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Abstract In Quantitative Trait Locus detection, selective genatgpis a way to reduce
costs due to genotyping : only individuals with extreme pitgpes are genotyped. We focus
here on statistical inference for selective genotyping.sively, in a very large framework,
the performances of different tests suitable for seleg&eotyping. We proof that we have
to genotype symetrically, that is to say the same percerifizege and small phenotypes
whatever the proportions of the two genotypes in the pojuriaBesides, we proof that the
non extreme phenotypes (ie. the phenotypes for which gpaetgre missing) don’t bring
any information for statistical inference. Same resuléesabtained in the case of a selective
genotyping with two phenotypes correlated.

Keywords Hypothesis testing Asymptotic properties of testsAsymptotic Relative
Efficiency- Selective genotypingQuantitative Trait Locus detection.

PACS 62F03: 62F05- 62F12- 62P10

1 Introduction
1.1 Introducing our study

We address the problem of detecting a Quantitative Traituspso-called QTL (a gene
influencing a quantitative trait which is able to be measurbdthis study, we will focus
only on a single locus on the genome, called genetic markerl(gnch and Walsh (1997),
Weller (2001), Wu et al. (2007))X refers to a genetic marker with two possible genotypes
: +1 with probabilityp and—1 with probabilityl — p. Y denotes the Quantitative Trait (ie.
phenotype)Y and X are linked by the following relationshipY = p + ¢X + ¢ where

¢ is a Gaussian noise with mearand variancer®. We will say that there is a QTL if the
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QTL effectq is different from zero. Indeed, in such a situation, theviatiials for which
X = +1 will tend to have a largeY” than the individuals for whiclk = —1.

The problem is that genotyping (ie. having the marker infation X) is very expensive.
In such a context, Lebowitz and al. (1987) had a very good dessed on the observation
that most of the information about the QTL is present in thieeg®me phenotypes (ie. the
smallest and the largest). So, they propose to genotype only the individuals whogmes
an extreme phenotype. This way, at a given power, a largeaserof the number of individ-
uals leads to a decrease of the number of individuals geadtymater, Lander and Botstein
(1989), formalized this approach and called it “selectiga@yping”.

More recently, Muranty and Goffinet (1997) focused on tharesdton of the QTL effect for
selective genotyping. However, although there have beey papers on selective genotyp-
ing, the theory of statistical inference for selective ggping is still missing. In a very fa-
mous article, Darvasi and Soller (1992) proposed to pertfbcomparison of means between
the extreme individuals (ie with extreme phenotypes) forchlX = +1 at the marker and
those for whichX = —1. It is such a nice idea since it is very intuitive. Howevenmso
errors are present in this paper. In this context, the ainhisfdrticle is to study statistical
inference for selective genotyping in a mathematical pofrtiew. Our study justifies some
practice of geneticists and gives new ways of analysing &stkective genotyping has been
motivated by agronomy but there are many areas where thadalgsis is crucial but under
economic pressures (aeronautics for instance). That's wlystudy selective genotyping
here in a large framework (in genetics, we mainly consjder 1/2 which corresponds to
the backcross). Besides, we present a study as a functibe ahknown parameters q, o.
Obviously, the most interesting situation is when all theaemeters are unknown, like in
real life. However, in some articles on selective genotgfor instance Darvasi and Soller
(1992)), people consider that without loss of generalitg, global meam and the variance
o2 are known. In fact, is there a loss of generality ?

We will also focus on selective genotyping in presence of taaelated phenotyp&s
and Z, and when it is difficult to measurg for some biological reasons (see Medugorac
and Soller (2001)). In such a context, the costs due to gpimgyand due to phenotyping
can be reduced : a selective genotyping is performed pand Z is measured only on
the genotyped individuals (ie. with extreme phenoty@sObviously, in such a situation,
the interest is on finding a QTL which has an effectnWe will answer same kinds of
guestions as for a selective genotyping with only one phgreotFinally, we will establish
the link between selective genotyping with one and two phges.

1.2 Roadmap and main results

Our study begins with only one phenotype(Sections 2 and 3). In Section 2, we consider
the classical situation where no genotypes are missing.aWi toracle situation” since we
know all the genotypes. We propose a simple test (“oract® tehich is optimal and which
will be considered as the test of reference. In Section Bsstar study of selective genotyp-
ing. We study different strategies for the data analysi® different tests (corresponding to
the different strategies) are compared in terms of Asynipielative Efficiciency (ARE),
which determines for each test, the sample size requiredtiirosame local asymptotic
power as the oracle test. Theorem 1, which gives the diftékRit for the different tests, is
the main result of the first part dealing with one phenotypeays that we have the same
ARE if we keep or not the non extreme phenotypes Y (ie the ptypes for which the
genotype is missing) in the data analysis. We have to keeprid that these non extreme
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phenotypes are available when we collect data in selecémetyping. Lemma 1 is a direct
consequence of Theorem 1. An easy and optimal test is pezbdhts based on the com-
parison of means of the extreme phenotypes. An other vergritapt result of Theorem 1
is that, if we want to genotype only a percentagef the population, we have to genotype
symetrically, that is to say the/2% individuals with the largest phenotypes and &%
individuals with the smallest phenotypes. This result balthatever the proportign(ie the
probability thatX = +1). Whenp = 1/2, this result was expected : it confirms by the
theory what geneticists do in practice. However, wheg 1/2, this result is original : we
didn’t know how to analyze such data.

Sections 4 and 5 are related to the second part : we deal ndwtwit correlated phe-
notypesY andZ. Same kind of analysis is given as in the first part which deétls one
phenotype. Theorem 2 and Lemma 2 are the main results. Thebsays that we still have
to genotype symetrically and that the non extreme phenoypssll don't bring any in-
formation for statistical inference. Theorem 2 also esshbk the relationship between the
ARE of a selective genotyping with two phenotypes and a sekegenotyping with one
phenotype. On the other hand, Lemma 2 presents optimal tests

Section 6 is an illustration of the theoretical results @ fraper : we check the asymp-
totic validity of our tests. Note that this paper deals with Cam (1986)’s work on con-
tiguity. We refer to the book of Van der Vaart (1998) for elertseof asymptotic statistics
used in proofs. We join “Online Ressource 1” which contaiosie proofs not needed at
first reading of this paper.

2 Oraclesituation : all the genotypes are known (ie no selective genotyping)
To begin, we consider the situation with no missing genatypne oracle situation. The
study of such a situation will be interesting in order to difgrthe lost of information due

to missing genotypes. We present here a simple test (oest)ewhich is optimal and which
will be considered as our reference test for our future sturdgelective genotyping.

2.1 Model

X denotes the random variable (r.v.) which corresponds t@é&motype at the QTL. We
consider 2 genotypes at the QTL :

X — —1 with probabilityl — p
] 1 with probabilityp.

We suppose # {0,1}. Y is the r.v. refering to the phenotype :
Y=p+qX +e¢

wheree is a Gaussian r.v. centered with variance ¢ is the QTL effect. We consider a
sample ofn observationg X ;, ;) independent and equally distributed.
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2.2 Oracle statistical tegt:, ¢, o)
We consider a statistical model withunknown parametergu, g, o). In order to test the
presence of a QTL, we consider the two following hypotheses :

Ho: ¢q=0 vs Hi: q#0.

We will consider in particular, a local alternativié, : ¢ = ﬁ whereqa is a constant
different from zero.
In this context, an easy test to perform is based on the ettt

To 3V —Y) Ix,m — 15V ) 1Xj——1}

RIS il =

A n Ve 1/2 N n
wheres = - {ijl(Yj - Y)Q} andY = 2 >0 Y.
The asymptotic laws are :

2 1-—
7™ N, 1) and T“i%N(ap(p), 1).
g
This test, which is almost a comparison of means betweemihigénotypes at the QTL, is
the most powerful test we can perform : it has the same asyiopiperties as the Wald
test. A proof is given in Section 7. Note that in this paper, wilt use the terminology
“comparison of means” even if our tests are only almost “carigon of means”.

3 Selective genotyping
3.1 Motivation

In this section, we mainly want to give answers to the follogviquestions for selective
genotyping :

e What is the loss of information due to missing genotypes iergegal framework ?

e Do the non extreme phenotypes (ie for which the genotype $sing) bring any extra
information for statistical inference ?

e Isit possible to propose an easy and optimal test for seteggnotying ?

o If we want to genotype only a percentagef the individuals, how should we genotype
? Should we genotype only the% individuals with the largest phenotypes? Or the
~% with the smallest phenotypes? Or some individuals with dingdst phenotypes and
some with the smallest phenotypes ?

e Do we have the same results when the number of unknown pagemnetries ?

3.2 Model and strategies

We consider two real thresholds (constafit) and .S+ such asS— < S4. We consider
that the genotype&X is known if and only if the phenotyp¥ is extreme, ie. if and only if
Y<S_orY > S5,
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In order to make the reading easier, we define a newkr.such as :

< [X HYvgls, sy
10 otherwise

In other words X = 0 refers to the case where the genotype is missing.

As in the oracle situation, we want to test the presence of B QT= 0 vsq # 0)
and we deal with a local alternativié,, : ¢ = % We consider her8 different strategies
suitable for the data analysis in selective genotyping :

e 1. we keep all the phenotypes (even the phenotypes whichareextremes, ie the
phenotypes for which the genotype is missing) and we peréo¥ifald test

e 2. we keep only the extreme phenotypes (ie. the phenotypeghich the genotype is
available) and we perform a comparison of means betweennthegénotypes at the
QTL

e 3. we keep only the extreme phenotypes (ie. the phenotypeghich the genotype is
available) and we perform a Wald test

Each test corresponding to each strategy will be companetoracle test in terms of ARE,
which determines for each test, the sample size requiredtiEirosame local asymptotic
power as the oracle test. The study of such strategies wjl ire to give answers to our
guestions of Section 3.1. Note that strategy 2 (inspired agv@si and Soller (1992)) is the
easiest to compute.

3.3 Results

To begin, we present our main theorem :

Theorem 1 Let k1, k2 and k3 be the efficiencies corresponding respectively to strategi
one, two and three. Let, v, andv_ be respectively the following quantitiBsg;, (Y ¢ [S—, S+]),
Pu, (Y > S4+) and Py, (Y < S_). Then, if we consider a statistical model withun-
known parametersu, g, o), Vp €]0, 1] :

) K1=rk2=kK3=7 + 2y, 0(27,) — 21-7_ P(21-~_)

i) k1, k2 andks reach their maximumy/, whenyy = y_ = % with

M =7+ 222 p(2y/2)

wherep(x) and z, denote respectively the density of a standard normal thstion taken
at the pointz, and the quantile of ordetr — « of a standard normal distribution.

The proof is given in Section 8.

Before interpreting this theorem, we have to give some pi@ts on the quantities,
v+ ~v—. According to the law of large numbers, under the null hypsibH, and under the
local alternativet,, % > 1§j 20 — 7- S0,7 corresponds asymptotically to the percentage
of individuals genotyped. In the same way, (resp.y—) corresponds asymptotically to the
percentage of individuals genotyped with the largest (rdspsmallest) phenotypes.

Let's explain now Theorem 1. According to i), the three sigis have exactly the
same ARE. We can deduce of it two consequences. First, sinee k3, the non extreme

phenotypes don’t bring any extra information for statatiaoference. Secondly, sineg =
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k3, there is no loss of power between a comparison of means and/aitd test based on
the extreme phenotypes. In other words, we should perfoensdimparison of means : it is
an easy and optimal test. However, we will see in Lemma 1,aHitle adjustment has to
be done in order to make this test easy. On the other handesgpts the ARE in a general
framework. We can see that the ARE is independent @ the probability thatX = +1)
anda (ie. the constant linked to the QTL effect). It only dependsypy+ and~_.
ii) of Theorem 1 says that the ARE is maximum for = v_ = 7/2. That is to say, if
we want to genotype only a percentagef the population, we should genotype th&2%
individuals with the largest phenotypes ap2% individuals with the smallest phenotypes.
It is true for anyp. Whenp = 1/2, this result was expected : it confirms by the theory what
geneticists do in practice. However, when£ 1/2, this result is original : we didn’t know
how to analyse such data.

We introduce now Lemma 1, which presents explicitly, canytta Theorem 1, the dif-
ferent tests corresponding to the different strategies.

Lemmal If we consider a statistical model withunknown parameterg., g, o), the Wald
test statistid?/1, the test statistic of comparison of medhs and the Wald test statistid’s,
which correspond respectively to strategies one, two arekth

Wi = Q\f A p(1—p) @
T {Z;‘l_lzly(y}ﬂ3)1xj—1 - 1;(5’;'/13)1;@.—1}
3

n A
2
W3 = \F As p(1—p) 43

have the same asymptotic laws undfy and underH,, that is to say :

N(, 1) and N (Mp(l_p), 1)

o2

whereg; andgs denote the MLE respective @for strategies one and thregz andé3 the
MLE repective of: and o for strategy three, A -
-A =0 {’Y + Zv+‘P(ZV+) - 31—7790(2'1—77)}1 Al = % 2?21(}/1 - Y)zlfﬂéo

= 5 251 (Y — fi3)*1x, 4, . &7 is given in Section 2.2.

For the proof, we refer to the proof of Theorem 1 in Section 8teNthat the estimatos
andé? are also consistent undéf, by contiguity. Same remark fod; and.43, which are
estimators ofA.

As said previously, we want to propose an easy and optimalltesrder to compute
the MLE ¢; and g3, we need to use respectively an EM algorithm and a Newton adeth
(cf. Rabier (2010)). As a consequence, the tests corregmptal strategies one and three
are difficult to perform. According to Lemma 1, the test basad?, ie the comparison of
mean between the two genotypes at the QTL, is not so easyfaripetndeed, we have to
compute the estimatqrs which is not straightforward. However, instead of usjiag we
can use the empirical meaf because this estimatorygn consistent. In the same way, we
can also replacels by A; . This way, the test is very easy to compute :

Zj 1p(Y Y) ;=1 = ﬁ(yj_?)lszfl

Ty =+/p(1 —p)n B —
¢zj=1m —Y)2lx
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The asymptotic laws are unchanged. Note that we use now thextoeme phenotypes
in this expression of ; (contrary to the definition of strated). Besides, we can see that
this test statistic is a generalization of our oracle tesisttc introduced in Section 2.2. To
conclude, when we analyse data, we should use this test aotygpe symetrically.

Until now, we have focused on the most interesting configumatall the parameters (ie.
I, q, o) were unknown. Let’s focus now on statistical models withpectively one unknown
parameterq) and two unknown parameterg,(g). The idea is to see if we obtain the same
results as previously. We will consider the same strateggepreviously. For strategy 2,
when justq is unknown, we have to keep in mind thdtis known. Indeed, according to
the proof of Theorem 1 (see Section 8.2.2), we hdve= Ex, {(Y — p)*1y¢(s_, 5,1}
As a consequence, we will consider the test statiEtiof Lemma 1 except that we replace
fi3 by 1 and As by A. Note that when we consider.(g) unknown, we will use same test
statisticT> as in Lemma 1. Besides, in order to calculate the differenEA® the different
strategies, we will obviously consider the appropriateleréest (ie. the oracle test with only
g unknown, and the one witf, ¢) unknown).
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Corollary 1 If we consider a statistical model with one unknown paramgfg then (with
the previous notations) :

) k1=7+ 2v,0(21.) — 219_ @(214_) + (2p— 1)2 {1 =7 = 2y p(2y,) + 21 <p(z1777)}
i) ke=4p(1-p) {7 = 2105 @(z1-7_) + 20y 9(21,)}
(2p —1)°

T e —eem) v

i) K3 =7+ (o) - 21y @) +

. 1
iv) K1 =R2=H3<:>p=§
V) Vp €]0,1] k1, k2 andkg reach their maximum foy4 = v_ = %
Corollary 2 If we consider a statistical model with two unknown parameefg, q), then

the results are the same as in Theorem 1.

The proof of Corollary 1 is given in Section 2 of “Online Resswe 1”. The proof of Corol-
lary 2 is obvious according to the proof of Theorem 1.

According to Corollary 2, when only the varianeé is known, we have same results
as previously. So, there is no loss of generality to condideariance known. However,
according to Corollary 1, there is a loss of generality tosider the meap known. Indeed,
when we consider only unknown, the three strategies have same ARE if and only=if
1/2 (ie. backcross in genetics). In other words, wipes 1/2, the non extreme phenotypes
Y bring some extra information for statistical inference, Bothis case, we have to use
strategy 1. Note that we still have to genotype symetridalhall strategies.

3.4 Remark on the work of Darvasi and Soller (1992)

In our study, in order to model selective genotyping, twd teeesholds (constany_ and
S+ have been considered. An individual is genotyped if and @nly ¢ [S—, S4] (ie.
X # 0). As said previously, undefy, and H,,, %Z I, 20 7 7 wherey = Py, (Y ¢
[S—, S+]). This way, our modelization agrees with the usual definibbselective geno-
typing : selective genotyping consists in genotyping ohly1% individuals with extreme
phenotypes.

In Darvasi and Soller (1992), the authors focus on a compard means, between
the extreme individuals, only when= 1/2. They considep. ando known without loss of
generality (which is true according to our study sipce 1/2). Besides, the main difference
with our approach, is that they consider thresholds whick wath the QTL effect. Indeed,
they considery = P(Y ¢ [S—,S+]). The problem is that since the QTL effect is such
asq = a/y/n, S— and S; depend om. As a consequence, the authors make an error
when they use classical central limit theorem : they shoskl Lindeberg-Feller central
limit theorem. Furthermore, they use approximations allogsholds (see their formulae
(1) and (2)), and results about sample sizes (see their far(@4)), which are not suitable
for models with local alternatives.

Note that in their paper, Darvasi and Soller (1992) supppseegy, that is to salp(Y” >
Sy) =P(Y < 5_) = ~/2. Anyway, if we consider the same configuration as Darvasi and
Soller (1992) (iep = 1/2 and symetry), our study gives the same ARE as presented in
formula (27) of Darvasi and Soller (1992). However, we have&kéep in mind that our
comparison of means based on the test stati§tiés totally new and was not present in
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Darvasi and Soller (1992). Indeed, we consigle€]0, 1[, not only symetry, ang: ando
unknown.

4 Introducing a second phenotype

We don't observe only one phenotypeanymore, but two correlated phenotypEsandZ.
The aim is to detect a QTL which has an effectrAs previously, we begin by considering
the situation with no missing genotypes. We present herejptimal oracle test, which will
be considered as our reference test for our future studylentse genotyping.

4.1 Model

X is still the r.v. corresponding to the genotype at the QTL.ddeasider the following model
Y\ [(py+arX
(Z) - <uz+qu) e

() (%' 3))

We suppose €] — 1, 1[. Besides, we consider thatand o are known.uy x andpzx
will be the following quantities uy x = py + ¢y X anduzx = pz + gz X. We consider
a sample of, observationg X ;, Y;, Z;) independent and equally distributed. Note that
andgqy are respectively the QTL effects on phenotypgeandY’.

where

4.2 Oracle statistical te$fiz, qz)

In order to test the presence of a QTL with effect on the phgr&¥, we consider the two
following hypotheses :

Hozi qZZO vSs let qz;éo.

We will consider in particular, a local alternativé,z : qz = % whereb is a constant
different from zero.

According to what has been done with only one phenotype (cfi@®s 2.2 and 7), an
easy and optimal test to perform is based on the followintssia

Yo 52— Dlx,m — 15525 — Z)1x,=—1

T — j=1p
J\/ p(1—p)

The asymptotic laws are :

26 /p(1 =
777 N0, 1) TH—I’>ZN<bi( p),1>

whereZ = Y| Z;.
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5 Selective genotyping with two correlated phenotypes

When it is difficult to measureZ for some biological reasons (see Medugorac and Soller
(2001)), the costs due to genotyping and due to phenotygingoe reduced : a selective
genotyping is performed olr, andZ is measured only on the genotyped individuals (ie.
with extreme phenotypés). In such a situation, the interest is on finding a QTL whick ha
an effect onZ. Obviously,Y andZ has to be correlated otherwise this selective genotyping
has no sense.

5.1 Motivation

We will try to answer same kinds of questions as for a seleg&notyping with only one
phenotype :

What is the loss of information due to missing genotypes iergegal framework ?

Do the non extreme phenotypEd(ie for which the genotype is missing) bring any extra
information for statistical inference on the QTL effect ?

If we want to genotype only a percentagef the individuals, how should we genotype
2

e Do we have the same results when the number of unknown pagemnetries ?

5.2 Model and strategies

We consider the same model as previously (see Section 32 the oracle situation, we
want to test the presence of a QTL which affe€tégz = 0 vs gz # 0) and we deal with a
local alternativeH,, : gz = ﬁ

SinceZ andY are correlated, we will have to deal with hypotheseszon So, the new
notations will be,Hyy for gy = 0, andH,y for gy = %

We consider here 2 strategies suitable for the data analysis

e 1. we keep all the phenotyp@s (even the phenotypes which are non extremes, ie the
phenotypes for which the genotype is missing) and we perfokiald test.

e 2. we keep only the extreme phenotypégie. the phenotypes for which the genotype
is available) and we perform a Wald test.

Each test corresponding to each strategy will be comparedetmracle test in terms of
ARE, which determines for each strategy, the sample sizeinettjto obtain same local
asymptotic power as the oracle test. The study of such gtesteill help us to give answers
to our questions of Section 5.1. Note that we don’t consideccbmparison of means d¢h:

it is obvious that this test won't be optimal. As a conseqeehere, strategy 2 is analoguous
to strategy 3 of the first part.

5.3 Results

To begin, we present our main theorem, Theorem 2, which istladogous of Corollary 2
for two phenotypes (the covariance matrix is known herewéier, since Corollary 2 and
Theorem 1 give same results, Theorem 2 can be also viewea an#hogous of Theorem
1.
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Theorem 2 Let#; andi. be the efficiencies corresponding to strategies one andieie,
~v+ and~y_ be respectively the following quantitie® s, (Y ¢ [S—, S+]), Pu,, (Y > S4)
andPg,, (Y < S_). Then, if we consider a statistical model withunknown parameters
(1z,q9z, py, qy ), we have undefHyy and underH,y , Vp €]0, 1] :

1—7r2 r? -
I) 1%121%22{ _‘_7}
Y K1

ii) %1 andis reach their maximum)/, for v, = v_ = 1, with

2
~ 1—72 27!
M= T
{ g +M}

wherex1 and M are the quantities of Theorem 1.

The proof is given in Section 9. As expected, the ARE incredter and~. As previously,
the non extreme phenotyp#&s(ie. for which the genotype is missing) don’t bring any extra
information for statistical inference ay);. Besides, we still have to genotype symetrically
for a selective genotyping with two phenotypes. Note thagdrem 2 establishes the rela-
tionship between the ARE of selective genotyping with on@ tavo phenotypes. Lemma 2
presents the different tests corresponding to the diffeseategies.

Lemma 2 If we consider a statistical model withunknown paramgter@u, 4z, by ,qy)
and that~we are undeflyy or H,y, then the Wald test statistid’; and the Wald test
statisticls, which correspond respectively to strategy one and two :

2 2 4,2 —1/2
W 1 o (1—r7) + ot
L= Vnaz {42?(1_17)7 4p(1—-p) Ar
—1/2
~ 2(1-1r% ot r?
Wa = i o ( + —
2= Vndz {4p(1—p)7 4p(1—p) A3

have the same asymptotic laws undgyz and Hy z, that is to say :

2 1—7“2) 0_4 1“2 —-1/2
N@©,1) and N ({2 ! + } 1
01 ( {419(1—1))7 4p(1-p) A
with ¢ MLE of ¢, for strategyi. A, A; and A3 are given in Lemma 1.

For the proof and also how to compute the MEE, we refer to the proof of Theorem 2 in
Section 9. We introduce now Corollary 3 which is the analegoiiCorollary 1. Onlyg
andgy are now unknown.

Corollary 3 If we consider a statistical model with two unknown paramstez, gy ), then
underHoy and underH,y:

1—r2 271
i) 1512{ +*}
v K1

1—r2 271
i) RQZ{ +f}
R3

iv) Vp€]0,1] &1 andiz reach their maximum foyy = y— = %
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wherex; andks are the quantities of Corollary 1.

The proof is given in Section 3 of “Online Ressource 1". Ading to this Corollary, the
two strategies have same ARE if and only i= 1/2. Whenp # 1/2, the non extreme phe-
notypesY” bring some extra information for statistical inferencegen As a consequence,
there is a loss of generality to consider the parameigrsand ..z known. However, we
still have to genotype symetrically. Note that Corollarysgablishes a link with the ARE of
Corollary 1.

To conclude, in the following Corollary 4, we consider aktharameters known except

qz.

Corollary 4 If we consider a statistical model with one unknown paramége; ), then
Vp €]0,1[:

P(Y ¢[5-,5+))

k = Ry =
1= K2 [— 2

The proof is given in Section 4 of “Online Ressource 1”. Hekejs a known constant : con-
trary to Theorem 2 and Corollary 8y does not depend on The quantity? (Y ¢ [S—, S+])
depends oy, and is asymptotically the percentage of individuals ggped. According
to Corollary 4, we don't have to genotype symetrically anyenohengy- is known : we can
genotype only the individuals with the largest (resp. sest)lphenotypes. Another interest-
ing result is that, whei® (Y ¢ [S_, S+]) > 1 — r2, selective genotyping becomes more
powerful than the oracle test. This surprising result is wuthe fact thaty- is known.

6 Illustration

In this Section, we propose to illustrate our theoreticalils. To begin, Figure 1 represents
the efficiencies with respect to the oracle test, for a sekegenotyping with one phenotype
(left-side) and for two phenotypes (right-side). Thesekifficies correspond to the two main
theorems of this article : Theorem 1 for a selective genotypiith one phenotype, and
Theorem 2 for a selective genotyping with two phenotypesther words, it corresponds
to the situation where all the parameters are unknown. Nwethe efficiencies do not
depend on the QTL effects (see Theorem 1 and 3)andle study here the efficiencies
as a function of the percentage of individuals genotypeshd also as a function of the
ratio v+ /v (ie the percentage of individuals genotyped with large phgres among the
individuals genotyped). For instance; /v = 1/2 refers that we genotype symetrically
whereasy, /vy = 1/4 means that we genotype three times more individuals withlsma
phenotypes than with large phenotypes. According to thehgave can see that we have to
genotype symetrically. The worst configuration is to gepetgnly the large phenotypes (see
~+/7v = 1) or to genotype only the small phenotypes (same curve asihéooy; /v = 1).
Obviously, we can remark that when= 1, all the efficiencies are equal to one, since all
the individuals are genotyped.

In Tables 1, 2 and 3, we will study the performances of ourstestsimulated data in
order to see if our tests which are based on asymptotic sgsukt suitable in real life. We
will consider one-sided tests at th& level. In Table 1, we consider a selective genotyping
with one phenotype. We focus on the most interesting sdnatiall the parameters are
unknown. We consider the test based on the stafistidt is very easy to perform since it
is a comparison of means, between the two genotypes at the iQdtk that we consider
the easier expression @k (see the remark below Lemma 1). We genotype symetrically
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(v+/~ = 1/2) and we considep = 1/2 which corresponds in genetics to the backcross.
Besidesa = 2 andn = 100. We remind thay = a/+/n, so we have; = 0.2 in our case.

B refers to the theoretical power wheregag ¢ to the Monte-Carlo power based #6000
samplesC1 refers to @5% confidence interval for the true value of the power :

Cl =

{51‘“ - 1.96 10000

Brc(l - Buc)

Bue +1.96

Brc(l — Buc)
10000 ’

According to Table 1, we can see thatis always in the confidence interval, whatever the

value ofy. As a consequence, our test is suitablerfee 100.

In Tables 2 and 3, we consider a selective genotyping wittpwemotypesiiz, gz, iy, qy)
are the unknown parameters. In this context, we focus oresteoised on the test statistic
W1 of Lemma 2. Indeed, in order to obtain the the MiE, we need to compute the MLE
gy , which can be obtained by EM (resp. Newton method) for gisafie(resp. strategy 2)
(see Section 9 for details). As a consequence, the test loasstlategy 1 is the easiest to
compute. As previously, we consider= 1/2 andv4/y = 1/2. To begin, in Table 2,
we study the situation where the QTL has no effect on the plyped (ie. gz = 0). We
compute the percentage of false positive (FP) and the comi@dimterval (Cl) for the true
value of FP (in the same way as previously). According to #i#et we can see that for
n = 50, 5% is always in the confidence interval, whatever the valugyofindr. In Table
3, we focus on the alternative. We consider 4, sogz = 0.5657. We can see that the
theoretical powep; is always in the confidence interval, despite the fact ¢hais not so
close to0. As a consequence, our test gives good performances fer50. That's why;, it

must be interesting for geneticists.

v, = V2
R A
pey, = Y8
R A

Selective genotyping with one phenotype

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Fig. 1 Efficiency as a function of and as a function of the ratip; /~

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Y

Selective gemogypwith two phenotypesr(= 0.8)
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ol Brc B2 Clin %

0.1 | 36.74% | 37.45% 35.80 ; 37.68
0.2 | 48.01% | 48.61% 47.03 ; 48.99
0.3 | 54.28% | 54.77% 53.30 ; 55.26
0.4 | 58.00% | 58.58% 57.03 ; 58.97
0.5 | 60.10% | 60.93% 59.14 ; 61.06
0.6 | 62.19% | 62.33% 61.24 ; 63.14
0.7 | 62.26% | 63.13% 61.31 ; 63.21
0.8 | 62.67% | 63.52% 61.72 ; 63.62
0.9 | 63.30% | 63.68% 62.36 ; 64.24
1 63.02% | 63.68% 62.07 ; 63.97

Table 1 Study of strategy 2 for a selective genotyping with one phgre Theoretical powe(s32) and
Monte-Carlo powet3,,¢) as a function ofy (10000 samplesp = 100,a = 2, ¢ = —2— = 0.2, & = 0,

V100
levp:1/2v’y+/7:1/2)

v =2 ] r FP Clin%
0 0.4 | 581 % | [5.35; 6.27
0 0.7 | 5.76 % | [5.30 ; 6.22
0 0.9 | 5.62 % | [5.17 ; 6.07

0.2828 04 | 487 % 4.45; 5.29
0.2828 0.7 | 513 % 4.70 ; 5.56
0.2828 09 | 471 % 4.29 ; 5.13

Table 2 Study of strategy 1 for a selective genotyping with two phgpes. Percentage of false positives
(FP) as a function o andr (b = 0,qz = 0, uy =0, uz = 0,0 =1,p = 1/2,~v = 0.30, n = 50,
10000 samples)

NN D O|O|O|

alar=_=|r Bmc B1 Clin %

0 0 0.4 | 73.96 % | 74.47 % 73.10 ; 74.82
0 0 0.7 | 82.23 % | 82.31 % 81.48 ; 82.98
0 0 0.9 | 92.24 % | 92.61 % 91.72 ; 92.76
2 0.2828 04 | 7472 % | 74.47 % 73.87 ; 75.57
2 0.2828 0.7 | 83.18 % | 83.47 % 82.45 ; 83.91

2 0.2828 09 | 9221 % | 92.61 % 91.68 ; 92.74

Table 3 Study of strategy 1 for selective genotyping with two phgpes. Theoretical power3() and
Monte-Carlo power §yrc) (b = 4, gz = 0.5657, py = 0, uz = 0,0 = 1,p = 1/2, v = 0.30,
n = 50, 10000 samples)

7 Proof for the oracle statistical test (u, q, o)

A natural estimator of the QTL effeqtis the following comparison of means :

1 Z;'lzlyj Ix;=1 _ Z;'L:1Yj Ix,=—1
2 Z?=1 Ix;=1 Z?:l I1x;=—1

However, this estimator is not convenient because of theormrdenominators. So, we want
to build an easier estimator. Let= ¢X + ¢, we can remark that under the local alternative
H,:
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1 n . v
IEHa {% ( j=1 % 1Xj:1 - 1”,]17 1X]-:71)} =d.
Besides undefl, Ep, (g Ix=1 — % 1X:,1> =0and

2 2 2
Em, {(g 1x=1 — & 1X:71) } =Eg, (zﬁ 1x=1 + uﬁip)z 1X:71) = p(fiip)-

2

ltcomesVy, (7 1x=1 — %5 lx=—1) = 57
Besides, under the local alternatiig, :
Ex, (* 1x=1 — 1o 1X_—1> =2q, 1
—-p

2 2
EHQ{(% 1x—1 — & 1X:—1) }:%(02"'(]2) + ﬁ(oﬁ_'_q?) — ﬁ,

Va, (% 1x=1 — & 1X:—1) = %(024-(12) + 2 (0* + %) — 44

1-p 1-p
We remark thatV g, (% 1x—1 — ﬁ IX:_l) — Va, (g 1x—1 — ﬁ IX:_1> .
As a consequence, &t be the following test statistic :
nj 5
7 ?:1 2 Ix=1 = 755 Ix=—1

o\ ram

The asymptotic laws areT 28 N (0, 1) and T % N (2“7 Ve (1-p) 1).

o

However, we don't observe the ra.but the phenotype¥’. Let Y and7 be the empirical
meansY = 1Y Vyandp =13 n;. ThenY = p+7mandy —Y =7 —7. LetT be
the following test statistic :

T S (Vi =Y) 1x,m1 = 755 (Y; - Y) Lx=—1

)

g

p (1-p)

We have

n 1
- dim1 T lx=—1 — 5 1x,=1

T=T +7n
J\/p(lfp)

Notation 1 op (1) will be a sequence of random vectors which tend to probability and
Op(1) will be a sequence bounded in probability.

Sl

According to Prohorovij = Op(ﬁ) and)"_, 1151lx,=—1 — 5 lx,=1 = Op(Vn).
It comes,

n 1 1
X T Ix=—1 = 5 1x=

As a consequence (we remind that we are utkdleor underH,,):

T=T + op(1).
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It comesT has the same asymptotic lawsHsWe need now to estimate the variance

which is unknown in the model studied. We will consider thep@inal variances? =

A (Y - 7)2} with Y = L 3" | V;. 6% is a consistant estimator undaf and

H, by contiguity. We just have to adapt the previous test staffs. 7" is now such as :

s l(Yv] _?) 1Xj:1 - ﬁ(YVJ _?) 1Xj:*1

T = j=1p
o \/ P (1n—p)

The asymptotic laws are unchanged -8 N (0, 1) and T 2§ N ( 22V2U=P) W, 1).

This test has the same asymptotic laws as the Wald test (gia®f in Section 1 of “Online
Ressource 17).

8 Proof of Theorem 1

Notation 2 I, will be the Fisher information matrix taken at the poéht I;;(0) refers to
the element; of Iy. 1" (6) refers to the elemeri of 7, *, the inverse of .

8.1 Theoretical elements needed for the study

To begin, we introduce a theorem. It will be very convenientalculate the power for the
Wald tests.

Theorem 3 Let(C14, ..., C, be an independent and equally distributed sample from a-prob
ability distribution P». We suppose tha® is an open subset d&&¢ and that the model
(Pp : 0 € O) is regular. Letd be the Maximum Likelihood Estimator (MLE) éfand

0o € O, then for every converging sequerice — h, asn — +oo, we have :

i) underPy,, /n(0—6o) — N, I""(6))
i) under Py \p, /m. Vn(@—00) = N(h, I""(60)).

Proof Let P, be the law corresponding ﬂagf’", Q- the law corresponding tﬁ’ef@fh Im

and 22= the likelihood ratio.

Since the model is regular, we have i). Besides, we can useréime?7.2 of Van der Vaart
(1998) which gives an explicit expression of the log likelild underP,,. According to the
central limit theorem, the law of large numbers and the prtigreof the Fisher Information
matrix, we have (witth! the transpose of):

dQn
log < P,

Notation 3 @, < P, will mean the sequencé,, is contiguous with the respect to the
sequence’,.

> By N(—%VQ, v?)  with v = kI, h.
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By the iii) of Le Cam’s first lemma, we hav@,, < P,,. So, we can use Le Cam’s third lemma.
Since the model is regular, we can use Theorem 5.39 of Vanafat {1998) :

\/E(é — 90) = 19_01% Zn:éeo (CJ) + OP@()(l)
j=1

wherel,, (C;) denotes the score function takerfas for an observatiod;.
According to Theorem 7.2 of Van der Vaart (1998) :

dQn
log( @ )— Zh lo,(C}) —h Ip,h + op,, (1).

Let h(;) be the ith component df. At the ith line, we have :

dQn
Cov (log (d?gn) , V(0 — 6o) ) Z h(/c){ (00) 11k (00) + ... + I ;4 (Go)fdk(eo)} + op,, (1)
= h(i) + Opeu (1)
Then, according to Le Cam'’s third lemma :
V(0 — 00) %8 N(h, T7(60)).

This gives the result.

8.2 First strategy (Wald test using all the phenotypes)
8.2.1 Likelihood

To begin, we remind that the r.XX is such as :

< [X fvegls, sy
" )0 otherwise

So, X = 0 refers to the case where the genotype is missiAg, ¢') has a density with
respect to the Lebesgue measuréhe counting measure.

Notation 4 Vi€ {—1,1}andV k € {—1,0,1}, P{i | k} andP {k | i} are the quantities
such as:
P{i|k}=P(X=i|X=k) and Pl{k|i}=P(X =k| X =1).

Notation 5 g1, g1 andqo are the quantities such as :
qg—1 :]P)(X = —1) , q1 = P(X = l) and qo :P(X = 0).
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It comesP {i | i} = & (w +1 - (Z=£71) whered is the cumulative distri-
bution of a standard normal distribution,1 = P{-1| -1} 1—p) , g =P{1 |1} p
and

go=(1-P{-1[-1}) (1-p) + A-P{1|1})p.

As a consequence :

@{_1‘k}zp{k|_;i (l—p) , @{1‘]{:}:[@{]{;]}} p.

According to Bayes theorerv,k € {—1,1},V y € R, we have

a . = DI NPT
P(Y d X =k =PY d X =k X = g 2t d
Yely, y+dyl| )=PY €ly, y+dy| N X #0) Bk | k] Y,
— @(w)lye[s, 5.
P(Y X=k)= g ks
( E[y,y+dy]ﬁ k) UP{]C|]{}} de?J7
wherey(.) denotes the density of a standard normal distribution.
Itcomes:
~ _ _1=-p (y—ntq
]P’(Ye[y,y—i-dy] ﬂX——l)— %) 1y$[S,,S+] dy,
g g
~ p Yy—pH—q
P(Y ey, y+dyl N le)zg @(T) lygrs_ , 5, 9y -
Besides,
P(Y€Ely,y+dy] [ X=0= > PYely,y+dy nX=i|X=0)
ie{-1,1}
Y—K=4a)q 1— Yy—ptq 1
_ P lyels. , 5y ay - (1=p) (=) 1yers_ | s4] a
g qo 0 qo
Then,
< p Yy—pH—gq
PY ey, y+dyl N XZO):;SO(T>11/€[S_,S+] dy
1-p (y—ptgq
+— <P( p )1y6[S,,S+] dy .

Finally, the likelihoodL for an observatiorf X,Y’) is such as :

1-p y—p+g p y—p—gq
L-1ory( | R Y (A A
o ¥ o X=-1 + o ¥ o X=1

1— —u+ — -
4_{ P @(y P q) n Q,@(y W q)}lfgo-
o g (o o
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8.2.2 Statistical tesfy, q)

We consider a statistical model with two unknown parameterg). We first introduce a
useful lemma obtained mainly using integration by parts.

Lemma3 LetV ~ N(u, o?),then:

) E(V2ygs  s,)) = W2+ BV ES—, S+]) + o (Ss +m) ¢ ()

— o (S-+me (S‘;”>

0 B (Vivgls s) = wBOVEIS= Sul) + oo (35) = oo ()
i) E{(V-m)?lygs s, 1f= PRV ES-, S+]) + o (S — ) o ()
—o(S-—me (S}_“>

0 2 (s s} 7o (52) - 0 (52)

VE {(v ~ 1) Lyefs_, S+]} =02 —o?P(V ¢[S-, St]) —a(Sy —p) ¢ (#)

+o (S —pe (S’;”

Notation 6 v, v+ andvy_ are respectively the quantiti®s;, (Y ¢ [S—, S+]),Pu, (Y > Sy)
andPg, (Y < S_). zo denote the quantile of ordér « of a standard normal distribution.
A is the quantity such ad = o> {7 + 2y, 0(2v4) — 2104_ (21-~_)}.

According to this lemma, we havé = Ex, {(Y — 1)’ 1y ¢s_, s.]}-
Letd = (u, ) be the parameter of the model afid= (1, 0) be true value of the parameter
underHy. We first compute the score functions and the Fisher Infaonaatrix. We have

T oy == (U 1+ () e+ (M) 0 i

dlogL , \*>  (y—p)? (y — p)? (y — p)?
(") =t e O e U e

It comeslao(60) = A + 22517 (62 — 4). Besides 292 |o, = L4 . So,
I1(60) = —.Furthermore,

OlogL 1 1 1
dq O 6o = ﬁlfz—l - ﬁlle ) (2p — Dlx_,

Since we are undeflo, Py, {—1| —1} = P, {1| 1}, it comesl12(6o) = 2 (2p — 1).
As a consequence :

0_4

4 Ap(l—p)

4, the MLE of ¢, can be obtained using a EM algorithm. Since the model islaegu
Vg N0, I3'(80) )

We can deduce the Wald test :

- 2;/277 VApA—p) ¢ B N(0, 1).

122 (90)
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According to Theorem 3 with,, = h = (0,a) :

w, s N(%«/Ap(l—p), 1) . 3)

8.3 Second strategy (comparison of means based on the exptggnotypes)
8.3.1 Statistical testu, q, o)
Let é be the following estimator :

. 1 1
§= (Y — )lxer — — (Y — p)lxers .
SV mmlx=r = (V= p)lx=m

According to formula (1) in Section B, (6) = 2¢ when we are in the oracle situation.
So,4 is an estimator of twice the QTL effect. If now, we consideesgve genotyping, we
would like to definey such as :

A 1 1
5*;(3/—#)1?:1 - E(Y—M)lyzfr
According to Lemma 3 :
E(é):lE(Y—MY:l)P(Y:l) - Ry X= P& = 1)
p 1—-p

=q@P{1|1}+P{-1]-1}) + 090(@) - "“"<w>

g
Si—p+ S_—u+
_J@(Jrau q>+090< Uu q).

We remark thad is not a good estimator @fanymore, but we can propose a test basedl on
since the expectation depends;ofVe haveE 7, (6) = 0 andV g, () = Ep, (%). Besides

1

$2 2 1 2
0 ZP(Y—M) Iy + —7@2(}/_”) Ix__, -

(1

According to Lemma 3 :

1

(I-p)?
1 2 1 2

= E{(Y—M) Lygrs s, | X = 1} t 1, E{(Y—u) lygrs_ s, | X = —1} :

E(S%:%E{(qu)? IX=1}BX=1) + E{(v-w?| X =-1}P(X = -1)

It comesEg, (6%) = p%p). So, we can define the test statisfie corresponding to the

second strategy. According to the Central Limit theorem,
Y (Y- wlx,y — 50 - w)lx

=
n A
\ p(1-p)

—1

Ty = % N(o, 1). (4)
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According to a Taylor expansion at first order :

W<S_ —au+q) _ \/127 (=) {1— Mﬂw(q}} :

We also have (working on integrals) :

i e(570) - 2(552) 41 o()

It comes :

YIS
/N
[95)
+
|
=
N——
_|_
2
2

En, {T2} = 2a{y — 21-7_@(21-7_) + 2y, (24, ) } w :

We can remark that this limit is equal g@ VA p(l—p).
BesidesEzs, (§) — 0.
Using Portmanteau theorem (sir¢ec {—1,1},Y | X =i — N(u, 0?)):

A

Eq,(07) — EDR

SoVy, () — Vy,(8) and it comes

o N (i—g‘ VAp(1—p), 1) . (5)

Sincep, ando are unknown, we have to adapt the test statigticWe can replace: by
1, estimator which depends of the extreme phenotyfiesan be obtained by maximum
likelihood or by the method of moments, because these twmatirs are,/n consistent
(same kind of proof as in Section 7). Besides, we can use tlogviog consistent estimator
of A:

L1l — 9
A== (Y = 1)l 40 -
j=1

The asymptotic laws df» are unchanged.
8.3.2 Asymptotic Relative Efficiency

We compute here the Asymptotic Relative Efficiency (ARE) It test of comparison of
mean based on extreme phenotypes, with respect to the ¢estie, g, o) where all the
genotypes are known. Until now, we have considetdddividuals. Let consider now*
individuals for a selective genotyping experimeri.has to be adapted. It comes

LY - )l — (Y — )l
T, = ==tel) Xo=1  1-pt) =21 9 N(o, 1)

n* A
p(1—p)

where A and/i are the same estimators as previously but adapted*fardividuals.
Let ¢ be the quantity such as= -, then (we remind tha = a/\/n) :

TgliiN(% VCAp(l—p), 1) .
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We will focus in particular on the appropriate one sided vé@stna > 0. The test based on
T> will be more powerful than the oracle tggt, ¢, ) when (we suppose > 0) :

/ _ 2
ZQ—%*/C.AP(l—p)<Zo¢—2ap7(1p) = C>i

o A
As a result, the efficiencys is such asi2 = A/c?. That is to say,

k2 =7 + 27+99(Zw+) — 21— p(z1-4_) . (6)

8.4 Proof of i) of Theorem 1

Let ,Bi(“’q"’) (resp.ﬂf“’q)) be the power of the tegl, ¢, o) (resp.(u, q)) corresponding to
strategy i. According to formulae (5) and (3;9;“"1’”) = ﬂﬁ“‘”. Besides, by definition :
ﬁé“’q"’) < ﬂY"q"’) < ﬁY"q). It comesﬁi”’q"’) = ﬁé“’q"’). As a consequence; = ko.
In the same way, by definitiond{"*??) < g{*%7) < {97 S0,k1 = kg = k3.

8.5 Proof of ii) of Theorem 1

We have to answer the following question : how must we chegsand~_ to maximize
the efficiency ? We remind that, + v = . Letg(.) be the function such agy(z,, ) =
Oy =1+ P(2y,)}. Thenzi_y_ = g(24,).

Let k1 (.) be the following function &1 (2, ) = 2z, ¢(2v,) — 9(2+.) ¢ {9(z4,) }.

In order to maximizes:, we have to maximize the functidn (.). Letk1(.), ¢’(.) and¢’(.)
be respectively the derivative &f (.), g(.) andp(.). We have :

k1(2v,) = 0(20,) + 29,9 (27.) = ' (zy) e {9(z0)} — 9(24.) 6 (24) @ {9(z,)}
®(2v)

9= = oy

Then ki (z,/2) = @(2y/2) = {24/2}° 0(29/2) = @(21-v2) + {2172} Pl21-7/2) =

0. As a result, the efficiency, reaches its maximum wheyy = v- = 7.

9 Proof of Theorem 2

To begin, we suppose that we are in the oracle situation, igemotypes are missing. So,
we observeZ and X whatever the value of". In order to perform the linear regression of
Z | X onY | X which will be calledZ | X, we define the following scalar product, fr
r.v. U1 andU; which take value iR : < Uy , Uz > = E [U1Us]. We have :

Y[ X-prx  YIX - pyx
g ag
= rY|X —rpuyx + pzx.

Z|X=<Z|X,

+ <Z|X,1>1

Let Z* andu’; x be the two following quantities :

Z —rY Hzx — T HYX
Z'="——" and uzx=""—rot-—
ocV1—r? Hzx oVv1—r7r2
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Thisway,Z* | X ~ N(u}x,1). By construction(Z—Z) | X andZ | X are independent.
So,Z* | X andY | X are independent.

If we consider now a selective genotyping experimefitwill be available only whery” is
extreme. However, sincg* | X andY | X are independenf* | X is not affected by the
fact thatY” is extreme.

9.1 First strategy (Wald test using all the phenotypes)

Notation 7 L*(u%_1, 1, iy @) is the likelihood for an observatiofX, Y, Z*) and
L(puz,qz, 1y, qy) is the likelihood for an observatiofX, Y, 7).

Obviously, we have the relationship (1% _1, u51, ty,qy) = L(pz, 9z, iy, gy )-
We have :

1- —py + —py —
L*()u}—ly ,u}l? HY , ‘ZY) = p‘P Y By o + B(p w 1?:0
g g g g

p — KUYy — qy * * 1*p Yy — Y+qY *
+;¢(%) o(2" —pz1) Iy + . so( MU )so(z —pz-1) I -

The respective MLE.y andgy, of 1y andgy can be obtained using an EM algorithm.
Besides, sincéte = (=% — %) 1x_, and§oets = (2" —uy_1)1x__,, we easily
obtaingz,_, andj, respective MLE ofu7,_ anduz1 for n observations :

ﬂ%l = sz ;=1 and ﬂ’éfl = sz X,=—
=1

] 1 Xjfl- j 1 XJ:—l

Letd = (uz,qz, py,qy) andd* = (u% 1, w71, py, qyv ). Then, corresponds to param-
eters ofL and@* to parameters of.”. We have :

o
9z =75 V1—12 (g —pz_1) + 7rav,
g
pz =5 Vi=r? (Wz1+pz-1)+ 7 py .
Let M be the matrix such as= M0O* :
SV1I—=12 SV1—-r2 1 0
—2V/1=72 2/1—=r2 0 r
M = 2 2
0 0 10
0 0 01
The inverse of\/, calledM ~*, verifies :
1 _ 1 _ T T
0'\/11—r2 o 11—r2 ov/1—r2 ov1—r2
T T
]\/[71 — ov1—1r2 ov1—r2 T ovVirz  oJ/i—r2
0 0 1 0
0 0 0 1

Letfoo = (pz,0, uy,0) andiy = M~ '6p0. It comes :

050 = < Hnz _ Tpy Hz _rpy Ly 0)
ovV1i—12 oV1—72" ov1—72 ov1—172" ’ '
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Notation 8 Iy (resp.Ij.) will be the Fisher information matrix corresponding to ttkeli-
hoodL (resp.L*) and taken at poird (resp.6*).

Let's calculately, :

QlogL* |~ _ y—py dlog L* (% _ bz Uy _
Opy 00 o ’ oul_, |‘95()_ (Z o/1—12 + o'\/lfr’?) ]‘X:—l ’
dlog L* o (o* nz THY _
Ouy, ‘950_ (Z oV/1—r2 + o 177“2) 1X=1 and
Jlog L* — Y—py\ 1 Y—py\ 1_ Y—py _ _
gy ‘050_ _( o2 ) 1X:—l + ( o2 ) 1X:l + ( o2 )(2]9 1) 1X:O '
It comes

I (050) = (1 —p) v, I32(050) = p v and I35(050) = 1/0” .
Let’s adapt the previous notations for the configuratiorhwito phenotypes.

Notation 9 ~, v+ and~_ are respectively the quantities
]P)Hoy (Y ¢ [S_, S—‘r])’ PHOY (Y > S+) andPHoy (Y < S—)

We remind thatd = o {v + 2y, 0(2v.) — 21-4_ @(z1-4_)}. According to Section
8.2.2, we have

ey A 2017 N
144(00()) = g + T(O’ — ./4) and 134(900) = 7 .
Besides, all the other terms @'60 are equal to zero.

Letd andd* be the respective MLE of and#*, then we havéd = M6*. Since the model
is regular :

Ax * Hoy Hoz 1% —
V{\/ﬁ(e —000)} — 19601.
Besidesy/n (0 — 6o0) = /n M (0* — 64,) , it comes :
V{ Vi @-60) } " MM and gl =ML M

After some calculations, we obtain :

2 2 4 2
1 oo (1—1r%) ot r
Iz (000)_417(1—17)"/ 4p(l—p) A’

Let define the Wald statistid/; :

Wi =vn G4z/\/ I (600) -

The MLE gz can easily be obtained using the MEE _+, /171, andgy (¢y can be obtained
by EM). Since the model is regular :

Hoz_l;foy

Wi N0, 1) .
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We apply Theorem 3 respectively with, = h = (0,0,0,a), h, = h = (0,5,0,0),
hn =h =(0,b,0,a). Then, we have :

Wy Tezdlay

wy ey Ny (b/ 5 (000) 71)
wy el N <b/ 5 (000) 1) .

N (0, 1)

It comes, whatever that we consider the null hypothesis @ldbal alternative foi”, we
always have :

Hogz

wy ¥ N, 1) and Wy ¥ N (b/ 52" (B00) ,1)-

The efficiencyk: of this test, with respect to the oracle téstz, gz) is obtained easily :

1—172 r2 -
k1 = + } .
{ v Y+ 2y () — 2y p(21-4)

We remark that :
1—7r? 72 -1
e
v K1

wherek1 is given in Theorem 1. According to TheoremH, reaches its maximum for
v+ = v— = ~/2. So, itis the same fak;.

9.2 Second strategy (Wald test using only the extreme phpeast”)

In this case, the likelihood is :

Y— py —qy

> ) (2" — pz1) x4

L*(pg—1, 071, by, qy) = P(X =0) 1¢_ ot ;‘P<
1_ _
+ pgp(y ny +qy
o o

) o(z" —pz_1) Ix__y -

Let’s calculate the Fisher Information matrik:; (659) and 135 (65 ) are the same as previ-
ously :

IT1(050) = (L —p) v, 132(000) =Dy -

Besides,
Olog L* Y — by ,u <P(Zl* 7)_5"(7‘ )
Oy |950 = = {1 -t 1?:1} + U’Y(l —’)/) - 1?:0 )
. L {ela) —e(e)}
133(000) = ; aé =) =
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According to formula (1) of Section 2.4 of “Online Ressoutcte

154(060) = % + (2p—1)° {o(z1-+_) =0 (2v,)}

o (1—1)
Besides,
Odlog L* 1 2p—1
202 e = — (g, — 1% e SR P )= 1+
Dy Iqy |000 02( X=—1 %-1) T o2(1—7) {21 vop(z1-5) Zw‘ﬂ(zw)} X=0
2p —1 2
T o2 (1 =) {o(z1-7_) = (27} 1o -
It comes :

134(650) = (1 — 2p)

A
ot o?(1—7)

The other components of the Fisher Information matrix ae¢tpzeros. Using block matrix
inversion, we obtain :

{o(z1r) so(zm}q .

1 I* —1(9* )_L I* —1(9* )_ 0-4
(1_p)’y ) 22 00 P ) 44 00 4Ap(1—p) .

Let defineA such as :

A- {4qu ~») {«4 o) - so(zlw_>}2} } |

Iﬁ_l(e&)) =

g 0—4 0_2 (1 — ry)
Then:
I35~ (650) = % A+ (2p - 1) {e(z.) 110(;1—7)} }
I3 ' (050) = A (2p— 1) % + {‘P(zvtj)z(lwfz;)_w)} } _

In the same way as previously :
Ioh =M Ig. =" M".
After calculations, we obtain :
o%(1—1r?) n r?ot
4yp(l—p) 4 Ap(l—p)’
We deduce the Wald test statisfizz and its asymptotic law (same proof as for the first

strategy)
Wa = v dz/\/ I3 (0o0) ¥ N(0, 1)

Hyz

Wy 2% N(b/ I (Boo) 1>.

I35 (000) =

The MLE gz can be obtained using;_1, jiz;; andgy (Gy can be obtained using a New-
ton method). This test has the same power as the test congisgdo the first strategy. It
concludes the proof.
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