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In Quantitative Trait Locus detection, selective genotyping is a way to reduce costs due
to genotyping : only individuals with extreme phenotypes are genotyped. We focus here on
statistical inference for selective genotyping. We propose different statistical tests suitable for
selective genotyping and we compare their performances in a very large framework. We prove
that the non extreme phenotypes (i.e. the phenotypes for which the genotypes are missing)
don’t bring any information for statistical inference. We also prove that we have to genotype
symetrically, that is to say the same percentage of large and small phenotypes whatever the
proportions of the two genotypes in the population. Same results are obtained in the case of
a selective genotyping with two correlated phenotypes.

Keywords: Hypothesis testing; Asymptotic properties of tests; Asymptotic Relative
Efficiency; Selective genotyping; Quantitative Trait Locus detection
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1. Introduction

1.1. Introducing our study

We address the problem of detecting a Quantitative Trait Locus, so-called QTL
(a gene influencing a quantitative trait which is able to be measured). The trait
is observed on n individuals (progenies) and we denote by Yj , j = 1, ..., n, the
observations, which we will assume to be independent and identically distributed
(i.i.d.). In a famous article, Lander and Botstein [1] proposed, with the help of
genetic markers, to scan a chromosome represented by a segment [0, T ], performing
a likelihood ratio test (LRT) of the absence of a QTL at every location t ∈ [0, T ].
It leads to a “likelihood ratio test process” Λn(.), and then a natural statistic is the
supremum of such a process. This method is called “interval mapping”. There have
been many papers related to the supremum of the LRT process. For example, we
can mention Feingold and al. [2], Churchill and Doerge [3], Rebäı et al. [4], Rebäı et
al. [5], Cierco [6], Piepho [7], Chang et al. [8], Azäıs and Wschebor [9], Azäıs et al.
[10]. The “interval mapping” of Lander and Botstein [1] has enabled the discovery
of thousands of genes in animals, humans and plants (see for instance Lynch and
Walsh [11], Weller [12], Wu et al. [13]).
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In this study, contrary to the “interval mapping” where the focus is on the whole
chromosome, we focus here only on a single locus which is a genetic marker. We
suppose that the QTL is located on the genetic marker. We propose to study in
details a famous experimental design which allows to reduce costs due to genotyping
(i.e. collecting the marker information). X refers to the genetic marker with two
possible genotypes : +1 with probability p and −1 with probability 1−p. Note that,
since we consider that the QTL is located on the genetic marker, the genotypes at
the QTL and at the marker, are the same. Typically, the case p = 1/2 refers to a
backcross population A × (A × B), where A and B are purely homozygous lines.
Indeed, for a backcross population, there are only two genotypes at the marker,
each one with probability 1/2 (under Hardy-Weinberg assumptions). The case p 6=
1/2 refers to a cross, between an homozygous population and an heterozygous
population, and for which the Hardy-Weinberg law has been violated. According
to the Hardy-Weinberg law, the heterozygous parent produces two kind of gametes
in equal number. If this is not the case, the probability of the two genotypes are
not equal (i.e. p 6= 1/2).

We assume an “analysis of variance model” for the quantitative trait (i.e. the
phenotype) : Y = µ+qX+ε where ε is a Gaussian noise with mean 0 and variance
σ2. q refers to the QTL effect. A QTL is present if and only if the QTL effect q is
different from zero.

The problem is that genotyping (i.e. collecting the marker information X) is very
expensive. In such a context, Lebowitz and al. [14] had a very good idea based on
the observation that most of the information about the QTL is present in the
extreme phenotypes (i.e. the smallest and the largest Y ). So, they proposed to
genotype only the individuals who present an extreme phenotype. This way, at a
given power, a large increase of the number of individuals leads to a decrease of the
number of individuals genotyped. Later, Lander and Botstein [1], formalized this
approach and called it “selective genotyping”. Then, different topics have been
investigated. For instance, Muranty and Goffinet [15] focused on the estimation
of the QTL effect for selective genotyping. Rabbee and al. [16] studied different
strategies for analyzing data in selective genotyping and gave the power associated
to each strategy. Manichaikul and al. [17] focused on permutation tests for selec-
tive genotyping ... However, although there have been many papers on selective
genotyping, the theory of statistical inference for selective genotyping is still miss-
ing, even in the case of only one genetic marker. In a very famous article, Darvasi
and Soller [18] proposed to perform a comparison of means between the extreme
individuals (i.e. with extreme phenotypes) for which X = +1 at the marker and
those for which X = −1. It is such a nice idea since it is very intuitive. However,
some errors are present in this paper. In this context, the aim of this article is to
study statistical inference for selective genotyping in a mathematical point of view.
Our main goal is to propose easy and optimal statistical tests.

Our study justifies some practice of geneticists and gives new ways of analysing
data. Selective genotyping has been motivated by agronomy but there are many
areas where the data analysis is crucial but under economic pressures (aeronautics
for instance). That’s why we study selective genotyping here in a large framework :
contrary to Lander and Botstein [1], Darvasi and Soller [18], Muranty and Goffinet
[15], Rabbee and al. [16], we don’t focus only on a backcross which corresponds
to p = 1/2. On the other hand, we present a study as a function of the unknown
parameters µ, q, σ. Obviously, the most interesting situation is when all these
parameters are unknown, like in real life. However, in some articles on selective
genotyping (for instance Darvasi and Soller [18]), people consider that without loss
of generality, the global mean µ and the variance σ2 are known. In fact, is there a
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loss of generality ?
In a second part of this article, we will focus on selective genotyping with two

correlated phenotypes : Y and Z. Sometimes, it is difficult to measure the phe-
notype Z of interest : it can be expensive or it can require a lot of work. In such
a situation, a second phenotype, Y , correlated to the phenotype of interest, can
be measured more easily. An example given by Medugorac and Soller [19], is the
“mapping of QTL to determine genetic resistance to Helminthiasis in the Red Mas-
sai sheep of East Africa. Worm counts in spleen and liver are the most accurate
measure of resistance. These are time consuming to perform, and require a trained
professional. Faecal egg counts stand in good correlation to worm counts and are
relatively easy to obtain”. In such a context, the costs due to genotyping and due
to phenotyping can be reduced : a selective genotyping is performed on Y (as pre-
viously), and Z is measured only on the genotyped individuals (i.e. with extreme
phenotypes Y ). Obviously, in such a situation, the interest is on finding a QTL
which has an effect on Z. Some theoretical results about this design are presented
in Muranty and Goffinet [15] and Medugorac and Soller [19], but the theory of
statistical inference is still missing. As a consequence, in our study, as in the part
dealing with only one phenotype, we will focus on statistical inference and try to
propose to geneticists the easiest and optimal statistical tests.

1.2. Roadmap and main results

Our study begins with only one phenotype Y (Sections 2 and 3). In Section 2, we
consider the classical situation where no genotypes are missing. We call it “oracle
situation” since all the genotypes are known. We propose a simple test (“oracle
test”) which is optimal and which will be considered as the test of reference. In
Section 3, starts our study of selective genotyping. We study different strategies
for the data analysis. These strategies are inspired by Darvasi and Soller [18] and
Rabbee and al. [16]. The different tests (corresponding to the different strategies)
are compared in terms of Asymptotic Relative Efficiciency (ARE), which deter-
mines for each test, the sample size required to obtain the same local asymptotic
power as the one of the oracle test. Theorem 3.1, which gives the different ARE
for the different tests, is the main result of the first part of this article which deals
with only one phenotype. According to Theorem 3.1, we have the same ARE if
we keep or if we don’t keep the phenotypes Y (i.e. the phenotypes for which the
genotypes are missing) in the data analysis. We have to keep in mind that these
non extreme phenotypes are available when we collect data in selective genotyp-
ing. Lemma 3.2 is a direct consequence of Theorem 3.1. We present in this lemma
the different test statistics, corresponding to the different tests studied. Since the
non extreme phenotypes don’t bring any information for statistical inference, an
easy and optimal test is presented. It is based on the comparison of means of the
extreme phenotypes.

On the other hand, a very important result of Theorem 3.1 is the following : if
we want to genotype only a percentage γ of the population, we have to genotype
symetrically, that is to say the γ/2% individuals with the largest phenotypes and
the γ/2% individuals with the smallest phenotypes. This result holds whatever the
proportion p (i.e. the probability that X = +1). When p = 1/2, this result was
expected : it confirms by the theory what geneticists do in practice. However, when
p 6= 1/2, this result is original : we didn’t know how to analyze such data.

Sections 4 and 5 are related to the second part of this article : we deal with
two correlated phenotypes Y and Z. Same kind of analysis is given, as in the first
part which deals with one phenotype. Theorem 5.1 is the main result. According
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to Theorem 5.1, we still have to genotype symetrically and the non extreme phe-
noypes Y still don’t bring any information for statistical inference. Theorem 5.1
also establishes the relationship between the ARE of a selective genotyping with
two phenotypes and a selective genotyping with one phenotype. On the other hand,
Lemma 5.2 presents the different test statistics, corresponding to the different tests
studied. We leave the choice to geneticists between two optimal statistical tests.

Section 6 is an illustration of the theoretical results of this paper : we check the
asymptotic validity of our tests. Note that this paper deals with Le Cam [20]’s
work on contiguity. We refer to the book of Van der Vaart [21] for elements of
asymptotic statistics used in proofs. We join “Online Ressource 1” which contains
some proofs not needed at first reading of this paper.

2. Oracle situation : all the genotypes are known (i.e. no selective
genotyping)

To begin, we consider the situation with no missing genotypes : the oracle situation.
The study of such a situation will be interesting in order to quantify the loss of
information due to missing genotypes. We present here a simple test (oracle test),
which is optimal and which will be considered as our reference test for our future
study on selective genotyping.

2.1. Model

X denotes the random variable (r.v.) which corresponds to the genotype at the
QTL (i.e. at the marker). We consider 2 genotypes at the QTL :

X =

{
−1 with probability 1− p
1 with probability p.

We suppose p 6= {0, 1}. Y is the r.v. refering to the phenotype :

Y = µ+ qX + ε

where ε is a Gaussian r.v. centered with variance σ2 and q is the QTL effect. We
consider a sample of n observations (Xj , Yj) i.i.d. .

2.2. Oracle statistical test (µ, q, σ)

We consider a statistical model with 3 unknown parameters (µ, q, σ). In order to
test the presence of a QTL, we consider the two following hypotheses :

H0 : q = 0 vs H1 : q 6= 0.

We will consider in particular, a local alternative Ha : q = a√
n

where a is a constant

different from zero.
In this context, an easy test to perform is based on the test statistic

T =
√
p (1− p)

{∑n
j=1

1
p(Yj − Y ) 1Xj=1 − 1

1−p(Yj − Y ) 1Xj=−1

σ̂
√
n

}
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where σ̂ = 1√
n

{∑n
j=1(Yj − Y )2

}1/2
and Y = 1

n

∑n
j=1 Yj .

The asymptotic laws are :

T
H0→ N (0, 1) and T

Ha→ N

(
2a
√
p (1− p)
σ

, 1

)
.

This test, which is almost a comparison of means between the two genotypes at
the QTL, is the most powerful test we can perform : it has the same asymptotic
properties as the Wald test. A proof is given in Section 7. Note that in this paper,
we will use the terminology “comparison of means” even if our tests are only almost
“comparison of means”.

3. Selective genotyping

3.1. Motivation

As said before, our main goal is to propose to geneticists the easiest statistical test.
Obviously, this test has to be optimal in order to detect the QTL. As a consequence,
in this section, we will have to give answers to the following questions for selective
genotyping :

• What is the loss of information due to missing genotypes in a general framework
?

• Do the non extreme phenotypes (i.e. the phenotypes for which the genotypes are
missing) bring any extra information for statistical inference ?

• If we want to genotype only a percentage γ of the individuals, how should we
genotype ? Should we genotype only the γ% individuals with the largest pheno-
types? Or the γ% with the smallest phenotypes? Or some individuals with the
largest phenotypes and some with the smallest phenotypes ?

• Do we have the same results when the number of unknown parameters varies ?

3.2. Model and strategies

We consider two real thresholds (constant) S− and S+ such as S− 6 S+. We
consider that the genotype X is known if and only if the phenotype Y is extreme,
i.e. if and only if Y 6 S− or Y > S+. In order to make the reading easier, we define
a new r.v. X such as :

X =

{
X if Y /∈ [S− , S+]

0 otherwise.

In other words, X = 0 refers to the case where the genotype is missing. As in the
oracle situation, we want to test the presence of a QTL (q = 0 vs q 6= 0) and we
deal with a local alternative Ha : q = a√

n
. We consider here 3 different strategies

suitable for the data analysis in selective genotyping :

• 1. we keep all the phenotypes (even the phenotypes which are non extremes, i.e.
the phenotypes for which the genotypes are missing) and we perform a Wald
test

• 2. we keep only the extreme phenotypes (i.e. the phenotypes for which the geno-
types are available) and we perform a comparison of means between the two
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genotypes at the QTL
• 3. we keep only the extreme phenotypes (i.e. the phenotypes for which the geno-

types are available) and we perform a Wald test

Each test corresponding to each strategy will be compared to the oracle test in
terms of ARE, which determines for each test, the sample size required to obtain
the same local asymptotic power as the oracle test. The study of such strategies
will help us to give answers to our questions of Section 3.1. Note that strategy 2
is inspired by Darvasi and Soller [18], whereas strategies 1 and 3 are inspired by
the simulation study of Rabbee and al. [16]. Obviously, strategy 2 is the easiest to
compute.

3.3. Results

To begin, we present our main theorem :

Theorem 3.1 : Let κ1, κ2 and κ3 be the efficiencies corresponding respectively to
strategies one, two and three. Let γ, γ+ and γ− be respectively the following quan-
tities : PH0

(Y /∈ [S−, S+]), PH0
(Y > S+) and PH0

(Y < S−). Then, if we consider
a statistical model with 3 unknown parameters (µ, q, σ), ∀p ∈]0, 1[ :

i) κ1 = κ2 = κ3 = γ + zγ+ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

ii) κ1, κ2 and κ3 reach their maximum, M , when γ+ = γ− =
γ

2
, with

M = γ + 2 zγ/2 ϕ(zγ/2)

where ϕ(x) and zα denote respectively the density of a standard normal distribu-
tion taken at the point x, and the quantile of order 1 − α of a standard normal
distribution.

The proof is given in Section 8. Before interpreting this theorem, we have to
give some precisions on the quantities γ, γ+ and γ−. According to the law of
large numbers, under the null hypothesis H0 and under the local alternative Ha,
1
n

∑
1Xj 6=0 → γ. So, γ corresponds asymptotically to the percentage of individuals

genotyped. In the same way, γ+ (resp. γ−) corresponds asymptotically to the per-
centage of individuals genotyped with the largest (resp. the smallest) phenotypes.

Let’s explain now Theorem 3.1. According to i), the three strategies have exactly
the same ARE. We can deduce of it two consequences. First, since κ1 = κ3, the
non extreme phenotypes don’t bring any extra information for statistical inference.
Secondly, since κ2 = κ3, there is no loss of power between a comparison of means
and the Wald test based on the extreme phenotypes. In other words, we should
perform the comparison of means : it is an easy and optimal test. However, we will
see in Lemma 3.2, that a little adjustment has to be done in order to make this
test easy. On the other hand, i) presents the ARE in a general framework. We can
see that the ARE is independent of p (i.e. the probability that X = +1) and a (i.e.
the constant linked to the QTL effect). It only depends on γ, γ+ and γ−.

According to ii) of Theorem 3.1, the ARE is maximum for γ+ = γ− = γ/2.
That is to say, if we want to genotype only a percentage γ of the population, we
should genotype the γ/2% individuals with the largest phenotypes and the γ/2%
individuals with the smallest phenotypes. It is true for any p. When p = 1/2, this
result was expected : it confirms by the theory what geneticists do in practice.
However, when p 6= 1/2, this result is original : we didn’t know how to analyse
such data.
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We introduce now Lemma 3.2, which presents explicitly, contrary to Theorem
3.1, the different tests corresponding to the different strategies.

Lemma 3.2: If we consider a statistical model with 3 unknown parameters
(µ, q, σ), the Wald test statistic W1, the test statistic of comparison of means T2,
and the Wald test statistic W3, which correspond respectively to strategies one, two
and three :

W1 :=
2
√
n

σ̂2

√
Â1 p(1− p) q̂1

T2 :=
√
p(1− p)

{∑n
j=1

1
p(Yj − µ̂3)1Xj=1 −

1
1−p(Yj − µ̂3)1Xj=−1√

n Â3

}

W3 :=
2
√
n

σ̂2
3

√
Â3 p(1− p) q̂3

have the same asymptotic laws under H0 and under Ha, that is to say

N(0, 1) and N

(
2a
√
A p(1− p)
σ2

, 1

)
,

where q̂1 and q̂3 denote the MLE respective of q for strategies one and three, µ̂3

and σ̂2
3 the MLE repective of µ and σ2 for strategy three,

A = σ2
{
γ + zγ+ϕ(zγ+)− z1−γ−ϕ(z1−γ−)

}
, Â1 = 1

n

∑n
j=1(Yj − Y )21Xj 6=0

Â3 = 1
n

∑n
j=1(Yj − µ̂3)21Xj 6=0 , σ̂2 is given in Section 2.2.

For the proof, we refer to the proof of Theorem 3.1 in Section 8. Note that the
estimators σ̂2 and σ̂2

3 are also consistent under Ha by contiguity. Same remark for

Â1 and Â3, which are estimators of A.
As said previously, we want to propose an easy and optimal test. In order to

compute the MLE q̂1 and q̂3, we need to use respectively an EM algorithm and
a Newton method (c.f. Rabier [22]). As a consequence, the tests corresponding to
strategies one and three are difficult to perform. According to Lemma 3.2, the test
based on T2, i.e. the comparison of means between the two genotypes at the QTL,
is not so easy to perform. Indeed, we have to compute the estimator µ̂3 which is
not straightforward. However, instead of using µ̂3, we can use the empirical mean
Y , because this estimator is

√
n consistent. In the same way, we can also replace

Â3 by Â1. This way, the test is very easy to compute :

T2 =
√
p(1− p)n


∑n

j=1
1
p(Yj − Y )1Xj=1 −

1
1−p(Yj − Y )1Xj=−1√∑n

j=1(Yj − Y )21Xj 6=0

 .

The asymptotic laws are unchanged. Note that we use now the non extreme phe-
notypes in this expression of T2 (contrary to the definition of strategy 2). Besides,
we can see that this test statistic is a generalization of our oracle test statistic
introduced in Section 2.2. To conclude, when we analyse data, we should use this
test and genotype symetrically.

Until now, we have focused on the most interesting configuration : all the pa-
rameters (i.e. µ, q, σ) were unknown. Let’s focus now on statistical models with
respectively one unknown parameter (q) and two unknown parameters (µ, q). The
idea is to check if we obtain the same results as previously : strategy 2 is maybe not
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optimal anymore when the number of unknown parameters varies. We will consider
the same strategies as previously. For strategy 2, when just q is unknown, we have
to keep in mind that A is known. Indeed, according to the proof of Theorem 3.1
(see Section 8.2.2), we have A = EH0

{
(Y − µ)21Y /∈[S−, S+]

}
. As a consequence, we

will consider the test statistic T2 of Lemma 3.2 except that we replace µ̂3 by µ
and Â3 by A. Note that when we consider (µ, q) unknown, we will use same test
statistic T2 as in Lemma 3.2. Besides, in order to calculate the different ARE for
the different strategies, we will obviously consider the appropriate oracle test (i.e.
the oracle test with only q unknown, and the one with (µ, q) unknown).

Corollary 3.3: If we consider a statistical model with one unknown parameter
(q), then (with the previous notations) :

i) κ1 = γ + zγ+ϕ(zγ+) − z1−γ− ϕ(z1−γ−) + (2p− 1)2
{

1− γ − zγ+ϕ(zγ+) + z1−γ− ϕ(z1−γ−)
}

ii) κ2 = 4 p (1− p)
{
γ − z1−γ− ϕ(z1−γ−) + zγ+ ϕ(zγ+)

}
iii) κ3 = γ + zγ+ϕ(zγ+) − z1−γ− ϕ(z1−γ−) +

(2p− 1)2

1 − γ
{
ϕ(z1−γ−) − ϕ(zγ+)

}2 ∀γ 6= 1

iv) κ1 = κ2 = κ3 ⇔ p =
1

2

v) ∀p ∈]0, 1[ κ1, κ2 and κ3 reach their maximum for γ+ = γ− =
γ

2
.

Corollary 3.4: If we consider a statistical model with two unknown parameters
(µ, q), then the results are the same as in Theorem 3.1.

The proof of Corollary 3.3 is given in Section 2 of “Online Ressource 1”. The
proof of Corollary 3.4 is obvious according to the proof of Theorem 3.1.

According to Corollary 3.4, when only the variance σ2 is known, we have the
same results as previously. So, there is no loss of generality to consider the variance
known. However, according to Corollary 3.3, there is a loss of generality to consider
the mean µ known. Indeed, when we consider only q unknown, the three strategies
have the same ARE if and only if p = 1/2 (i.e. backcross in genetics). In other
words, when p 6= 1/2, the non extreme phenotypes Y bring some extra information
for statistical inference. So, in this case, we have to use strategy 1. Note that we
still have to genotype symetrically for all strategies.

3.4. Remark on the work of Darvasi and Soller [18]

In our study, in order to model selective genotyping, two real thresholds (constant)
S− and S+ have been considered. An individual is genotyped if and only if Y /∈
[S−, S+] (i.e. X 6= 0). As said previously, under H0 and Ha,

1
n

∑
1Xj 6=0 → γ where

γ = PH0
(Y /∈ [S−, S+]). This way, our modelization agrees with the usual definition

of selective genotyping : selective genotyping consists in genotyping only the γ%
individuals with extreme phenotypes.

In Darvasi and Soller [18], the authors focus on a comparison of means, between
the extreme individuals, only when p = 1/2. They consider µ and σ known without
loss of generality (which is true according to our study since p = 1/2). Besides,
the main difference with our approach, is that they consider thresholds which vary
with the QTL effect. Indeed, they consider γ = P(Y /∈ [S−, S+]). The problem
is that since the QTL effect is such as q = a/

√
n, S− and S+ depend on n. As

a consequence, the authors make an error when they use classical central limit
theorem : they should use Lindeberg-Feller central limit theorem. Furthermore,
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they use approximations about thresholds (see their formulae (1) and (2)), and
results about sample sizes (see their formula (24)), which are not suitable for models
with local alternatives.

Note that in their paper, Darvasi and Soller [18] suppose symetry, that is to say
P(Y > S+) = P(Y < S−) = γ/2. Anyway, if we consider the same configuration as
Darvasi and Soller [18] (i.e. p = 1/2 and symetry), our study gives the same ARE
as presented in formula (27) of Darvasi and Soller [18]. However, we have to keep
in mind that our comparison of means based on the test statistic T2 is totally new
and was not present in Darvasi and Soller [18]. Indeed, we consider p ∈]0, 1[, not
only symetry, and µ and σ unknown.

4. Introducing a second phenotype

We don’t observe only one phenotype Y anymore, but two correlated phenotypes,
Y and Z. The aim is to detect a QTL which has an effect on Z. As previously, we
begin by considering the situation with no missing genotypes. We present here our
optimal oracle test, which will be considered as our reference test for our future
study on selective genotyping.

4.1. Model

X is still the r.v. corresponding to the genotype at the QTL. We consider the
following model : (

Y
Z

)
=

(
µY + qYX
µZ + qZX

)
+ ε

where

ε ∼ N
((

0
0

)
,

(
σ2 r σ2

r σ2 σ2

))
.

We suppose r ∈] − 1, 1[. Besides, we consider that r and σ2 are known. µY X and
µZX will be the following quantities : µY X = µY + qYX and µZX = µZ + qZX.
We consider a sample of n observations (Xj , Yj , Zj) i.i.d. . Note that qZ and qY are
respectively the QTL effects on the phenotypes Z and Y .

4.2. Oracle statistical test (µZ , qZ)

In order to test the presence of a QTL with effect on the phenotype Z, we consider
the two following hypotheses :

H0Z : qZ = 0 vs H1Z : qZ 6= 0.

We will consider in particular, a local alternative HbZ : qZ = b√
n

where b is a

constant different from zero.
According to what has been done with only one phenotype (c.f. Sections 2.2 and

7), an easy and optimal test to perform is based on the following statistic

T =

∑n
j=1

1
p(Zj − Z)1Xj=1 − 1

1−p(Zj − Z)1Xj=−1

σ
√

n
p(1−p)

.
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The asymptotic laws are :

T
H0Z→ N(0, 1) T

HbZ→ N

(
2 b
√
p(1− p)
σ

, 1

)

where Z = 1
n

∑n
j=1 Zj .

5. Selective genotyping with two correlated phenotypes

Sometimes, it is difficult to measure the phenotype Z of interest : it can be expen-
sive or it can require a lot of work. In such a situation, a second phenotype, Y ,
correlated to the phenotype of interest, can be measured more easily. An example
given by Medugorac and Soller [19], is the “mapping of QTL to determine genetic
resistance to Helminthiasis in the Red Massai sheep of East Africa” (c.f. Section
1.1). In order to reduce costs due to genotyping and due to phenotyping, a selective
genotyping is performed on Y , and Z is measured only on the genotyped individu-
als (i.e. with extreme phenotypes Y ). In such a situation, the interest is on finding a
QTL which has an effect on Z. Obviously, Y and Z have to be correlated otherwise
this selective genotyping has no sense. This way, we will focus here on statistical
inference for selective genotyping with two correlated phenotypes. Note that some
theoretical results about this design are already present in Muranty and Goffinet
[15] and Medugorac and Soller [19]. However, the theory of statistical inference is
still missing, since Muranty and Goffinet [15] focused only on the estimation of
the QTL effects and Medugorac and Soller [19] focused on the power of the design
using approximations.

5.1. Motivation

As previously, our main goal is to propose to geneticists the easiest statistical test
which is optimal. This way, we have to answer same kinds of questions as for a
selective genotyping with only one phenotype :

• What is the loss of information due to missing genotypes in a general framework
?

• Do the non extreme phenotypes Y (i.e. for which the genotype is missing) bring
any extra information for statistical inference on the QTL effect qZ ?

• If we want to genotype only a percentage γ of the individuals, how should we
genotype ?

• Do we have the same results when the number of unknown parameters varies ?

5.2. Model and strategies

We consider the same model as previously (see Section 3.2). As in the oracle situ-
ation, we want to test the presence of a QTL which affects Z (qZ = 0 vs qZ 6= 0)
and we deal with a local alternative HbZ : qZ = b√

n
. Since Z and Y are correlated,

we will have to deal with hypotheses on qY . So, the new notations will be, H0Y for
qY = 0, and HaY for qY = a√

n
.

We consider here 2 strategies suitable for the data analysis :

• 1. we keep all the phenotypes Y (even the phenotypes which are non extremes,
i.e. the phenotypes for which the genotypes are missing) and we perform a Wald
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test.
• 2. we keep only the extreme phenotypes Y (i.e. the phenotypes for which the

genotypes are available) and we perform a Wald test.

Each test corresponding to each strategy will be compared to the oracle test in
terms of ARE, which determines for each strategy, the sample size required to
obtain the same local asymptotic power as the one of the oracle test. The study of
such strategies will help us to give answers to our questions of Section 5.1. Note
that we don’t consider the comparison of means on Z : it is obvious that this test
won’t be optimal. As a consequence, here, strategy 2 is analogous to strategy 3 of
the first part.

5.3. Results

To begin, we present our main theorem, Theorem 5.1, which is the analogue of
Corollary 3.4 for two phenotypes (the covariance matrix is known here). However,
since Corollary 3.4 and Theorem 3.1 give same results, Theorem 5.1 can be also
viewed as the analogue of Theorem 3.1.

Theorem 5.1 : Let κ̃1 and κ̃2 be the efficiencies corresponding to strate-
gies one and two. Let γ, γ+ and γ− be respectively the following quantities
PH0Y

(Y /∈ [S−, S+]) , PH0Y
(Y > S+) and PH0Y

(Y < S−). Then, if we consider
a statistical model with 4 unknown parameters (µZ , qZ , µY , qY ), we have under H0Y

and under HaY , ∀p ∈]0, 1[ :

i) κ̃1 = κ̃2 =

{
1− r2

γ
+
r2

κ1

}−1

ii) κ̃1 and κ̃2 reach their maximum, M̃ , for γ+ = γ− =
γ

2
, with

M̃ =

{
1− r2

γ
+
r2

M

}−1

where κ1 and M are the quantities of Theorem 3.1.

The proof is given in Section 9. As expected, the ARE increase with r and γ.
As previously, the non extreme phenotypes Y (i.e. for which the genotypes are
missing) don’t bring any extra information for statistical inference on qZ . So, using
strategy 1 instead of strategy 2 does not lead to an increase of power. Besides, we
still have to genotype symetrically for a selective genotyping with two phenotypes.
Note that Theorem 5.1 establishes the relationship between the ARE of selective
genotyping with one and two phenotypes. Lemma 5.2 presents the different tests
corresponding to the different strategies.

Lemma 5.2: If we consider a statistical model with 4 unknown parameters
(µZ , qZ , µY , qY ) and that we are under H0Y or HaY , then the Wald test statis-
tic W̃1 and the Wald test statistic W̃2, which correspond respectively to strategy
one and two :

W̃1 :=
√
n q̂1

Z

{
σ2 (1− r2)

4 p (1− p) γ
+

σ4 r2

4 p (1− p) Â1

}−1/2

W̃2 :=
√
n q̂2

Z

{
σ2 (1− r2)

4 p (1− p) γ
+

σ4 r2

4 p (1− p) Â3

}−1/2
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have the same asymptotic laws under H0Z and HbZ , that is to say

N(0, 1) and N

(
b

{
σ2 (1− r2)

4 p (1− p) γ
+

σ4 r2

4 p (1− p) A

}−1/2

, 1

)
,

with q̂iZ MLE of qZ for strategy i. A, Â1 and Â3 are given in Lemma 3.2.

For the proof, we refer to the proof of Theorem 5.1 in Section 9. So, according
to Lemma 5.2, we have two different test statistics, W̃1 and W̃2, corresponding to
the two different strategies. These two test statistics differ only by the MLE, q̂Z ,
of the QTL effect on Z. In particular, if we call q̂iZ (resp. q̂iY ) the MLE of qZ (resp.
qY ) for strategy i, after some algebra (see the proof in Section 9), we obtain

q̂iZ =
σ

2

√
1− r2 (µ̂?Z1 − µ̂?Z−1) + r q̂iY

where

µ̂?Z1 =


n∑
j=1

(Zj − rYj)1Xj=1

σ
√

1− r2

 /

n∑
j=1

1Xj=1

µ̂?Z−1 =


n∑
j=1

(Zj − rYj)1Xj=−1

σ
√

1− r2

 /

n∑
j=1

1Xj=−1 .

The key thing is that for strategy 1, q̂1
Y can be computed by the EM algorithm,

whereas for strategy 2, q̂2
Y can be computed by a Newton method. So, although we

have proved that the non extreme phenotypes don’t bring any extra information,
the tests suitable for selective genotyping with two correlated phenotypes, are not
so simple. As said previously, it is obvious that a test of comparison of means on
Z (in the same way as what has been proposed in the first part) won’t be optimal.
As a consequence, we leave to geneticists the choice between the two statisticals
tests, which are optimal and asymptotically equivalent.

We introduce now Corollary 5.3 which is the analogous of Corollary 3.3. Only
qZ and qY are now unknown.

Corollary 5.3: If we consider a statistical model with two unknown parameters
(qZ , qY ), then under H0Y and under HaY :

i) κ̃1 =

{
1− r2

γ
+
r2

κ1

}−1

ii) κ̃2 =

{
1− r2

γ
+
r2

κ3

}−1

iii) κ̃1 = κ̃2 ⇔ p =
1

2

iv) ∀p ∈]0, 1[ κ̃1 and κ̃2 reach their maximum for γ+ = γ− =
γ

2

where κ1 and κ3 are the quantities of Corollary 3.3.

The proof is given in Section 3 of “Online Ressource 1”. According to this Corol-
lary, the two strategies have same ARE if and only if p = 1/2. When p 6= 1/2, the
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non extreme phenotypes Y bring some extra information for statistical inference
on qZ . As a consequence, there is a loss of generality to consider the parameters
µY and µZ known. However, we still have to genotype symetrically. In other words,
we have to use strategy 1 and genotype symetrically. Note that Corollary 5.3 es-
tablishes a link with the ARE of Corollary 3.3.

To conclude, in the following Corollary 5.4, we consider all the parameters known
except qZ .

Corollary 5.4: If we consider a statistical model with one unknown parameter
(qZ), then ∀p ∈]0, 1[ :

κ̃1 = κ̃2 =
P (Y /∈ [S−, S+])

1− r2
.

The proof is given in Section 4 of “Online Ressource 1”. Here, qY is a known
constant : contrary to Theorem 5.1 and Corollary 5.3, qY does not depend on n.
The quantity P (Y /∈ [S−, S+]) depends on qY , and is asymptotically the percentage
of individuals genotyped. According to Corollary 5.4, we don’t have to genotype
symetrically anymore when qY is known : we can genotype only the individuals
with the largest (resp. smallest) phenotypes. Besides, we can use strategy 1 or
strategy 2 because the two tests have the same power. Another interesting result is
that, when P (Y /∈ [S−, S+]) > 1− r2, selective genotyping becomes more powerful
than the oracle test. This surprising result is due to the fact that qY is known.

6. Illustration

In this Section, we propose to illustrate our theoretical results. To begin, Figure 1
represents the efficiencies with respect to the oracle test, for a selective genotyping
with one phenotype (left-side) and with two phenotypes (right-side). These effi-
ciencies correspond to the two main theorems of this article : Theorem 3.1 for a
selective genotyping with one phenotype, and Theorem 5.1 for a selective genotyp-
ing with two phenotypes. In other words, it corresponds to the situation where all
the parameters are unknown. Note that the efficiencies do not depend on the QTL
effects (see Theorem 3.1 and Theorem 5.1) and p. We study here the efficiencies as
a function of the percentage of individuals genotyped γ and also as a function of
the ratio γ+/γ (i.e. the percentage of individuals genotyped with large phenotypes
among all the individuals genotyped). For instance, γ+/γ = 1/2 means that we
genotype symetrically whereas γ+/γ = 1/4 means that we genotype three times
more individuals with small phenotypes than with large phenotypes. According to
the graphs, we can see that we have to genotype symetrically. The worst configu-
ration is to genotype only the largest phenotypes (see γ+/γ = 1) or to genotype
only the smallest phenotypes (same curve as the one for γ+/γ = 1). Obviously,
we can remark that when γ = 1, all the efficiencies are equal to one, since all the
individuals are genotyped.

In Tables 1, 2 and 3, we study the performances of our tests on simulated data in
order to see if our tests which are based on asymptotic results, are suitable in real
life. We consider one-sided tests at the 5% level. In Table 1, we consider a selective
genotyping with one phenotype. We focus on the most interesting situation : all the
parameters are unknown. We consider the test based on the statistic T2. It is very
easy to perform since it is a comparison of means, between the two genotypes at
the QTL. Note that we consider the easiest expression of T2 (see the remark below
Lemma 3.2). We genotype symetrically (γ+/γ = 1/2) and we consider p = 1/2
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Table 1. Study of strategy 2 for a selective

genotyping with one phenotype. Theoretical

power (β2) and Monte-Carlo power (βMC) as

a function of γ (10000 samples, n = 100, a = 2,

q = 2√
100

= 0.2, µ = 0, σ = 1, p = 1/2,

γ+/γ = 1/2).

γ βMC β2 CI in %

0.1 36.74% 37.45% [35.80 ; 37.68]

0.2 48.01% 48.61% [47.03 ; 48.99]

0.3 54.28% 54.77% [53.30 ; 55.26]

0.4 58.00% 58.58% [57.03 ; 58.97]

0.5 60.10% 60.93% [59.14 ; 61.06]

0.6 62.19% 62.33% [61.24 ; 63.14]

0.7 62.26% 63.13% [61.31 ; 63.21]

0.8 62.67% 63.52% [61.72 ; 63.62]

0.9 63.30% 63.68% [62.36 ; 64.24]

1 63.02% 63.68% [62.07 ; 63.97]

which corresponds in genetics to the backcross. Besides, a = 2 and n = 100. We
remind that q = a/

√
n, so we have q = 0.2 in our case. β2 refers to the theoretical

power whereas βMC to the Monte-Carlo power based on 10000 samples. CI refers
to a 95% confidence interval for the true value of the power :

CI =

[
βMC − 1.96

√
βMC(1− βMC)

10000
; βMC + 1.96

√
βMC(1− βMC)

10000

]
.

According to Table 1, we can see that β2 is always in the confidence interval,
whatever the value of γ. As a consequence, our test is suitable for n = 100.

In Tables 2 and 3, we consider a selective genotyping with two phenotypes.
(µZ , qZ , µY , qY ) are the unknown parameters. We focus here on the test based on
the test statistic W̃1 of Lemma 5.2. We remind that, in order to obtain the the
MLE q̂Z , we need to compute the MLE q̂Y , which can be obtained by EM (resp.
Newton method) for strategy 1 (resp. strategy 2) (see Section 9 for details). So,
we decided here to use the EM algorithm. As previously, we consider p = 1/2 and
γ+/γ = 1/2. To begin, in Table 2, we study the situation where the QTL has
no effect on the phenotype Z (i.e. qZ = 0). We compute the percentage of false
positives (FP) and the confidence interval (CI) for the true value of FP (in the
same way as previously). According to the table, we can see that for n = 50, 5% is
always in the confidence interval, whatever the value of qY and r. In Table 3, we
focus on the alternative. We consider b = 4, so qZ = 0.5657. We can see that the
theoretical power β̃1 is always in the confidence interval, despite the fact that qZ is
not so close to 0. As a consequence, our test gives good performances for n = 50.
That’s why, it must be interesting for geneticists.

7. Proof for the oracle statistical test (µ, q, σ)

A natural estimator of the QTL effect q is the following comparison of means :

1

2

{∑n
j=1 Yj 1Xj=1∑n
j=1 1Xj=1

−
∑n

j=1 Yj 1Xj=−1∑n
j=1 1Xj=−1

}
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Table 2. Study of strategy 1 for a selective geno-

typing with two phenotypes. Percentage of false pos-

itives (FP) as a function of a and r (b = 0, qZ = 0,

µY = 0, µZ = 0, σ = 1, p = 1/2, γ = 0.30, n = 50,

10000 samples).

a qY = a√
n

r FP CI in %

0 0 0.4 5.81 % [5.35 ; 6.27]

0 0 0.7 5.76 % [5.30 ; 6.22]

0 0 0.9 5.62 % [5.17 ; 6.07]

2 0.2828 0.4 4.87 % [4.45 ; 5.29]

2 0.2828 0.7 5.13 % [4.70 ; 5.56]

2 0.2828 0.9 4.71 % [4.29 ; 5.13]

Table 3. Study of strategy 1 for a selective genotyping with two

phenotypes. Theoretical power (β̃1) and Monte-Carlo power (βMC)

(b = 4, qZ = 0.5657, µY = 0, µZ = 0, σ = 1, p = 1/2, γ = 0.30,

n = 50, 10000 samples).

a qY = a√
n

r βMC β̃1 CI in %

0 0 0.4 73.96 % 74.47 % [73.10 ; 74.82]

0 0 0.7 82.23 % 82.31 % [81.48 ; 82.98]

0 0 0.9 92.24 % 92.61 % [91.72 ; 92.76]

2 0.2828 0.4 74.72 % 74.47 % [73.87 ; 75.57]

2 0.2828 0.7 83.18 % 83.47 % [82.45 ; 83.91]

2 0.2828 0.9 92.21 % 92.61 % [91.68 ; 92.74]

(a) Selective genotyping with one phenotype (b) Selective genotyping with two phenotypes (r = 0.8)

Figure 1. Efficiency as a function of γ and as a function of the ratio γ+/γ.

However, this estimator is not convenient because of the random denominators. So,
we want to build an easier estimator. Let η = qX + ε, we can remark that under
the local alternative Ha :

EHa
{

1
2n

(∑n
j=1

ηj
p 1Xj=1 − ηj

1−p 1Xj=−1

)}
= q.

Besides under H0, EH0

(
η
p 1X=1 − η

1−p 1X=−1

)
= 0 and

EH0

{(
η
p 1X=1 − η

1−p 1X=−1

)2
}

= EH0

(
η2

p2 1X=1 + η2

(1−p)2 1X=−1

)
= σ2

p(1−p) .
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It comes, VH0

(
η
p 1X=1 − η

1−p 1X=−1

)
= σ2

p(1−p) .

Besides, under the local alternative Ha :

EHa
(
η

p
1X=1 −

η

1− p
1X=−1

)
= 2q , (1)

EHa
{(

η
p 1X=1 − η

1−p 1X=−1

)2
}

= 1
p(σ2 + q2) + 1

1−p(σ2 + q2) → σ2

p(1−p) ,

VHa
(
η
p 1X=1 − η

1−p 1X=−1

)
= 1

p(σ2 + q2) + 1
1−p(σ2 + q2) − 4q2.

We remark that VHa
(
η
p 1X=1 − η

1−p 1X=−1

)
→ VH0

(
η
p 1X=1 − η

1−p 1X=−1

)
.

As a consequence, let T̃ be the following test statistic :

T̃ =

∑n
j=1

ηj
p 1Xj=1 − ηj

1−p 1Xj=−1

σ
√

n
p (1−p)

.

The asymptotic laws are : T̃
H0→ N (0, 1) and T̃

Ha→ N

(
2a
√
p (1−p)
σ , 1

)
.

However, we don’t observe the r.v. η but the phenotypes Y . Let Y and η be the
empirical means : Y = 1

n

∑
Yj and η = 1

n

∑
ηj . Then, Y = µ+η and Y −Y = η−η.

Let T be the following test statistic :

T =

∑n
j=1

1
p(Yj − Y ) 1Xj=1 − 1

1−p(Yj − Y ) 1Xj=−1

σ
√

n
p (1−p)

. (2)

We have

T = T̃ + η

∑n
j=1

1
1−p 1Xj=−1 − 1

p 1Xj=1

σ
√

n
p (1−p)

.

Notation 7.1: oP (1) will be a sequence of random vectors which tend to 0 in
probability and OP (1) will be a sequence bounded in probability.

According to Prohorov, η = OP ( 1√
n

) and
∑n

j=1
1

1−p1Xj=−1− 1
p 1Xj=1 = OP (

√
n).

It comes,

η

∑n
j=1

1
1−p 1Xj=−1 − 1

p 1Xj=1

σ
√

n
p (1−p)

→ 0.

As a consequence (we remind that we are under H0 or under Ha):

T = T̃ + oP (1).

It comes T has the same asymptotic laws as T̃ . We need now to estimate the vari-
ance σ2 which is unknown in the model studied. We will consider the empirical

variance σ̂2 = 1
n

{∑n
j=1(Yj − Y )2

}
with Y = 1

n

∑n
j=1 Yj . σ̂

2 is a consistent esti-

mator under H0 and Ha by contiguity. We just have to adapt the previous test
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statistic T . T is now such as :

T =

∑n
j=1

1
p(Yj − Y ) 1Xj=1 − 1

1−p(Yj − Y ) 1Xj=−1

σ̂
√

n
p (1−p)

.

The asymptotic laws are unchanged : T
H0→ N (0, 1) and T

Ha→ N

(
2a
√
p (1−p)
σ , 1

)
.

This test has the same asymptotic laws as the Wald test (proof given in Section 1
of “Online Ressource 1”).

8. Proof of Theorem 3.1

Notation 8.1: Iθ will be the Fisher information matrix taken at the point θ .
Iij(θ) refers to the element ij of Iθ. I

−1
ij (θ) refers to the element ij of I−1

θ , the
inverse of Iθ.

8.1. Theoretical elements needed for the study

To begin, we introduce a theorem. It will be very convenient to calculate the power
for the Wald tests.

Theorem 8.2 : Let C1, ..., Cn be an independent and equally distributed sample
from a probability distribution Pθ. We suppose that Θ is an open subset of Rd and
that the model (Pθ : θ ∈ Θ) is regular. Let θ̂ be the Maximum Likelihood Estimator
(MLE) of θ and θ0 ∈ Θ, then for every converging sequence hn → h, as n→ +∞,
we have :

i) under Pθ0 ,
√
n(θ̂ − θ0)→ N(0, I−1(θ0))

ii) under Pθ0+hn/
√
n ,
√
n(θ̂ − θ0)→ N(h, I−1(θ0)).

Proof : Let Pn be the law corresponding to P ⊗nθ0
, Qn the law corresponding to

P ⊗n
θ0+hn/

√
n

and dQn
dPn

the likelihood ratio.

Since the model is regular, we have i). Besides, we can use Theorem 7.2 of Van
der Vaart [21] which gives an explicit expression of the log likelihood under Pn.
According to the central limit theorem, the law of large numbers and the properties
of the Fisher Information matrix, we have (with ht the transpose of h):

log

(
dQn
dPn

)
Pn→ N(−1

2
ν2, ν2) with ν2 = htIθ0h.

Notation 8.3: Qn / Pn will mean the sequence Qn is contiguous with the respect
to the sequence Pn.

By the iii) of Le Cam’s first lemma, we have Qn / Pn. So, we can use Le Cam’s
third lemma. Since the model is regular, we can use Theorem 5.39 of Van der Vaart
[21] :

√
n(θ̂ − θ0) = I−1

θ0

1√
n

n∑
j=1

˙̀
θ0(Cj) + oPθ0 (1)
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where ˙̀
θ0(Cj) denotes the score function taken at θ0, for an observation Cj .

According to Theorem 7.2 of Van der Vaart [21] :

log

(
dQn
dPn

)
=

1√
n

n∑
j=1

ht ˙̀
θ0(Cj) −

1

2
htIθ0h + oPθ0 (1).

Let h(i) be the ith component of h. At the ith line, we have :

Cov

(
log

(
dQn

dPn

)
,
√

n(θ̂ − θ0)

)
=

d∑
k=1

h(k)

{
I−1
i1 (θ0)I1k(θ0) + ...+ I−1

id (θ0)Idk(θ0)
}

+ oPθ0 (1)

= h(i) + oPθ0 (1).

Then, according to Le Cam’s third lemma :

√
n(θ̂ − θ0)

Qn→ N(h, I−1(θ0)).

This gives the result. �

8.2. First strategy (Wald test using all the phenotypes)

8.2.1. Likelihood

To begin, we remind that the r.v. X is such as :

X =

{
X if Y /∈ [S− , S+]

0 otherwise.

So, X = 0 refers to the case where the genotype is missing. (X , Y ) has a density
with respect to the Lebesgue measure × the counting measure.

Notation 8.4: ∀ i ∈ {−1, 1} and ∀ k ∈ {−1, 0, 1}, P {i | k} and P {k | i} are the
quantities such as :

P {i | k} = P(X = i | X = k) and P {k | i} = P(X = k | X = i).

Notation 8.5: q−1, q1 and q0 are the quantities such as :
q−1 = P(X = −1) , q1 = P(X = 1) and q0 = P(X = 0).

It comes P {i | i} = Φ
(
S−−µ−iq

σ

)
+ 1 − Φ

(
S+−µ−iq

σ

)
where Φ is the cumulative

distribution of a standard normal distribution, q−1 = P {−1 | −1} (1 − p) , q1 =
P {1 | 1} p and
q0 = (1− P {−1 | −1}) (1− p) + (1− P {1 | 1}) p.
As a consequence :

P {−1 | k} =
P {k | −1} (1− p)

qk
, P {1 | k} =

P {k | 1} p
qk

.
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According to Bayes theorem, ∀ k ∈ {−1, 1}, ∀ y ∈ R, we have

P(Y ∈ [y , y + dy] | X = k) = P(Y ∈ [y , y + dy] | X = k ∩ X 6= 0) =
ϕ(y−µ−kqσ )1y/∈[S− , S+]

σ P {k | k}
dy ,

P(Y ∈ [y , y + dy] ∩ X = k) =
ϕ(y−µ−kqσ )1y/∈[S− , S+]

σ P {k | k}
qk dy ,

where ϕ(.) denotes the density of a standard normal distribution.
It comes :

P(Y ∈ [y , y + dy] ∩ X = −1) =
1− p
σ

ϕ

(
y − µ+ q

σ

)
1y/∈[S− , S+] dy ,

P(Y ∈ [y , y + dy] ∩ X = 1) =
p

σ
ϕ

(
y − µ− q

σ

)
1y/∈[S− , S+] dy .

Besides,

P(Y ∈ [y , y + dy] | X = 0) =
∑

i∈{−1,1}

P(Y ∈ [y , y + dy] ∩ X = i | X = 0)

=
p ϕ(y−µ−qσ )1y∈[S− , S+]

σ q0
dy +

(1− p) ϕ(y−µ+q
σ )1y∈[S− , S+]

σ q0
dy .

Then,

P(Y ∈ [y , y + dy] ∩ X = 0) =
p

σ
ϕ

(
y − µ− q

σ

)
1y∈[S− , S+] dy

+
1− p
σ

ϕ

(
y − µ+ q

σ

)
1y∈[S− , S+] dy .

Finally, the likelihood L for an observation
(
X,Y

)
is such as :

L =
1− p
σ

ϕ

(
y − µ+ q

σ

)
1X=−1 +

p

σ
ϕ

(
y − µ− q

σ

)
1X=1

+

{
1− p
σ

ϕ

(
y − µ+ q

σ

)
+

p

σ
ϕ

(
y − µ− q

σ

)}
1X=0 .

8.2.2. Statistical test (µ, q)

We consider a statistical model with two unknown parameters (µ, q). We first
introduce a useful lemma obtained mainly using integration by parts.

Lemma 8.6: Let V ∼ N(µ, σ2), then :

i) E
(
V 21V /∈[S−, S+]

)
= (µ2 + σ2) P(V /∈ [S−, S+]) + σ (S+ + µ) ϕ

(
S+−µ
σ

)
− σ (S− + µ) ϕ

(
S−−µ
σ

)
ii) E

(
V 1V /∈[S−, S+]

)
= µ P(V /∈ [S−, S+]) + σ ϕ

(
S+−µ
σ

)
− σ ϕ

(
S−−µ
σ

)
iii) E

{
(V − µ)21V /∈[S−, S+]

}
= σ2 P(V /∈ [S−, S+]) + σ (S+ − µ) ϕ

(
S+−µ
σ

)
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− σ (S− − µ) ϕ
(
S−−µ
σ

)
iv) E

{
(V − µ)1V /∈[S−, S+]

}
= σ ϕ

(
S+−µ
σ

)
− σ ϕ

(
S−−µ
σ

)
v) E

{
(V − µ)21V ∈[S−, S+]

}
= σ2 − σ2P(V /∈ [S−, S+])− σ(S+ − µ) ϕ

(
S+−µ
σ

)
+ σ (S− − µ) ϕ

(
S−−µ
σ

)
.

Notation 8.7: γ, γ+ and γ− are respectively the quantities PH0
(Y /∈ [S−, S+]),

PH0
(Y > S+) and PH0

(Y < S−). zα denote the quantile of order 1 −
α of a standard normal distribution. A is the quantity such as A =
σ2
{
γ + zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
.

According to this lemma, we have A = EH0

{
(Y − µ)21Y /∈[S−, S+]

}
. Let θ = (µ, q)

be the parameter of the model and θ0 = (µ, 0) be true value of the parameter under
H0. We first compute the score functions and the Fisher Information matrix. We
have

∂logL

∂q
|θ0 = −

(
y − µ
σ2

)
1X=−1 +

(
y − µ
σ2

)
1X=1 +

(
y − µ
σ2

)
(2p− 1)1X=0 ,(

∂logL

∂q
|θ0
)2

=
(y − µ)2

σ4
1X=−1 +

(y − µ)2

σ4
1X=1 +

(y − µ)2

σ4
(2p− 1)2 1X=0 .

It comes I22(θ0) = A
σ4 + (2p−1)2

σ4 (σ2 −A). Besides, ∂logL
∂µ |θ0 = y−µ

σ2 . So,

I11(θ0) = 1
σ2 . Furthermore,

∂logL

∂q ∂µ
|θ0 =

1

σ2
1X=−1 −

1

σ2
1X=1 −

1

σ2
(2p− 1)1X=0 .

Since we are under H0, PH0
{−1 | −1} = PH0

{1 | 1}, it comes I12(θ0) = 1
σ2 (2p−1).

As a consequence :

I−1
22 (θ0) =

σ4

4 A p(1− p)
.

q̂, the MLE of q, can be obtained using a EM algorithm. Since the model is regular
:

√
n q̂

H0→ N( 0 , I−1
22 (θ0) ) .

We can deduce the Wald test :

W1 =
2
√
n

σ2

√
A p(1− p) q̂

H0→ N(0, 1) .

According to Theorem 8.2 with hn = h = (0, a) :

W1
Ha→ N

(
2a

σ2

√
A p(1− p), 1

)
. (3)
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8.3. Second strategy (comparison of means based on the extreme phenotypes)

8.3.1. Statistical test (µ, q, σ)

Let δ̂ be the following estimator :

δ̂ =
1

p
(Y − µ)1X=1 −

1

1− p
(Y − µ)1X=−1 .

According to formula (1) in Section 7, EHa(δ̂) = 2q when we are in the oracle

situation. So, δ̂ is an estimator of twice the QTL effect. If now we consider a
selective genotyping, we would like to define δ̂ such as :

δ̂ =
1

p
(Y − µ)1X=1 −

1

1− p
(Y − µ)1X=−1 .

According to Lemma 8.6 :

E
(
δ̂
)

=
1

p
E
(
Y − µ | X = 1

)
P(X = 1) − 1

1− p
E
(
Y − µ | X = −1

)
P(X = −1)

= q (P {1 | 1}+ P {−1 | −1}) + σ ϕ

(
S+ − µ− q

σ

)
− σ ϕ

(
S− − µ− q

σ

)
− σ ϕ

(
S+ − µ+ q

σ

)
+ σ ϕ

(
S− − µ+ q

σ

)
.

We remark that δ̂ is not a good estimator of q anymore, but we can propose a
test based on δ̂ since the expectation depends of q. We have EH0

(δ̂) = 0 and

VH0
(δ̂) = EH0

(δ̂2). Besides :

δ̂2 =
1

p2
(Y − µ)2 1X=1 +

1

(1− p)2
(Y − µ)2 1X=−1 .

According to Lemma 8.6 :

E(δ̂2) =
1

p2
E
{

(Y − µ)2 | X = 1
}
P(X = 1) +

1

(1− p)2
E
{

(Y − µ)2 | X = −1
}
P(X = −1)

=
1

p
E
{

(Y − µ)21Y /∈[S−,S+] | X = 1
}

+
1

1− p
E
{

(Y − µ)21Y /∈[S−,S+] | X = −1
}
.

It comes EH0
(δ̂2) = A

p(1−p) . So, we can define the test statistic T2 corresponding to

the second strategy. According to the Central Limit theorem,

T2 =

∑n
j=1

1
p(Yj − µ)1Xj=1 −

1
1−p(Yj − µ)1Xj=−1√

n A
p(1−p)

H0→ N(0, 1) . (4)

According to a Taylor expansion at first order :

ϕ

(
S− − µ+ q

σ

)
=

1√
2π

e
− 1

2

(
S−− µ

σ

)2
{

1− (S− − µ) q

σ2
+ o(q)

}
.
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We also have (working on integrals) :

P {1 | 1} = Φ

(
S− − µ
σ

)
− q

σ
ϕ

(
S− − µ
σ

)
+ 1 − Φ

(
S+ − µ
σ

)
+

q

σ
ϕ

(
S+ − µ
σ

)
+ o(q) .

It comes :

EHa {T2} → 2a
{
γ − z1−γ−ϕ(z1−γ−) + zγ+ϕ(zγ+)

}√p(1− p)
A

.

We can remark that this limit is equal to 2a
σ2

√
A p(1− p). Besides, EHa(δ̂) → 0.

Using Portmanteau theorem (since ∀i ∈ {−1, 1}, Y | X = i→ N(µ, σ2) ):

EHa(δ̂2)→ A
p(1− p)

.

So VHa(δ̂)→ VH0
(δ̂) and it comes

T2
Ha→ N

(
2a

σ2

√
A p(1− p), 1

)
. (5)

Since µ and σ are unknown, we have to adapt the test statistic T2. We can replace
µ by µ̂, estimator which depends of the extreme phenotypes. µ̂ can be obtained by
maximum likelihood or by the method of moments, because these two estimators
are
√
n consistent (same kind of proof as in Section 7). Besides, we can use the

following consistent estimator of A :

Â =
1

n

n∑
j=1

(Yj − µ̂)21Xj 6=0 .

The asymptotic laws of T2 are unchanged.

8.3.2. Asymptotic Relative Efficiency

We compute here the Asymptotic Relative Efficiency (ARE) of the test of com-
parison of mean based on extreme phenotypes, with respect to the oracle test
(µ, q, σ) where all the genotypes are known. Until now, we have considered n in-
dividuals. Let’s consider now n? individuals for a selective genotyping experiment.
T2 has to be adapted. It comes

T2 =

∑n?

j=1
1
p(Yj − µ̂)1Xj=1 −

1
1−p(Yj − µ̂)1Xj=−1√

n? Â
p(1−p)

H0→ N(0, 1)

where Â and µ̂ are the same estimators as previously but adapted for n? individuals.
Let ζ be the quantity such as ζ = n?

n , then (we remind that q = a/
√
n) :

T2
Ha→ N

(
2a

σ2

√
ζ A p(1− p), 1

)
.

We will focus in particular on the appropriate one sided test when a > 0. The test
based on T2 will be more powerful than the oracle test (µ, q, σ) when (we suppose
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a > 0) :

zα −
2a

σ2

√
ζ A p(1− p) < zα −

2a
√
p(1− p)
σ

⇔ ζ >
σ2

A
.

As a result, the efficiency κ2 is such as κ2 = A/σ2. That is to say,

κ2 = γ + zγ+ϕ(zγ+) − z1−γ− ϕ(z1−γ−) . (6)

8.4. Proof of i) of Theorem 3.1

Let β
(µ,q,σ)
i (resp. β

(µ,q)
i ) be the power of the test (µ, q, σ) (resp. (µ, q)) correspond-

ing to strategy i. According to formulae (5) and (3) : β
(µ,q,σ)
2 = β

(µ,q)
1 . Besides,

by definition : β
(µ,q,σ)
2 6 β

(µ,q,σ)
1 6 β

(µ,q)
1 . It comes β

(µ,q,σ)
1 = β

(µ,q,σ)
2 . As a conse-

quence, κ1 = κ2.

In the same way, by definition : β
(µ,q,σ)
2 6 β(µ,q,σ)

3 6 β(µ,q,σ)
1 . So, κ1 = κ2 = κ3.

8.5. Proof of ii) of Theorem 3.1

We have to answer the following question : how must we choose γ+ and γ− to
maximize the efficiency ? We remind that γ+ + γ− = γ. Let g(.) be the function
such as : g(zγ+) = Φ−1

{
γ − 1 + Φ(zγ+)

}
. Then, z1−γ− = g(zγ+).

Let k1(.) be the following function : k1(zγ+) = zγ+ϕ(zγ+)− g(zγ+) ϕ
{
g(zγ+)

}
.

In order to maximize κ1, we have to maximize the function k1(.). Let k′1(.), g′(.)
and ϕ′(.) be respectively the derivative of k1(.), g(.) and ϕ(.). We have :

k′1(zγ+) = ϕ(zγ+) + zγ+ϕ
′(zγ+) − g′(zγ+) ϕ

{
g(zγ+)

}
− g(zγ+) g′(zγ+) ϕ′

{
g(zγ+)

}
,

g′(zγ+) =
ϕ(zγ+)

ϕ(z1−γ−)
.

Then, k′1(zγ/2) = ϕ(zγ/2) −
{
zγ/2

}2
ϕ(zγ/2) − ϕ(z1−γ/2) +

{
z1−γ/2

}2
ϕ(z1−γ/2) =

0. As a result, the efficiency κ1 reaches its maximum when γ+ = γ− = γ
2 .

9. Proof of Theorem 5.1

To begin, we suppose that we are in the oracle situation, i.e. no genotypes are
missing. So, we observe Z and X whatever the value of Y . In order to perform
the linear regression of Z | X on Y | X which will be called Z̃ | X, we define the
following scalar product, for 2 r.v. U1 and U2 which take value in R : < U1 , U2 >
= E [U1U2]. We have :

Z̃ | X = < Z | X ,
Y | X − µY X

σ
>

Y | X − µY X
σ

+ < Z | X , 1 > 1

= r Y | X − r µY X + µZX .

Let Z? and µ?ZX be the two following quantities :

Z? =
Z − r Y

σ
√

1− r2
and µ?ZX =

µZX − r µY X

σ
√

1− r2
.
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This way, Z? | X ∼ N(µ?ZX , 1). By construction, (Z − Z̃) | X and Z̃ | X are
independent. So, Z? | X and Y | X are independent. If we consider now a selective
genotyping experiment, Z? will be available only when Y is extreme. However,
since Z? | X and Y | X are independent, Z? | X is not affected by the fact that Y
is extreme.

9.1. First strategy (Wald test using all the phenotypes)

Notation 9.1: L?(µ?Z−1, µ
?
Z1, µY , qY ) is the likelihood for an observation

(X,Y, Z?) and L(µZ , qZ , µY , qY ) is the likelihood for an observation (X,Y, Z).

Obviously, we have the relationship L?(µ?Z−1, µ
?
Z1, µY , qY ) = L(µZ , qZ , µY , qY ).

We have :

L?(µ?Z−1, µ
?
Z1, µY , qY ) =

{
1− p
σ

ϕ

(
y − µY + qY

σ

)
+

p

σ
ϕ

(
y − µY − qY

σ

)}
1X=0

+
p

σ
ϕ

(
y − µY − qY

σ

)
ϕ(z? − µ?Z1) 1X=1 +

1− p
σ

ϕ

(
y − µY + qY

σ

)
ϕ(z? − µ?Z−1) 1X=−1 .

The respective MLE µ̂Y and q̂Y , of µY and qY can be obtained using an EM
algorithm.

Besides, since ∂ logL?

∂µ?Z1
= (z?−µ?Z1)1X=1 and ∂ logL?

∂µ?Z−1
= (z?−µ?Z−1)1X=−1, we easily

obtain µ̂?Z−1 and µ̂?Z1 respective MLE of µ?Z−1 and µ?Z1 for n observations :

µ̂?Z1 =
1∑n

j=1 1Xj=1

n∑
j=1

z?j 1Xj=1 and µ̂?Z−1 =
1∑n

j=1 1Xj=−1

n∑
j=1

z?j 1Xj=−1 .

Let θ = (µZ , qZ , µY , qY ) and θ? =
(
µ?Z−1, µ

?
Z1, µY , qY

)
. Then, θ corresponds to

parameters of L and θ? to parameters of L?. We have :

qZ =
σ

2

√
1− r2 (µ?Z1 − µ?Z−1) + r qY ,

µZ =
σ

2

√
1− r2 (µ?Z1 + µ?Z−1) + r µY .

Let M be the matrix such as θ = Mθ? :

M =


σ
2

√
1− r2 σ

2

√
1− r2 r 0

−σ
2

√
1− r2 σ

2

√
1− r2 0 r

0 0 1 0
0 0 0 1

 .

The inverse of M , called M−1, verifies :

M−1 =


1

σ
√

1−r2 −
1

σ
√

1−r2 −
r

σ
√

1−r2
r

σ
√

1−r2
1

σ
√

1−r2
1

σ
√

1−r2 − r
σ
√

1−r2 −
r

σ
√

1−r2
0 0 1 0
0 0 0 1

 .
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Let θ00 = (µZ , 0, µY , 0) and θ?00 = M−1θ00. It comes :

θ?00 =

(
µZ

σ
√

1− r2
− rµY

σ
√

1− r2
,

µZ

σ
√

1− r2
− rµY

σ
√

1− r2
, µY , 0

)
.

Notation 9.2: Iθ (resp. I?θ?) will be the Fisher information matrix corresponding
to the likelihood L (resp. L?) and taken at point θ (resp. θ?).

Let’s calculate I?θ?00 :
∂ logL?

∂µY
|θ?00=

y−µY
σ , ∂ logL?

∂µ?Z−1
|θ?00= (z? − µZ

σ
√

1−r2 + rµY
σ
√

1−r2 ) 1X=−1 ,

∂ logL?

∂µ?Z1
|θ?00= (z? − µZ

σ
√

1−r2 + rµY
σ
√

1−r2 ) 1X=1 and

∂ logL?

∂qY
|θ?00= −

(y−µY
σ2

)
1X=−1 +

(y−µY
σ2

)
1X=1 +

(y−µY
σ2

)
(2p− 1) 1X=0 .

It comes

I?11(θ?00) = (1− p) γ , I?22(θ?00) = p γ and I?33(θ?00) = 1/σ2 .

Let’s adapt the previous notations for the configuration with two phenotypes.

Notation 9.3: γ, γ+ and γ− are respectively the quantities
PH0Y

(Y /∈ [S−, S+]), PH0Y
(Y > S+) and PH0Y

(Y < S−).

We remind that A = σ2
{
γ + zγ+ ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}
. According to

Section 8.2.2, we have

I?44(θ?00) =
A
σ4

+
(2p− 1)2

σ4
(σ2 −A) and I?34(θ?00) =

2p− 1

σ2
.

Besides, all the other terms of I?θ?00 are equal to zero.

Let θ̂ and θ̂? be the respective MLE of θ and θ?, then we have θ̂ = Mθ̂?. Since the
model is regular :

V
{ √

n (θ̂? − θ?00)
}

H0YH0Z→ I? −1
θ?00

.

Besides,
√
n (θ̂ − θ00) =

√
n M (θ̂? − θ?00) , it comes :

V
{ √

n (θ̂ − θ00)
}

H0YH0Z→ M I? −1
θ?00

M t and I−1
θ00

= M I? −1
θ?00

M t .

After some calculations, we obtain :

I−1
22 (θ00) =

σ2 (1− r2)

4 p (1− p) γ
+

σ4 r2

4 p (1− p) A
.

Let’s define the Wald statistic W1 :

W1 =
√
n q̂Z/

√
I−1

22 (θ00) .

The MLE q̂Z can easily be obtained using the MLE µ̂?Z−1, µ̂?Z1, and q̂Y (q̂Y can be
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obtained by EM). Since the model is regular :

W1
H0ZH0Y→ N(0, 1) .

We apply Theorem 8.2 respectively with hn = h = (0, 0, 0, a), hn = h = (0, b, 0, 0),
hn = h = (0, b, 0, a). Then, we have :

W1
H0ZHaY→ N (0, 1)

W1
HbZH0Y→ N

(
b/

√
I−1

22 (θ00) , 1

)
W1

HbZHaY→ N

(
b/

√
I−1

22 (θ00) , 1

)
.

It comes, whatever that we consider the null hypothesis or the local alternative for
Y , we always have :

W1
H0Z→ N(0, 1) and W1

HbZ→ N

(
b/

√
I−1

22 (θ00) , 1

)
.

The efficiency κ̃1 of this test, with respect to the oracle test (µZ , qZ) is obtained
easily :

κ̃1 =

{
1− r2

γ
+

r2

γ + zγ+ϕ(zγ+) − z1−γ− ϕ(z1−γ−)

}−1

.

We remark that :

κ̃1 =

{
1− r2

γ
+
r2

κ1

}−1

where κ1 is given in Theorem 3.1. According to Theorem 3.1, κ1 reaches its maxi-
mum for γ+ = γ− = γ/2. So, it is the same for κ̃1.

9.2. Second strategy (Wald test using only the extreme phenotypes Y )

In this case, the likelihood is :

L?(µ?Z−1, µ
?
Z1, µY , qY ) = P(X = 0) 1X=0 +

p

σ
ϕ

(
y − µY − qY

σ

)
ϕ(z? − µ?Z1) 1X=1

+
1− p
σ

ϕ

(
y − µY + qY

σ

)
ϕ(z? − µ?Z−1) 1X=−1 .

Let’s calculate the Fisher Information matrix. I?11(θ?00) and I?22(θ?00) are the same
as previously :

I?11(θ?00) = (1− p) γ , I?22(θ?00) = p γ .
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Besides,

∂ logL?

∂µY
|θ?00 =

y − µY
σ2

{
1X=−1 + 1X=1

}
+

ϕ
(
z1−γ−

)
− ϕ

(
zγ+
)

σ (1− γ)
1X=0 ,

I?33(θ?00) =
A
σ4

+

{
ϕ
(
z1−γ−

)
− ϕ

(
zγ+
)}2

σ2 (1− γ)
.

According to formula (1) of Section 2.4 of “Online Ressource 1” :

I?44(θ?00) =
A
σ4

+ (2p− 1)2

{
ϕ
(
z1−γ−

)
− ϕ

(
zγ+
)}2

σ2 (1− γ)
.

Besides,

∂ logL?

∂µY ∂qY
|θ?00 =

1

σ2
(1X=−1 − 1X=1) +

2p− 1

σ2(1− γ)

{
z1−γ−ϕ(z1−γ−)− zγ+ϕ(zγ+)

}
1X=0

− 2p− 1

σ2(1− γ)2

{
ϕ(z1−γ−)− ϕ(zγ+)

}2
1X=0 .

It comes :

I?34(θ?00) = (1− 2p)

[
A
σ4

+

{
ϕ(z1−γ−)− ϕ(zγ+)

}2

σ2(1− γ)

]
.

The other components of the Fisher Information matrix ar equal to zeros. Using
block matrix inversion, we obtain :

I? −1
11 (θ?00) =

1

(1− p) γ
, I? −1

22 (θ?00) =
1

p γ
, I? −1

44 (θ?00) =
σ4

4 A p(1− p)
.

Let’s define Λ such as :

Λ =

{
4 A p(1− p)

σ4

[
A
σ4

+

{
ϕ(zγ+)− ϕ(z1−γ−)

}2

σ2 (1− γ)

]}−1

.

Then :

I? −1
33 (θ?00) =

Λ

σ4

[
A+ (2p− 1)2

{
ϕ(zγ+)− ϕ(z1−γ−)

}2

1− γ

]

I? −1
34 (θ?00) = Λ (2p− 1)

[
A
σ4

+

{
ϕ(zγ+)− ϕ(z1−γ−)

}2

σ2 (1− γ)

]
.

In the same way as previously :

I−1
θ00

= M I? −1
θ?00

M t .
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We obtain :

I−1
22 (θ00) =

σ2(1− r2)

4 γ p(1− p)
+

r2σ4

4 A p(1− p)
.

We deduce the Wald test statistic W2 and its asymptotic law (same proof as for
the first strategy)

W2 =
√
n q̂Z/

√
I−1

22 (θ00)
H0Z→ N(0, 1)

W2
HbZ→ N

(
b/

√
I−1

22 (θ00) , 1

)
.

The MLE q̂Z can be obtained using µ̂?Z−1, µ̂?Z1 and q̂Y (q̂Y can be obtained using
a Newton method). This test has the same power as the test corresponding to the
first strategy. It concludes the proof.
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