1X=−1 +

p

σ
ϕ

(
y − µ− q

σ

)
1X=1

+

{
1− p

σ
ϕ

(
y − µ+ q

σ

)
+

p

σ
ϕ

(
y − µ− q

σ

)}
1X=0 .
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Appendix B.2.2. Statistical test (µ, q)

We consider a statistical model with two unknown parameters (µ, q). We
first introduce a useful lemma obtained mainly using integration by parts.

Lemma 5. Let V ∼ N(µ, σ2), then :

i) E

(

V 21V /∈[S−
, S+]

)

= (µ2 + σ2) P(V /∈ [S−, S+]) + σ (S+ + µ) ϕ
(

S+−µ

σ

)

− σ (S− + µ) ϕ
(

S
−
−µ

σ

)

ii) E

(

V 1V /∈[S−
, S+]

)

= µ P(V /∈ [S−, S+]) + σ ϕ
(

S+−µ

σ

)

− σ ϕ
(

S
−
−µ

σ

)

iii) E

{

(V − µ)21V /∈[S−
, S+]

}

= σ2
P(V /∈ [S−, S+]) + σ (S+ − µ) ϕ

(

S+−µ

σ

)

− σ (S− − µ) ϕ
(

S
−
−µ

σ

)

iv) E

{

(V − µ)1V /∈[S−
, S+]

}

= σ ϕ
(

S+−µ

σ

)

− σ ϕ
(

S
−
−µ

σ

)

v) E

{

(V − µ)21V ∈[S−
, S+]

}

= σ2
− σ2

P(V /∈ [S−, S+])− σ(S+ − µ) ϕ
(

S+−µ

σ

)

+ σ (S− − µ) ϕ
(

S
−
−µ

σ

)

.

Notations 6. γ, γ+ and γ− are respectively the quantities PH0
(Y /∈ [S−, S+]),

PH0
(Y > S+) and PH0

(Y < S−). zα denote the quantile of order 1−α of a stan-
dard normal distribution. A is the quantity such as A = σ2

{
γ + zγ+

ϕ(zγ+
) − z1−γ

−

ϕ(z1−γ
−

)
}
.

According to this lemma, we have A = EH0

{
(Y − µ)21Y /∈[S

−
, S+]

}
. Let θ =

(µ, q) be the parameter of the model and θ0 = (µ, 0) be true value of the
parameter under H0. We first compute the score functions and the Fisher
Information matrix. We have

∂logL

∂q
|θ0 = −

(
y − µ

σ2

)
1X=−1 +

(
y − µ

σ2

)
1X=1 +

(
y − µ

σ2

)
(2p− 1)1X=0 ,

(
∂logL

∂q
|θ0
)2

=
(y − µ)2

σ4
1X=−1 +

(y − µ)2

σ4
1X=1 +

(y − µ)2

σ4
(2p− 1)2 1X=0 .

As a consequence I22(θ0) =
A
σ4 + (2p−1)2

σ4 (σ2−A). Besides, ∂logL
∂µ |θ0 = y−µ

σ2 .
So,
I11(θ0) = 1

σ2 . Furthermore,

∂logL

∂q ∂µ
|θ0 =

1

σ2
1X=−1 − 1

σ2
1X=1 − 1

σ2
(2p− 1)1X=0 .

Since we are under H0, PH0
{−1 | −1} = PH0

{1 | 1}. So, we have I12(θ0) =
1
σ2 (2p− 1). As a consequence :

I−1
22 (θ0) =

σ4

4 A p(1− p)
.
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q̂, the MLE of q, can be obtained using a EM algorithm. Since the model is
regular : √

n q̂
H0→ N( 0 , I−1

22 (θ0) ) .

We can deduce the Wald test :

W1 =
2
√
n

σ2

√
A p(1− p) q̂

H0→ N(0, 1) .

According to Theorem 3 with hn = h = (0, a) :

W1
Ha→ N

(
2a

σ2

√
A p(1− p), 1

)
. (B.1)

Appendix B.3. Second strategy (comparison of means based on the extreme phe-
notypes)

Appendix B.3.1. Statistical test (µ, q, σ)

Let δ̂ be the following estimator :

δ̂ =
1

p
(Y − µ)1X=1 − 1

1− p
(Y − µ)1X=−1 .

According to formula (A.1), EHa
(δ̂) = 2q when we are in the oracle situation.

So, δ̂ is an estimator of twice the QTL effect. If now we consider a selective
genotyping, we would like to define δ̂ such as :

δ̂ =
1

p
(Y − µ)1X=1 − 1

1− p
(Y − µ)1X=−1 .

According to Lemma 5 :

E

(
δ̂
)
=

1

p
E
(
Y − µ | X = 1

)
P(X = 1) − 1

1− p
E
(
Y − µ | X = −1

)
P(X = −1)

= q (P {1 | 1}+ P {−1 | −1}) + σ ϕ

(
S+ − µ− q

σ

)
− σ ϕ

(
S− − µ− q

σ

)

− σ ϕ

(
S+ − µ+ q

σ

)
+ σ ϕ

(
S− − µ+ q

σ

)
.

We remark that δ̂ is not a good estimator of q anymore, but we can propose a
test based on δ̂ since the expectation depends of q. We have EH0

(δ̂) = 0 and

VH0
(δ̂) = EH0

(δ̂2). Besides :

δ̂2 =
1

p2
(Y − µ)2 1X=1 +

1

(1− p)2
(Y − µ)2 1X=−1 .

According to Lemma 5 :

E(δ̂2) =
1

p2
E
{
(Y − µ)2 | X = 1

}
P(X = 1) +

1

(1− p)2
E
{
(Y − µ)2 | X = −1

}
P(X = −1)

=
1

p
E
{
(Y − µ)21Y /∈[S

−
,S+] | X = 1

}
+

1

1− p
E
{
(Y − µ)21Y /∈[S

−
,S+] | X = −1

}
.
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As a result EH0
(δ̂2) = A

p(1−p) . So, we can define the test statistic T2 correspond-

ing to the second strategy. According to the Central Limit theorem,

T2 =

∑n
j=1

1
p (Yj − µ)1Xj=1 − 1

1−p (Yj − µ)1Xj=−1√
n A

p(1−p)

H0→ N(0, 1) . (B.2)

According to a Taylor expansion at first order :

ϕ

(
S− − µ+ q

σ

)
=

1√
2π

e
− 1

2

(

S
−

− µ

σ

)

2
{
1− (S− − µ) q

σ2
+ o(q)

}
.

We also have (working on integrals) :

P {1 | 1} = Φ

(
S− − µ

σ

)
− q

σ
ϕ

(
S− − µ

σ

)
+ 1 − Φ

(
S+ − µ

σ

)
+

q

σ
ϕ

(
S+ − µ

σ

)
+ o(q) .

As a consequence :

EHa
{T2} → 2a

{
γ − z1−γ

−

ϕ(z1−γ
−

) + zγ+
ϕ(zγ+

)
}
√

p(1− p)

A .

We can remark that this limit is equal to 2a
σ2

√
A p(1− p). Besides, EHa

(δ̂) → 0.
Using Portmanteau theorem (since ∀i ∈ {−1, 1}, Y | X = i → N(µ, σ2) ):

EHa
(δ̂2) → A

p(1− p)
.

So VHa
(δ̂) → VH0

(δ̂) and

T2
Ha→ N

(
2a

σ2

√
A p(1− p), 1

)
. (B.3)

Since µ and σ are unknown, we have to adapt the test statistic T2. We can
replace µ by µ̂, estimator which depends of the extreme phenotypes. µ̂ can
be obtained by maximum likelihood or by the method of moments, because
these two estimators are

√
n consistent (same kind of proof as in Appendix A).

Besides, we can use the following consistent estimator of A :

Â =
1

n

n∑

j=1

(Yj − µ̂)21Xj 6=0 .

The asymptotic laws of T2 are unchanged.

Appendix B.3.2. Asymptotic Relative Efficiency

We compute here the Asymptotic Relative Efficiency (ARE) of the test of
comparison of mean based on extreme phenotypes, with respect to the oracle
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test (µ, q, σ) where all the genotypes are known. Until now, we have consid-
ered n individuals. Let’s consider now n⋆ individuals for a selective genotyping
experiment. T2 has to be adapted. We now have

T2 =

∑n⋆

j=1
1
p (Yj − µ̂)1Xj=1 − 1

1−p (Yj − µ̂)1Xj=−1√
n⋆ Â
p(1−p)

H0→ N(0, 1)

where Â and µ̂ are the same estimators as previously but adapted for n⋆ indi-
viduals.
Let ζ be the quantity such as ζ = n⋆

n , then (we remind that q = a/
√
n) :

T2
Ha→ N

(
2a

σ2

√
ζ A p(1− p), 1

)
.

We will focus in particular on the appropriate one sided test when a > 0. The
test based on T2 will be more powerful than the oracle test (µ, q, σ) when (we
suppose a > 0) :

zα − 2a

σ2

√
ζ A p(1− p) < zα − 2a

√
p(1− p)

σ
⇔ ζ >

σ2

A .

As a result, the efficiency κ2 is such as κ2 = A/σ2. That is to say,

κ2 = γ + zγ+
ϕ(zγ+

) − z1−γ
−

ϕ(z1−γ
−

) . (B.4)

Appendix B.4. Proof of i) of Theorem 1

Let β
(µ,q,σ)
i (resp. β

(µ,q)
i ) be the power of the test (µ, q, σ) (resp. (µ, q))

corresponding to strategy i. According to formulae (B.3) and (B.1) : β
(µ,q,σ)
2 =

β
(µ,q)
1 . Besides, by definition : β

(µ,q,σ)
2 ≤ β

(µ,q,σ)
1 ≤ β

(µ,q)
1 . So, β

(µ,q,σ)
1 =

β
(µ,q,σ)
2 . As a consequence, κ1 = κ2.

In the same way, by definition : β
(µ,q,σ)
2 ≤ β

(µ,q,σ)
3 ≤ β

(µ,q,σ)
1 . So, κ1 = κ2 = κ3.

Appendix B.5. Proof of ii) of Theorem 1

We have to answer the following question : how must we choose γ+ and γ−
to maximize the efficiency ? We remind that γ+ + γ− = γ. Let g(.) be the
function such as : g(zγ+

) = Φ−1
{
γ − 1 + Φ(zγ+

)
}
. Then, z1−γ

−

= g(zγ+
).

Let k1(.) be the following function : k1(zγ+
) = zγ+

ϕ(zγ+
)− g(zγ+

) ϕ
{
g(zγ+

)
}
.

In order to maximize κ1, we have to maximize the function k1(.). Let k′1(.),
g′(.) and ϕ′(.) be respectively the derivative of k1(.), g(.) and ϕ(.). We have :

k′1(zγ+
) = ϕ(zγ+

) + zγ+
ϕ′(zγ+

) − g′(zγ+
) ϕ
{
g(zγ+

)
}

− g(zγ+
) g′(zγ+

) ϕ′ {g(zγ+
)
}

,

g′(zγ+
) =

ϕ(zγ+
)

ϕ(z1−γ
−

)
.

Then, k′1(zγ/2) = ϕ(zγ/2) −
{
zγ/2

}2
ϕ(zγ/2) − ϕ(z1−γ/2) +

{
z1−γ/2

}2
ϕ(z1−γ/2) =

0. As a result, the efficiency κ1 reaches its maximum when γ+ = γ− = γ
2 .
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Appendix C. Proof of Lemma 2

We recall that we consider here three unknown parameters (µ, q, σ). Since
the powers are exactly the same for all the strategies, β(µ,q,σ) will denote the cor-

responding power. According to Lemma 1, β(µ,q,σ) = 1−Φ
(
zα − 2a

√
Ap(1− p)/σ2

)
.

As a consequence, for n large and q small, we have to find the value of n which
verifies the following relationship :

zα − 2 q
√
n A p (1− p)

σ2
= Φ−1(1− β) .

As a consequence,

√
n =

σ2
{
zα − Φ−1(1 − β)

}

2 q
√
A p (1− p)

and n =
σ4 (zα − zβ)

2

4 q2 A p (1− p)
.

Appendix D. Proof of Theorem 2

To begin, we suppose that we are in the oracle situation, i.e. no genotypes
are missing. So, we observe Z and X whatever the value of Y . In order to
perform the linear regression of Z | X on Y | X which will be called Z | X , we
define the following scalar product, for 2 r.v. U1 and U2 which take value in R

: < U1 , U2 > = E [U1U2]. We have :

Z | X = < Z | X ,
Y | X − µY X

σ
>

Y | X − µYX

σ
+ < Z | X , 1 > 1

= r Y | X − r µYX + µZX .

Let Z⋆ and µ⋆
ZX be the two following quantities :

Z⋆ =
Z − r Y

σ
√
1− r2

and µ⋆
ZX =

µZX − r µYX

σ
√
1− r2

.

This way, Z⋆ | X ∼ N(µ⋆
ZX , 1). By construction, (Z − Z) | X and Z | X are

independent. So, Z⋆ | X and Y | X are independent. If we consider now a
selective genotyping experiment, Z⋆ will be available only when Y is extreme.
However, since Z⋆ | X and Y | X are independent, Z⋆ | X is not affected by
the fact that Y is extreme.

Appendix D.1. First strategy (Wald test using all the phenotypes)

Notations 7. L⋆(µ⋆
Z−1, µ

⋆
Z1, µY , qY ) is the likelihood for an observation (X,Y, Z⋆)

and L(µZ , qZ , µY , qY ) is the likelihood for an observation (X,Y, Z).

Obviously, we have the relationship L⋆(µ⋆
Z−1, µ

⋆
Z1, µY , qY ) = L(µZ , qZ , µY , qY ).

We have :

L⋆(µ⋆
Z−1, µ

⋆
Z1, µY , qY ) =

{
1− p

σ
ϕ

(
y − µY + qY

σ

)
+

p

σ
ϕ

(
y − µY − qY

σ

)}
1X=0

+
p

σ
ϕ

(
y − µY − qY

σ

)
ϕ(z⋆ − µ⋆

Z1) 1X=1 +
1− p

σ
ϕ

(
y − µY + qY

σ

)
ϕ(z⋆ − µ⋆

Z−1) 1X=−1 .

39



The respective MLE µ̂Y and q̂Y , of µY and qY can be obtained using an EM
algorithm.

Besides, since ∂ logL⋆

∂µ⋆
Z1

= (z⋆ − µ⋆
Z1)1X=1 and ∂ logL⋆

∂µ⋆
Z−1

= (z⋆ − µ⋆
Z−1)1X=−1, we

easily obtain µ̂⋆
Z−1 and µ̂⋆

Z1 respective MLE of µ⋆
Z−1 and µ⋆

Z1 for n observations
:

µ̂⋆
Z1 =

1∑n
j=1 1Xj=1

n∑

j=1

z⋆j 1Xj=1 and µ̂⋆
Z−1 =

1∑n
j=1 1Xj=−1

n∑

j=1

z⋆j 1Xj=−1 .

Let θ = (µZ , qZ , µY , qY ) and θ⋆ =
(
µ⋆
Z−1, µ

⋆
Z1, µY , qY

)
. Then, θ corresponds to

parameters of L and θ⋆ to parameters of L⋆. We have :

qZ =
σ

2

√
1− r2 (µ⋆

Z1 − µ⋆
Z−1) + r qY ,

µZ =
σ

2

√
1− r2 (µ⋆

Z1 + µ⋆
Z−1) + r µY .

Let M be the matrix such as θ = Mθ⋆ :

M =




σ
2

√
1− r2 σ

2

√
1− r2 r 0

−σ
2

√
1− r2 σ

2

√
1− r2 0 r

0 0 1 0
0 0 0 1


 .

The inverse of M , called M−1, verifies :

M−1 =




1
σ
√
1−r2

− 1
σ
√
1−r2

− r
σ
√
1−r2

r
σ
√
1−r2

1
σ
√
1−r2

1
σ
√
1−r2

− r
σ
√
1−r2

− r
σ
√
1−r2

0 0 1 0
0 0 0 1


 .

Let θ00 = (µZ , 0, µY , 0) and θ⋆00 = M−1θ00. As a result :

θ⋆00 =

(
µZ

σ
√
1− r2

− rµY

σ
√
1− r2

,
µZ

σ
√
1− r2

− rµY

σ
√
1− r2

, µY , 0

)
.

Notations 8. Iθ (resp. I⋆θ⋆) will be the Fisher information matrix correspond-
ing to the likelihood L (resp. L⋆) and taken at point θ (resp. θ⋆).

Let’s calculate I⋆θ⋆
00

:
∂ logL⋆

∂µY
|θ⋆

00
= y−µY

σ , ∂ logL⋆

∂µ⋆
Z−1

|θ⋆
00
= (z⋆ − µZ

σ
√
1−r2

+ rµY

σ
√
1−r2

) 1X=−1 ,

∂ logL⋆

∂µ⋆
Z1

|θ⋆
00
= (z⋆ − µZ

σ
√
1−r2

+ rµY

σ
√
1−r2

) 1X=1 and

∂ logL⋆

∂qY
|θ⋆

00
= −

(
y−µY

σ2

)
1X=−1 +

(
y−µY

σ2

)
1X=1 +

(
y−µY

σ2

)
(2p− 1) 1X=0 .

We finally obtain

I⋆11(θ
⋆
00) = (1− p) γ , I⋆22(θ

⋆
00) = p γ and I⋆33(θ

⋆
00) = 1/σ2 .

Let’s adapt the previous notations for the configuration with two phenotypes.
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Notations 9. γ, γ+ and γ− are respectively the quantities
PH0Y

(Y /∈ [S−, S+]), PH0Y
(Y > S+) and PH0Y

(Y < S−).

We remind that A = σ2
{
γ + zγ+

ϕ(zγ+
) − z1−γ

−

ϕ(z1−γ
−

)
}
. According to

Appendix B.2.2, we have

I⋆44(θ
⋆
00) =

A
σ4

+
(2p− 1)2

σ4
(σ2 −A) and I⋆34(θ

⋆
00) =

2p− 1

σ2
.

Besides, all the other terms of I⋆θ⋆
00

are equal to zero.

Let θ̂ and θ̂⋆ be respectively the MLE of θ and θ⋆, then we have θ̂ = Mθ̂⋆. Since
the model is regular :

V

{ √
n (θ̂⋆ − θ⋆00)

}
H0Y H0Z→ I⋆ −1

θ⋆
00

.

Besides,
√
n (θ̂ − θ00) =

√
n M (θ̂⋆ − θ⋆00). We have :

V

{ √
n (θ̂ − θ00)

}
H0Y H0Z→ M I⋆ −1

θ⋆
00

M t and I−1
θ00

= M I⋆ −1
θ⋆
00

M t .

After some calculations, we obtain :

I−1
22 (θ00) =

σ2 (1 − r2)

4 p (1− p) γ
+

σ4 r2

4 p (1− p) A .

Let’s define the Wald statistic W̃1 :

W̃1 =
√
n q̂Z/

√
I−1
22 (θ00) .

The MLE q̂Z can easily be obtained using the MLE µ̂⋆
Z−1, µ̂

⋆
Z1, and q̂Y (q̂Y can

be obtained by EM). Since the model is regular :

W̃1
H0ZH0Y→ N(0, 1) .

We apply Theorem 3 respectively with hn = h = (0, 0, 0, a), hn = h = (0, b, 0, 0),
hn = h = (0, b, 0, a). Then, we have :

W̃1
H0ZHaY→ N (0, 1)

W̃1
HbZH0Y→ N

(
b/

√
I−1
22 (θ00) , 1

)

W̃1
HbZHaY→ N

(
b/

√
I−1
22 (θ00) , 1

)
.

As a consequence, under either hypothesis on Y (i.e. the null hypothesis or the
local alternative), we always have :

W̃1
H0Z→ N(0, 1) and W̃1

HbZ→ N

(
b/

√
I−1
22 (θ00) , 1

)
.
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The efficiency κ̃1 of this test, with respect to the oracle test (µZ , qZ) is obtained
easily :

κ̃1 =

{
1− r2

γ
+

r2

γ + zγ+
ϕ(zγ+

) − z1−γ
−

ϕ(z1−γ
−

)

}−1

.

We remark that :

κ̃1 =

{
1− r2

γ
+

r2

κ1

}−1

where κ1 is given in Theorem 1. According to Theorem 1, κ1 reaches its maxi-
mum for γ+ = γ− = γ/2. So, it is the same for κ̃1.

Appendix D.2. Second strategy (Wald test using only the extreme phenotypes
Y )

In this case, the likelihood is :

L⋆(µ⋆
Z−1, µ

⋆
Z1, µY , qY ) = P(X = 0) 1X=0 +

p

σ
ϕ

(
y − µY − qY

σ

)
ϕ(z⋆ − µ⋆

Z1) 1X=1

+
1− p

σ
ϕ

(
y − µY + qY

σ

)
ϕ(z⋆ − µ⋆

Z−1) 1X=−1 .

Let’s calculate the Fisher Information matrix. I⋆11(θ
⋆
00) and I⋆22(θ

⋆
00) are the

same as previously :

I⋆11(θ
⋆
00) = (1− p) γ , I⋆22(θ

⋆
00) = p γ .

Besides,

∂ logL⋆

∂µY
|θ⋆

00
=

y − µY

σ2

{
1X=−1 + 1X=1

}
+

ϕ
(
z1−γ

−

)
− ϕ

(
zγ+

)

σ (1− γ)
1X=0 ,

I⋆33(θ
⋆
00) =

A
σ4

+

{
ϕ
(
z1−γ

−

)
− ϕ

(
zγ+

)}2

σ2 (1 − γ)
.

According to formula (1) of Section 2.4 of “Online Ressource 1” :

I⋆44(θ
⋆
00) =

A
σ4

+ (2p− 1)2
{
ϕ
(
z1−γ

−

)
− ϕ

(
zγ+

)}2

σ2 (1 − γ)
.

Besides,

∂ logL⋆

∂µY ∂qY
|θ⋆

00
=

1

σ2
(1X=−1 − 1X=1) +

2p− 1

σ2(1− γ)

{
z1−γ

−

ϕ(z1−γ
−

)− zγ+
ϕ(zγ+

)
}
1X=0

− 2p− 1

σ2(1− γ)2
{
ϕ(z1−γ

−

)− ϕ(zγ+
)
}2

1X=0 .
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As a result :

I⋆34(θ
⋆
00) = (1 − 2p)

[
A
σ4

+

{
ϕ(z1−γ

−

)− ϕ(zγ+
)
}2

σ2(1 − γ)

]
.

The other components of the Fisher Information matrix ar equal to zeros. Using
block matrix inversion, we obtain :

I⋆ −1
11 (θ⋆00) =

1

(1− p) γ
, I⋆ −1

22 (θ⋆00) =
1

p γ
, I⋆ −1

44 (θ⋆00) =
σ4

4 A p(1− p)
.

Let’s define Λ such as :

Λ =

{
4 A p(1− p)

σ4

[
A
σ4

+

{
ϕ(zγ+

)− ϕ(z1−γ
−

)
}2

σ2 (1− γ)

]}−1

.

Then :

I⋆ −1
33 (θ⋆00) =

Λ

σ4

[
A+ (2p− 1)2

{
ϕ(zγ+

)− ϕ(z1−γ
−

)
}2

1− γ

]

I⋆ −1
34 (θ⋆00) = Λ (2p− 1)

[
A
σ4

+

{
ϕ(zγ+

)− ϕ(z1−γ
−

)
}2

σ2 (1− γ)

]
.

In the same way as previously :

I−1
θ00

= M I⋆ −1
θ⋆
00

M t .

We obtain :

I−1
22 (θ00) =

σ2(1− r2)

4 γ p(1− p)
+

r2σ4

4 A p(1− p)
.

We deduce the Wald test statistic W̃2 and its asymptotic laws (same proof as
for the first strategy)

W̃2 =
√
n q̂Z/

√
I−1
22 (θ00)

H0Z→ N(0, 1)

W̃2
HbZ→ N

(
b/

√
I−1
22 (θ00) , 1

)
.

The MLE q̂Z can be obtained using µ̂⋆
Z−1, µ̂

⋆
Z1 and q̂Y (q̂Y can be obtained using

a Newton method). This test has the same power as the test corresponding to
the first strategy. It concludes the proof.

Appendix E. Proof of Lemma 4

We recall that we consider here four unknown parameters (µZ , qZ , µY , qY ).
Since the powers are exactly the same for all the strategies, β(µZ ,qZ ,µY ,qY ) will
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denote the corresponding power. According to Lemma 3, under H0Y and HaY ,

β(µZ ,qZ ,µY ,qY ) = 1 − Φ

(
zα − b

{
σ2 (1−r2)
4 p (1−p) γ + σ4 r2

4 p (1−p) A

}−1/2
)

. As a conse-

quence, for n large and qZ small (qY has also to be small if we are under under
HaY ), we have to find the value of n which verifies the following relationship :

zα − qZ
√
n

{
σ2 (1− r2)

4 p (1− p) γ
+

σ4 r2

4 p (1 − p) A

}−1/2

= Φ−1(1− β) .

As a consequence,

n =

(
zα − zβ

qZ

)2 {
σ2 (1 − r2)

4 p (1− p) γ
+

σ4 r2

4 p (1 − p) A

}
.
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1. The oracle statistical test (µ, q, σ) is the most powerful test we can performFirst, we fous on the Wald test for a statistial model with two unknown parameters (µ, q).Let θ = (µ, q) and θ0 = (µ, 0).The likelihood L for an observation (X,Y ) is :
L =

p

σ
ϕ

(

y − µ− q

σ

)

1X=1 +
1− p

σ
ϕ

(

y − µ+ q

σ

)

1X=−1where ϕ(x) denotes the density of a standard normal distribution taken at point x.Let's ompute the Fisher information matrix.Notations : Iθ will be the Fisher information matrix taken at the point θ . Iij(θ) refersto the element ij of Iθ. I−1
ij (θ) refers to the element ij of I−1

θ , the inverse of Iθ.We have
∂logL

∂µ
=

(

y − µ− q

σ2

)

1X=1 +

(

y − µ+ q

σ2

)

1X=−1 ,

∂2logL

∂µ2
= − 1

σ2
, so I11(θ0) =

1

σ2
.Besides,

∂logL

∂q
=

(

y − µ− q

σ2

)

1X=1 −
(

y − µ+ q

σ2

)

1X=−1 ,

∂2logL

∂q2
= − 1

σ2
, so I22(θ0) =

1

σ2
.Finally,

∂logL

∂µ ∂q
= − 1

σ2
1X=1 +

1

σ2
1X=−1 ,



2 C.E.Rabier

I12(θ0) =
1

σ2
(2p− 1) .As a onsequene :

Iθ0 =

(

1
σ2

1
σ2 (2p− 1)

1
σ2 (2p− 1) 1

σ2

)

.The Maximum Likelihood Estimator (MLE) θ̂ is suh θ̂ = (µ̂, q̂) where µ̂ and q̂ are therespetive MLE of µ and q.We want to test :
H0 : q = 0 vs H1 : q 6= 0.Sine the model is regular, we use Theorem 3 (f. Appendix B.1 of the artile) :
√
n q̂

H0→ N( 0 , I−1
22 (θ0) ).We have :

I−1
θ0

=
σ2

4(1− p)p

(

1 1− 2p

1− 2p 1

)

.So, the test statisti W is suh as :
W =

√
n

2
√

(1− p)p

σ
q̂

H0→ N(0, 1) .We apply Theorem 3 (f. Appendix B.1 of the artile) with hn = h = (0, a) :
W

Ha→ N

(

2a
√

p(1− p)

σ
, 1

)

.By de�nition, the Wald test (µ, q, σ) has a greater or the same power as the orale test
(µ, q, σ). Besides, we remark that the Wald test (µ, q) has the same asymptoti laws as theorale test (µ, q, σ) (see Setion 2.2 of the artile). As a onsequene, the Wald test (µ, q, σ)and the orale test (µ, q, σ) have the same asymptoti laws.
2. Proof of Corollary 1

2.1. Oracle statistical test (q)We suppose here that µ and σ are known. So, we onsider a statistial model with oneunknown parameter (q). If we have a look at the orale statistial test (µ, q, σ) (f Setion2.2 of the artile), we would like to onsider the same test statisti T but with µ and σknown. As a onsequene, we have :
T =

∑n
j=1

1
p (Yj − µ) 1Xj=1 − 1

1−p (Yj − µ) 1Xj=−1

σ
√

n
p(1−p)

,
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T
H0→ N(0, 1) ,

T
Ha→ N

(

2a
√

p(1− p)

σ
, 1

)

.However, this test is not the best to perform. If we onsider a Wald test, and using thealulations of Setion 1 of this doument, the MLE q̂ of q :
q̂ =

1

n

n
∑

j=1

(Yj − µ)1Xj=1 − (Yj − µ)1Xj=−1 .Using I22(θ0) of Setion 1, the Wald statisti is :
W =

∑n
j=1(Yj − µ)1Xj=1 − (Yj − µ)1Xj=−1

σ
√
n

.Let q̃ be the MLE of q if we onsider only one observation. We have
q̃ = (Y − µ)1X=1 − (Y − µ)1X=−1 ,

EH0
(q̃) = 0 and EH0

(

q̃2
)

= σ2 .Aording to the entral limit theorem :
W

H0→ N(0, 1) .Besides :
EHa

(q̃) = q and VHa
(q̃) → σ2 .Aording to the entral limit theorem :

W
Ha→ N

( a

σ
, 1
)

.This Wald test will be our orale test (q).Note that we have :
{W = T } ⇔

{

p =
1

2

}

.

2.2. First strategyAording to the Fisher information matrix in the proof of Theorem 1 of the artile (f.Appendix B), the Wald test for a model (q) and orresponding to the �rst strategy is :
W1 =

√
n

σ2

√

A+ (2p− 1)2(σ2 −A) q̂
H0→ N(0, 1) .Using Theorem 3 of the artile with hn = h = a, we obtain :

W1
Ha→ N

( a

σ2

√

A+ (2p− 1)2(σ2 −A), 1
)

.Considering the orale test (q), we obtain easily the e�ieny κ1 for the �rst strategy :
κ1 = γ + zγ+

ϕ(zγ+
) − z1−γ

−

ϕ(z1−γ
−

) + (2p− 1)2
{

1− γ − zγ+
ϕ(zγ+

) + z1−γ
−

ϕ(z1−γ
−

)
}

.
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2.3. Second strategyAording to formula (B.2) of the proof of Theorem 1 of the artile, the test statisti T2 fora model (q) is :
T2 =

∑n
j=1

1
p (Yj − µ)1Xj=1 − 1

1−p (Yj − µ)1Xj=−1
√

n A
p(1−p)

H0→ N(0, 1) .The asymptoti laws were :
T2

Ha→ N(0, 1) , T2
Ha→ N

(

2a

σ2

√

A p(1− p), 1

)

.As a result, the e�ieny is :
κ2 = 4 p (1 − p)

{

γ − z1−γ
−

ϕ(z1−γ
−

) + zγ+
ϕ(zγ+

)
}

.

2.4. Third strategyWe fous here on the Wald test under a statistial model (q). θ = (q) and θ0 = (0). Wesuppose γ 6= 1. The likelihood for an observation is :
L =

1− p

σ
ϕ

(

y − µ+ q

σ

)

1X=−1 +
p

σ
ϕ

(

y − µ− q

σ

)

1X=1 + P(X = 0) 1X=0 .Besides,
∂logL

∂q
|θ0 = −y − µ

σ2
1X=−1 +

y − µ

σ2
1X=1 +

(1− 2p) ϕ
(

zγ+

)

+ (2p− 1) ϕ
(

z1−γ
−

)

σ(1 − γ)
1X=0 ,

(

∂logL

∂q
|θ0
)2

=
(y − µ)2

σ4
1X=−1 +

(y − µ)2

σ4
1X=1

+

{

(1− 2p) ϕ
(

zγ+

)

+ (2p− 1) ϕ
(

z1−γ
−

)

σ(1 − γ)

}2

1X=0 .As a result,
Iθ0 =

A
σ4

+

{

(1− 2p) ϕ
(

zγ+

)

+ (2p− 1) ϕ
(

z1−γ
−

)}2

σ2(1 − γ)
. (1)Let q̂ the MLE of q. It an be obtained using a Newton method.We have : √

n q̂
H0→ N( 0 , I−1

θ0
).The Wald test statisti W3 orresponding to strategy 3 is :

W3 =
√
n

[

A
σ4

+

{

(1− 2p) ϕ
(

zγ+

)

+ (2p− 1) ϕ
(

z1−γ
−

)}2

σ2(1 − γ)

]1/2

q̂
H0→ N(0, 1) .
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W3

Ha→ N(a
√

Iθ0 , 1) .We easily obtain the e�ieny orreponding to strategy 3 :
κ3 = γ + zγ+

ϕ(zγ+
) − z1−γ

−

ϕ(z1−γ
−

) +
(2p− 1)2

1 − γ

{

ϕ(z1−γ
−

) − ϕ(zγ+
)
}2 ∀γ 6= 1 .

2.5. How to genotype in order to maximize the efficiencies ?We want to answer the following question : how to hoose γ+ and γ− to maximize thee�ienies ? We remind that γ+ + γ− = γ.We study here the di�erent strategies. In order to make the alulation easier, we �rstonsider strategy 2. We remind that :
κ2 = 4 p (1− p)

{

γ − z1−γ
−

ϕ(z1−γ
−

) + zγ+
ϕ(zγ+

)
}

.Let g(.) be the funtion suh as : g(zγ+
) = Φ−1

{

γ − 1 + Φ(zγ+
)
}. So, z1−γ

−

= g(zγ+
).In order to maximize κ2, we have to maximize the following funtion alled k2(.) :

k2(zγ+
) = zγ+

ϕ(zγ+
)− g(zγ+

) ϕ
{

g(zγ+
)
}

.Let k′1(.), k′2(.), k′3(.) and g′(.) be respetively the derivative of k1(.), k2(.), k3(.) and g(.).We have :
k′2(zγ+

) = ϕ(zγ+
) + zγ+

ϕ′(zγ+
) − g′(zγ+

) ϕ
{

g(zγ+
)
}

− g(zγ+
) g′(zγ+

) ϕ′
{

g(zγ+
)
}

,

g′(zγ+
) =

ϕ(zγ+
)

ϕ(z1−γ
−

)
.Then :

k′2(zγ/2) = ϕ(zγ/2) −
{

zγ/2
}2

ϕ(zγ/2) − ϕ(z1−γ/2) +
{

z1−γ/2

}2
ϕ(z1−γ/2) = 0 .As a onsequene, the e�ieny κ2 of strategy 2 is maximum when γ+ = γ− = γ

2 .Let's fous now on κ1. We remind that :
κ1 = γ + zγ+

ϕ(zγ+
) − z1−γ

−

ϕ(z1−γ
−

) + (2p− 1)2
{

1− γ − zγ+
ϕ(zγ+

) + z1−γ
−

ϕ(z1−γ
−

)
}

.We have to maximize the fution k1(.) de�ned suh as :
k1(zγ+

) = k2(zγ+
) − k2(zγ+

) (2p− 1)2 .We have :
k′1(zγ+

) = k′2(zγ+
) − k′2(zγ+

) (2p− 1)2 .Sine k′2(zγ/2) = 0, we have k′1(zγ/2) = 0.So, the e�ieny κ1 is maximum for γ+ = γ− = γ
2 .Let's fous now on the e�ieny κ3 orresponding to the third strategy. We remind that :

κ3 = γ + zγ+
ϕ(zγ+

) − z1−γ
−

ϕ(z1−γ
−

) +
(2p− 1)2

1 − γ

{

ϕ(z1−γ
−

) − ϕ(zγ+
)
}2 ∀γ 6= 1 .



6 C.E.RabierWe have to maximize the funtion k3(.) suh as :
k3(zγ+

) = k2(zγ+
) +

(2p− 1)2

1 − γ

[

ϕ
{

g(zγ+
)
}

− ϕ(zγ+
)
]

.We have :
k′3(zγ+

) = k′2(zγ+
) +

(2p− 1)2

1 − γ
2
[

g′(zγ+
)ϕ′
{

g(zγ+
)
}

− ϕ′(zγ+
)
] [

ϕ
{

g(zγ+
)
}

− ϕ(zγ+
)
]

.Then k′3(zγ/2) = 0. We dedue that the e�ieny κ3 is maximum for γ+ = γ− = γ
2 .

3. Proof of Corollary 3

3.1. Oracle statistical test (qZ)We onsider a statistial model with one parameter (qZ). The orale statistial test is easyto obtain : we just have to onsider what has been done in Setion 2.1 of this doument.So, the orale test is based on the following statisti :
W =

∑n
j=1(Zj − µZ)1Xj=1 − (Zj − µZ)1Xj=−1

σ
√
n

.And we have
W

H0Z→ N (0, 1) and W
HbZ→ N

(

b

σ
, 1

)

.

3.2. First strategyWe remind that we study a statistial model with two parameters (qZ , qY ). The alulationsare largely inspired of the proof of Theorem 2 of the artile.Let q̂Z be the MLE of qZ . The Wald statisti is :
W̃1 =

√

n

∆
q̂Z with ∆ =

σ2 (1 − r2)

PH0Y
(Y /∈ [S−, S+])

+
σ4 r2

A+ (2p− 1)2(σ2 −A)
.Aording to Theorem 3 of the artile :

W̃1
H0Z→ N(0, 1)

W̃1
HbZ→ N

(

b√
∆
, 1

)

.We an alulate the e�ieny κ̃1 of this test, with respet to the orale test (qZ). We have:
κ̃1 =

(

1− r2

γ
+

r2

κ1

)−1where κ1 is the e�ieny introdued in Corollary 1 of the artile.
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3.3. Second strategyWe use the same notations as in the proof of Theorem 2 of the artile. Besides, let's de�nethe following quantities :
µ⋆
Z =

µZ − r µY

σ
√
1− r2

and q⋆Z =
qZ − r qY

σ
√
1− r2

.As a onsequene, µ⋆
ZX = µ⋆

Z + q⋆ZX and Z⋆ | X ∼ N(µ⋆
Z + q⋆ZX, 1).Sine we keep only the extreme phenotypes Y , the likelihood for an observation (X,Y, Z⋆)is :

L⋆(q⋆Z , qY ) = P(X = 0) 1X=0

+
p

σ
ϕ

(

y − µY − qY
σ

)

ϕ(z⋆ − µ⋆
Z − q⋆Z) 1X=1 +

1− p

σ
ϕ

(

y − µY + qY
σ

)

ϕ(z⋆ − µ⋆
Z + q⋆Z) 1X=−1.Let θ = (qZ , qY ) and θ⋆ = (q⋆Z , qY ). Let M be the matrix suh as θ = Mθ⋆ :

M =

(

σ
√
1− r2 r
0 1

)

.As in the proof of Theorem 2 of the artile, Iθ is the Fisher information matrix taken atpoint θ and I⋆θ⋆ is the Fisher information matrix taken at point θ⋆.Besides, let's de�ne θ00 = (0, 0) and θ⋆00 = M−1θ00. So, θ⋆00 = (0, 0). We have :
∂ logL⋆

∂q⋆Z
|θ⋆

00
= (z⋆ − µ⋆

Z) 1X=1 − (z⋆ − µ⋆
Z) 1X=−1 ,

∂2 logL⋆

∂q⋆Z∂qY
|θ⋆

00
= 0 ,

I⋆11(θ
⋆
00) = γ and I⋆12(θ

⋆
00) = 0 .Besides, aording to formula (1) of Setion 2 of this doument :

I⋆22(θ
⋆
00) =

A
σ4

+

{

(1− 2p) ϕ
(

zγ+

)

+ (2p− 1) ϕ
(

z1−γ
−

)}2

σ2 (1− γ)
.We have :

I−1
θ00

= M I⋆ −1
θ⋆
00

M t .After some alulations, we obtain :
I−1
11 (θ00) =

A
σ4

+
(2p− 1)2

{

ϕ
(

zγ+

)

− ϕ
(

z1−γ
−

)}2

σ2 (1− γ)
.We de�ne the Wald test statisti W̃2 :

W̃2 =

√

n

I−1
11 (θ00)

q̂Z .



8 C.E.RabierSine the model is regular, we have :̃
W2

H0Z→ N(0, 1) ,Aording to Theorem 3 of the artile, we have :
W̃2

HbZ→ N





b
√

I−1
11 (θ00)

, 1



 .The e�ieny κ̃2 of this test, with respet to the orale test (qZ), is suh as :
κ̃2 =

(

1− r2

γ
+

r2

κ3

)−1where κ3 is the e�ieny introdued in Corollary 1 of the artile.
4. Proof of Corollary 4

4.1. Oracle statistical test (qZ)We onsider a statistial model with one parameter (qZ). The orale statistial test is thesame as in Setion 3.1 of this doument.
4.2. First strategyWe remind that we deal here with a statistial model with only one parameter (qZ). Weuse same notations as in the proof of Theorem 2 of the artile. Let θ = (qZ) and θ0 = (0).In order to make the alulations easier for the sore funtion, we write the likelihood Lusing z⋆. We have :
L(qZ) =

{

1− p

σ
ϕ

(

y − µY + qY
σ

)

+
p

σ
ϕ

(

y − µY − qY
σ

)}

1X=0

+
p

σ
ϕ

(

y − µY − qY
σ

)

ϕ

(

z⋆ − µZ

σ
√
1− r2

+
r µY

σ
√
1− r2

− qZ

σ
√
1− r2

+
rqY

σ
√
1− r2

)

1X=1

+
1− p

σ
ϕ

(

y − µY + qY
σ

)

ϕ

(

z⋆ − µZ

σ
√
1− r2

+
r µY

σ
√
1− r2

+
qZ

σ
√
1− r2

− rqY

σ
√
1− r2

)

1X=−1 .The sore funtion is :
∂ logL

∂qz
=

{

1

σ
√
1− r2

(

z⋆ − µZ

σ
√
1− r2

− qZ

σ
√
1− r2

+
rµY

σ
√
1− r2

+
rqY

σ
√
1− r2

)}

1X=1

−
{

1

σ
√
1− r2

(

z⋆ − µZ

σ
√
1− r2

+
qZ

σ
√
1− r2

+
rµY

σ
√
1− r2

− rqY

σ
√
1− r2

)}

1X=−1 .The MLE q̂Z of qZ for n observations is suh as :
q̂Z =







n
∑

j=1

(

σ
√

1− r2 z⋆j − µZ + rµY + rqY

)

1Xj=1

−
(

σ
√

1− r2 z⋆j − µZ + rµY − rqY

)

1Xj=−1

}

/

n
∑

j=1

1Xj 6=0 .
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Iθ0 =

P(Y /∈ [S−, S+])

σ2(1− r2)
.Sine the model is regular, the Wald test is :

W̃1 =

√
n q̂Z

σ
√
1− r2

√

P(Y /∈ [S−, S+])
H0Z→ N(0, 1) .We apply Theorem 3 (f. Appendix B.1 of the artile) with hn = h = b :

W̃1
Hbz→ N

(

b
√

P(Y /∈ [S−, S+])

σ
√
1− r2

, 1

)

.Then, the e�ieny κ̃1 of the �rst strategy with respet to the orale test (qZ), is :
κ̃1 =

P(Y /∈ [S−, S+])

1− r2
.

4.3. Second strategyThe likelihood is :
L = P(X = 0) 1X=0

+
p

σ
ϕ

(

y − µY − qY
σ

)

ϕ

(

z⋆ − µZ

σ
√
1− r2

+
r µY

σ
√
1− r2

− qZ

σ
√
1− r2

+
rqY

σ
√
1− r2

)

1X=1

+
1− p

σ
ϕ

(

y − µY + qY
σ

)

ϕ

(

z⋆ − µZ

σ
√
1− r2

+
r µY

σ
√
1− r2

+
qZ

σ
√
1− r2

− rqY

σ
√
1− r2

)

1X=−1 .We remark that we have the same term whih depends on qZ as for the �rst strategy. Asa onsequene, the test will be exatly the same as the test for the �rst strategy. Andnaturally, the e�ieny for the seond strategy will be the same as for the �rst strategy, so
κ̃2 = κ̃1.




