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Abstract In Quantitative Trait Locus detection, selective genotyping is a way to reduce
costs due to genotyping : only individuals with extreme phenotypes are genotyped. We focus
here on statistical inference for selective genotyping. Westudy, in a very large framework,
the performances of different tests suitable for selectivegenotyping. We proof that we have
to genotype symetrically, that is to say the same percentageof large and small phenotypes
whatever the proportions of the two genotypes in the population. Besides, we proof that the
non extreme phenotypes (ie. the phenotypes for which genotypes are missing) don’t bring
any information for statistical inference. Same results are obtained in the case of a selective
genotyping with two phenotypes correlated.

Keywords Hypothesis testing· Asymptotic properties of tests· Asymptotic Relative
Efficiency· Selective genotyping· Quantitative Trait Locus detection.
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1 Introduction

1.1 Introducing our study

We address the problem of detecting a Quantitative Trait Locus, so-called QTL (a gene
influencing a quantitative trait which is able to be measured). In this study, we will focus
only on a single locus on the genome, called genetic marker (see Lynch and Walsh (1997),
Weller (2001), Wu et al. (2007)).X refers to a genetic marker with two possible genotypes
: +1 with probabilityp and−1 with probability1− p. Y denotes the Quantitative Trait (ie.
phenotype).Y andX are linked by the following relationship :Y = µ + qX + ε where
ε is a Gaussian noise with mean0 and varianceσ2. We will say that there is a QTL if the

Charles-Elie Rabier
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QTL effect q is different from zero. Indeed, in such a situation, the individuals for which
X = +1 will tend to have a largerY than the individuals for whichX = −1.

The problem is that genotyping (ie. having the marker informationX) is very expensive.
In such a context, Lebowitz and al. (1987) had a very good ideabased on the observation
that most of the information about the QTL is present in the extreme phenotypes (ie. the
smallest and the largestY ). So, they propose to genotype only the individuals who present
an extreme phenotype. This way, at a given power, a large increase of the number of individ-
uals leads to a decrease of the number of individuals genotyped. Later, Lander and Botstein
(1989), formalized this approach and called it “selective genotyping”.
More recently, Muranty and Goffinet (1997) focused on the estimation of the QTL effect for
selective genotyping. However, although there have been many papers on selective genotyp-
ing, the theory of statistical inference for selective genotyping is still missing. In a very fa-
mous article, Darvasi and Soller (1992) proposed to performa comparison of means between
the extreme individuals (ie with extreme phenotypes) for which X = +1 at the marker and
those for whichX = −1. It is such a nice idea since it is very intuitive. However, some
errors are present in this paper. In this context, the aim of this article is to study statistical
inference for selective genotyping in a mathematical pointof view. Our study justifies some
practice of geneticists and gives new ways of analysing data. Selective genotyping has been
motivated by agronomy but there are many areas where the dataanalysis is crucial but under
economic pressures (aeronautics for instance). That’s why, we study selective genotyping
here in a large framework (in genetics, we mainly considerp = 1/2 which corresponds to
the backcross). Besides, we present a study as a function of the unknown parametersµ, q, σ.
Obviously, the most interesting situation is when all theseparameters are unknown, like in
real life. However, in some articles on selective genotyping (for instance Darvasi and Soller
(1992)), people consider that without loss of generality, the global meanµ and the variance
σ2 are known. In fact, is there a loss of generality ?

We will also focus on selective genotyping in presence of twocorrelated phenotypesY
andZ, and when it is difficult to measureZ for some biological reasons (see Medugorac
and Soller (2001)). In such a context, the costs due to genotyping and due to phenotyping
can be reduced : a selective genotyping is performed onY , andZ is measured only on
the genotyped individuals (ie. with extreme phenotypesY ). Obviously, in such a situation,
the interest is on finding a QTL which has an effect onZ. We will answer same kinds of
questions as for a selective genotyping with only one phenotype. Finally, we will establish
the link between selective genotyping with one and two phenotypes.

1.2 Roadmap and main results

Our study begins with only one phenotypeY (Sections 2 and 3). In Section 2, we consider
the classical situation where no genotypes are missing. We call it “oracle situation” since we
know all the genotypes. We propose a simple test (“oracle test”) which is optimal and which
will be considered as the test of reference. In Section 3, starts our study of selective genotyp-
ing. We study different strategies for the data analysis. The different tests (corresponding to
the different strategies) are compared in terms of Asymptotic Relative Efficiciency (ARE),
which determines for each test, the sample size required to obtain same local asymptotic
power as the oracle test. Theorem 1, which gives the different ARE for the different tests, is
the main result of the first part dealing with one phenotype. It says that we have the same
ARE if we keep or not the non extreme phenotypes Y (ie the phenotypes for which the
genotype is missing) in the data analysis. We have to keep in mind that these non extreme
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phenotypes are available when we collect data in selective genotyping. Lemma 1 is a direct
consequence of Theorem 1. An easy and optimal test is presented. It is based on the com-
parison of means of the extreme phenotypes. An other very important result of Theorem 1
is that, if we want to genotype only a percentageγ of the population, we have to genotype
symetrically, that is to say theγ/2% individuals with the largest phenotypes and theγ/2%
individuals with the smallest phenotypes. This result holds whatever the proportionp (ie the
probability thatX = +1). Whenp = 1/2, this result was expected : it confirms by the
theory what geneticists do in practice. However, whenp 6= 1/2, this result is original : we
didn’t know how to analyze such data.

Sections 4 and 5 are related to the second part : we deal now with two correlated phe-
notypesY andZ. Same kind of analysis is given as in the first part which dealswith one
phenotype. Theorem 2 and Lemma 2 are the main results. Theorem 2 says that we still have
to genotype symetrically and that the non extreme phenoypesY still don’t bring any in-
formation for statistical inference. Theorem 2 also establishes the relationship between the
ARE of a selective genotyping with two phenotypes and a selective genotyping with one
phenotype. On the other hand, Lemma 2 presents optimal tests.

Section 6 is an illustration of the theoretical results of this paper : we check the asymp-
totic validity of our tests. Note that this paper deals with Le Cam (1986)’s work on con-
tiguity. We refer to the book of Van der Vaart (1998) for elements of asymptotic statistics
used in proofs. We join “Online Ressource 1” which contains some proofs not needed at
first reading of this paper.

2 Oracle situation : all the genotypes are known (ie no selective genotyping)

To begin, we consider the situation with no missing genotypes : the oracle situation. The
study of such a situation will be interesting in order to quantify the lost of information due
to missing genotypes. We present here a simple test (oracle test), which is optimal and which
will be considered as our reference test for our future studyon selective genotyping.

2.1 Model

X denotes the random variable (r.v.) which corresponds to thegenotype at the QTL. We
consider 2 genotypes at the QTL :

X =

{
−1 with probability1− p

1 with probabilityp.

We supposep 6= {0, 1}. Y is the r.v. refering to the phenotype :

Y = µ+ qX + ε

whereε is a Gaussian r.v. centered with varianceσ2. q is the QTL effect. We consider a
sample ofn observations(Xj , Yj) independent and equally distributed.
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2.2 Oracle statistical test(µ, q, σ)

We consider a statistical model with3 unknown parameters(µ, q, σ). In order to test the
presence of a QTL, we consider the two following hypotheses :

H0 : q = 0 vs H1 : q 6= 0.

We will consider in particular, a local alternativeHa : q = a√
n

wherea is a constant
different from zero.

In this context, an easy test to perform is based on the test statistic

T =
√

p (1− p)

{∑n
j=1

1
p (Yj − Y ) 1Xj=1 − 1

1−p (Yj − Y ) 1Xj=−1

σ̂
√
n

}

whereσ̂ = 1√
n

{∑n
j=1(Yj − Y )2

}1/2
andY = 1

n

∑n
j=1 Yj .

The asymptotic laws are :

T
H0→ N (0, 1) and T

Ha→ N

(
2a
√
p (1− p)

σ
, 1

)
.

This test, which is almost a comparison of means between the two genotypes at the QTL, is
the most powerful test we can perform : it has the same asymptotic properties as the Wald
test. A proof is given in Section 7. Note that in this paper, wewill use the terminology
“comparison of means” even if our tests are only almost “comparison of means”.

3 Selective genotyping

3.1 Motivation

In this section, we mainly want to give answers to the following questions for selective
genotyping :

• What is the loss of information due to missing genotypes in a general framework ?
• Do the non extreme phenotypes (ie for which the genotype is missing) bring any extra

information for statistical inference ?
• Is it possible to propose an easy and optimal test for selective genotying ?
• If we want to genotype only a percentageγ of the individuals, how should we genotype

? Should we genotype only theγ% individuals with the largest phenotypes? Or the
γ% with the smallest phenotypes? Or some individuals with the largest phenotypes and
some with the smallest phenotypes ?

• Do we have the same results when the number of unknown parameters varies ?

3.2 Model and strategies

We consider two real thresholds (constant)S− andS+ such asS− 6 S+. We consider
that the genotypeX is known if and only if the phenotypeY is extreme, ie. if and only if
Y 6 S− or Y > S+.
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In order to make the reading easier, we define a new r.v.X such as :

X =

{
X if Y /∈ [S− , S+]

0 otherwise.

In other words,X = 0 refers to the case where the genotype is missing.
As in the oracle situation, we want to test the presence of a QTL (q = 0 vs q 6= 0)

and we deal with a local alternativeHa : q = a√
n

. We consider here3 different strategies
suitable for the data analysis in selective genotyping :

• 1. we keep all the phenotypes (even the phenotypes which are non extremes, ie the
phenotypes for which the genotype is missing) and we performa Wald test

• 2. we keep only the extreme phenotypes (ie. the phenotypes for which the genotype is
available) and we perform a comparison of means between the two genotypes at the
QTL

• 3. we keep only the extreme phenotypes (ie. the phenotypes for which the genotype is
available) and we perform a Wald test

Each test corresponding to each strategy will be compared tothe oracle test in terms of ARE,
which determines for each test, the sample size required to obtain same local asymptotic
power as the oracle test. The study of such strategies will help us to give answers to our
questions of Section 3.1. Note that strategy 2 (inspired by Darvasi and Soller (1992)) is the
easiest to compute.

3.3 Results

To begin, we present our main theorem :

Theorem 1 Let κ1, κ2 andκ3 be the efficiencies corresponding respectively to strategies
one, two and three. Letγ, γ+ andγ− be respectively the following quantitiesPH0

(Y /∈ [S−, S+]),
PH0

(Y > S+) and PH0
(Y < S−). Then, if we consider a statistical model with3 un-

known parameters(µ, q, σ), ∀p ∈]0, 1[ :

i) κ1 = κ2 = κ3 = γ + zγ+
ϕ(zγ+

) − z1−γ
−

ϕ(z1−γ
−

)

ii) κ1, κ2 andκ3 reach their maximum,M , whenγ+ = γ− =
γ

2
, with

M = γ + 2 zγ/2 ϕ(zγ/2)

whereϕ(x) andzα denote respectively the density of a standard normal distribution taken
at the pointx, and the quantile of order1− α of a standard normal distribution.

The proof is given in Section 8.
Before interpreting this theorem, we have to give some precisions on the quantitiesγ,

γ+ γ−. According to the law of large numbers, under the null hypothesisH0 and under the
local alternativeHa, 1

n

∑
1Xj 6=0 → γ. So,γ corresponds asymptotically to the percentage

of individuals genotyped. In the same way,γ+ (resp.γ−) corresponds asymptotically to the
percentage of individuals genotyped with the largest (resp. the smallest) phenotypes.

Let’s explain now Theorem 1. According to i), the three strategies have exactly the
same ARE. We can deduce of it two consequences. First, sinceκ1 = κ3, the non extreme
phenotypes don’t bring any extra information for statistical inference. Secondly, sinceκ2 =
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κ3, there is no loss of power between a comparison of means and the Wald test based on
the extreme phenotypes. In other words, we should perform the comparison of means : it is
an easy and optimal test. However, we will see in Lemma 1, thata little adjustment has to
be done in order to make this test easy. On the other hand, i) presents the ARE in a general
framework. We can see that the ARE is independent ofp (ie the probability thatX = +1)
anda (ie. the constant linked to the QTL effect). It only depends on γ, γ+ andγ−.
ii) of Theorem 1 says that the ARE is maximum forγ+ = γ− = γ/2. That is to say, if
we want to genotype only a percentageγ of the population, we should genotype theγ/2%
individuals with the largest phenotypes andγ/2% individuals with the smallest phenotypes.
It is true for anyp. Whenp = 1/2, this result was expected : it confirms by the theory what
geneticists do in practice. However, whenp 6= 1/2, this result is original : we didn’t know
how to analyse such data.

We introduce now Lemma 1, which presents explicitly, contrary to Theorem 1, the dif-
ferent tests corresponding to the different strategies.

Lemma 1 If we consider a statistical model with3 unknown parameters(µ, q, σ), the Wald
test statisticW1, the test statistic of comparison of meansT2, and the Wald test statisticW3,
which correspond respectively to strategies one, two and three :

W1 :=
2
√
n

σ̂2

√
Â1 p(1− p) q̂1

T2 :=
√

p(1− p)

{∑n
j=1

1
p (Yj − µ̂3)1Xj=1 − 1

1−p (Yj − µ̂3)1Xj=−1√
n Â3

}

W3 :=
2
√
n

σ̂2
3

√
Â3 p(1− p) q̂3

have the same asymptotic laws underH0 and underHa, that is to say :

N(0, 1) and N

(
2a
√
A p(1− p)

σ2
, 1

)

whereq̂1 and q̂3 denote the MLE respective ofq for strategies one and three,µ̂3 andσ̂2
3 the

MLE repective ofµ andσ2 for strategy three,
A = σ2

{
γ + zγ+

ϕ(zγ+
)− z1−γ

−

ϕ(z1−γ
−

)
}

, Â1 = 1
n

∑n
j=1(Yj − Y )21Xj 6=0

Â3 = 1
n

∑n
j=1(Yj − µ̂3)

21Xj 6=0 , σ̂2 is given in Section 2.2.

For the proof, we refer to the proof of Theorem 1 in Section 8. Note that the estimatorŝσ2

andσ̂2
3 are also consistent underHa by contiguity. Same remark for̂A1 andÂ3, which are

estimators ofA.
As said previously, we want to propose an easy and optimal test. In order to compute

the MLE q̂1 and q̂3, we need to use respectively an EM algorithm and a Newton method
(cf. Rabier (2010)). As a consequence, the tests corresponding to strategies one and three
are difficult to perform. According to Lemma 1, the test basedonT2, ie the comparison of
mean between the two genotypes at the QTL, is not so easy to perform. Indeed, we have to
compute the estimator̂µ3 which is not straightforward. However, instead of usingµ̂3, we
can use the empirical meanY , because this estimator is

√
n consistent. In the same way, we

can also replacêA3 by Â1. This way, the test is very easy to compute :

T2 =
√

p(1− p)n





∑n
j=1

1
p (Yj − Y )1Xj=1 − 1

1−p (Yj − Y )1Xj=−1√∑n
j=1(Yj − Y )21Xj 6=0



 .
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The asymptotic laws are unchanged. Note that we use now the non extreme phenotypes
in this expression ofT2 (contrary to the definition of strategy2). Besides, we can see that
this test statistic is a generalization of our oracle test statistic introduced in Section 2.2. To
conclude, when we analyse data, we should use this test and genotype symetrically.

Until now, we have focused on the most interesting configuration : all the parameters (ie.
µ, q,σ) were unknown. Let’s focus now on statistical models with respectively one unknown
parameter (q) and two unknown parameters (µ, q). The idea is to see if we obtain the same
results as previously. We will consider the same strategiesas previously. For strategy 2,
when justq is unknown, we have to keep in mind thatA is known. Indeed, according to
the proof of Theorem 1 (see Section 8.2.2), we haveA = EH0

{
(Y − µ)21Y /∈[S

−
, S+]

}
.

As a consequence, we will consider the test statisticT2 of Lemma 1 except that we replace
µ̂3 by µ andÂ3 by A. Note that when we consider (µ, q) unknown, we will use same test
statisticT2 as in Lemma 1. Besides, in order to calculate the different ARE for the different
strategies, we will obviously consider the appropriate oracle test (ie. the oracle test with only
q unknown, and the one with(µ, q) unknown).
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Corollary 1 If we consider a statistical model with one unknown parameter (q), then (with
the previous notations) :

i) κ1 = γ + zγ+
ϕ(zγ+

) − z1−γ
−

ϕ(z1−γ
−

) + (2p− 1)2
{
1− γ − zγ+

ϕ(zγ+
) + z1−γ

−

ϕ(z1−γ
−

)
}

ii) κ2 = 4 p (1− p)
{
γ − z1−γ

−

ϕ(z1−γ
−

) + zγ+
ϕ(zγ+

)
}

iii) κ3 = γ + zγ+
ϕ(zγ+

) − z1−γ
−

ϕ(z1−γ
−

) +
(2p− 1)2

1 − γ

{
ϕ(z1−γ

−

) − ϕ(zγ+
)
}2 ∀γ 6= 1

iv) κ1 = κ2 = κ3 ⇔ p =
1

2

v) ∀p ∈]0, 1[ κ1, κ2 andκ3 reach their maximum forγ+ = γ− =
γ

2
.

Corollary 2 If we consider a statistical model with two unknown parameters (µ, q), then
the results are the same as in Theorem 1.

The proof of Corollary 1 is given in Section 2 of “Online Ressource 1”. The proof of Corol-
lary 2 is obvious according to the proof of Theorem 1.

According to Corollary 2, when only the varianceσ2 is known, we have same results
as previously. So, there is no loss of generality to considerthe variance known. However,
according to Corollary 1, there is a loss of generality to consider the meanµ known. Indeed,
when we consider onlyq unknown, the three strategies have same ARE if and only ifp =
1/2 (ie. backcross in genetics). In other words, whenp 6= 1/2, the non extreme phenotypes
Y bring some extra information for statistical inference. So, in this case, we have to use
strategy 1. Note that we still have to genotype symetricallyfor all strategies.

3.4 Remark on the work of Darvasi and Soller (1992)

In our study, in order to model selective genotyping, two real thresholds (constant)S− and
S+ have been considered. An individual is genotyped if and onlyif Y /∈ [S−, S+] (ie.
X 6= 0). As said previously, underH0 andHa, 1

n

∑
1Xj 6=0 → γ whereγ = PH0

(Y /∈
[S−, S+]). This way, our modelization agrees with the usual definitionof selective geno-
typing : selective genotyping consists in genotyping only theγ% individuals with extreme
phenotypes.

In Darvasi and Soller (1992), the authors focus on a comparison of means, between
the extreme individuals, only whenp = 1/2. They considerµ andσ known without loss of
generality (which is true according to our study sincep = 1/2). Besides, the main difference
with our approach, is that they consider thresholds which vary with the QTL effect. Indeed,
they considerγ = P(Y /∈ [S−, S+]). The problem is that since the QTL effect is such
as q = a/

√
n, S− andS+ depend onn. As a consequence, the authors make an error

when they use classical central limit theorem : they should use Lindeberg-Feller central
limit theorem. Furthermore, they use approximations aboutthresholds (see their formulae
(1) and (2)), and results about sample sizes (see their formula (24)), which are not suitable
for models with local alternatives.

Note that in their paper, Darvasi and Soller (1992) suppose symetry, that is to sayP(Y >
S+) = P(Y < S−) = γ/2. Anyway, if we consider the same configuration as Darvasi and
Soller (1992) (iep = 1/2 and symetry), our study gives the same ARE as presented in
formula (27) of Darvasi and Soller (1992). However, we have to keep in mind that our
comparison of means based on the test statisticT2 is totally new and was not present in
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Darvasi and Soller (1992). Indeed, we considerp ∈]0, 1[, not only symetry, andµ andσ
unknown.

4 Introducing a second phenotype

We don’t observe only one phenotypeY anymore, but two correlated phenotypes,Y andZ.
The aim is to detect a QTL which has an effect onZ. As previously, we begin by considering
the situation with no missing genotypes. We present here ouroptimal oracle test, which will
be considered as our reference test for our future study on selective genotyping.

4.1 Model

X is still the r.v. corresponding to the genotype at the QTL. Weconsider the following model
: (

Y
Z

)
=

(
µY + qY X
µZ + qZX

)
+ ε

where

ε ∼ N

((
0
0

)
,

(
σ2 r σ2

r σ2 σ2

))
.

We supposer ∈] − 1, 1[. Besides, we consider thatr andσ2 are known.µY X andµZX

will be the following quantities :µY X = µY + qY X andµZX = µZ + qZX. We consider
a sample ofn observations(Xj , Yj , Zj) independent and equally distributed. Note thatqZ
andqY are respectively the QTL effects on phenotypesZ andY .

4.2 Oracle statistical test(µZ , qZ)

In order to test the presence of a QTL with effect on the phenotypeZ, we consider the two
following hypotheses :

H0Z : qZ = 0 vs H1Z : qZ 6= 0.

We will consider in particular, a local alternativeHbZ : qZ = b√
n

whereb is a constant
different from zero.

According to what has been done with only one phenotype (cf Sections 2.2 and 7), an
easy and optimal test to perform is based on the following statistic

T =

∑n
j=1

1
p (Zj − Z)1Xj=1 − 1

1−p (Zj − Z)1Xj=−1

σ
√

n
p(1−p)

.

The asymptotic laws are :

T
H0Z→ N(0, 1) T

HbZ→ N

(
2 b
√

p(1− p)

σ
, 1

)

whereZ = 1
n

∑n
j=1 Zj .
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5 Selective genotyping with two correlated phenotypes

When it is difficult to measureZ for some biological reasons (see Medugorac and Soller
(2001)), the costs due to genotyping and due to phenotyping can be reduced : a selective
genotyping is performed onY , andZ is measured only on the genotyped individuals (ie.
with extreme phenotypesY ). In such a situation, the interest is on finding a QTL which has
an effect onZ. Obviously,Y andZ has to be correlated otherwise this selective genotyping
has no sense.

5.1 Motivation

We will try to answer same kinds of questions as for a selective genotyping with only one
phenotype :

• What is the loss of information due to missing genotypes in a general framework ?
• Do the non extreme phenotypesY (ie for which the genotype is missing) bring any extra

information for statistical inference on the QTL effectqZ ?
• If we want to genotype only a percentageγ of the individuals, how should we genotype

?
• Do we have the same results when the number of unknown parameters varies ?

5.2 Model and strategies

We consider the same model as previously (see Section 3.2). As in the oracle situation, we
want to test the presence of a QTL which affectsZ (qZ = 0 vs qZ 6= 0) and we deal with a
local alternativeHbZ : qZ = b√

n
.

SinceZ andY are correlated, we will have to deal with hypotheses onqY . So, the new
notations will be,H0Y for qY = 0, andHaY for qY = a√

n
.

We consider here 2 strategies suitable for the data analysis:

• 1. we keep all the phenotypesY (even the phenotypes which are non extremes, ie the
phenotypes for which the genotype is missing) and we performa Wald test.

• 2. we keep only the extreme phenotypesY (ie. the phenotypes for which the genotype
is available) and we perform a Wald test.

Each test corresponding to each strategy will be compared tothe oracle test in terms of
ARE, which determines for each strategy, the sample size required to obtain same local
asymptotic power as the oracle test. The study of such strategies will help us to give answers
to our questions of Section 5.1. Note that we don’t consider the comparison of means onZ :
it is obvious that this test won’t be optimal. As a consequence, here, strategy 2 is analoguous
to strategy 3 of the first part.

5.3 Results

To begin, we present our main theorem, Theorem 2, which is theanalogous of Corollary 2
for two phenotypes (the covariance matrix is known here). However, since Corollary 2 and
Theorem 1 give same results, Theorem 2 can be also viewed as the analogous of Theorem
1.
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Theorem 2 Letκ̃1 andκ̃2 be the efficiencies corresponding to strategies one and two.Letγ,
γ+ andγ− be respectively the following quantitiesPH0Y

(Y /∈ [S−, S+]) , PH0Y
(Y > S+)

andPH0Y
(Y < S−). Then, if we consider a statistical model with4 unknown parameters

(µZ , qZ , µY , qY ), we have underH0Y and underHaY , ∀p ∈]0, 1[ :

i) κ̃1 = κ̃2 =

{
1− r2

γ
+

r2

κ1

}−1

ii) κ̃1 andκ̃2 reach their maximum,̃M , for γ+ = γ− =
γ

2
, with

M̃ =

{
1− r2

γ
+

r2

M

}−1

whereκ1 andM are the quantities of Theorem 1.

The proof is given in Section 9. As expected, the ARE increasewith r andγ. As previously,
the non extreme phenotypesY (ie. for which the genotype is missing) don’t bring any extra
information for statistical inference onqZ . Besides, we still have to genotype symetrically
for a selective genotyping with two phenotypes. Note that Theorem 2 establishes the rela-
tionship between the ARE of selective genotyping with one and two phenotypes. Lemma 2
presents the different tests corresponding to the different strategies.

Lemma 2 If we consider a statistical model with4 unknown parameters(µZ , qZ , µY , qY )
and that we are underH0Y or HaY , then the Wald test statistic̃W1 and the Wald test
statisticW̃2, which correspond respectively to strategy one and two :

W̃1 :=
√
n q̂1Z

{
σ2 (1− r2)

4 p (1− p) γ
+

σ4 r2

4 p (1− p) Â1

}−1/2

W̃2 :=
√
n q̂2Z

{
σ2 (1− r2)

4 p (1− p) γ
+

σ4 r2

4 p (1− p) Â3

}−1/2

have the same asymptotic laws underH0Z andHbZ , that is to say :

N(0, 1) and N

(
b

{
σ2 (1− r2)

4 p (1− p) γ
+

σ4 r2

4 p (1− p) A

}−1/2

, 1

)

with q̂iZ MLE ofqZ for strategyi. A, Â1 andÂ3 are given in Lemma 1.

For the proof and also how to compute the MLEq̂iZ , we refer to the proof of Theorem 2 in
Section 9. We introduce now Corollary 3 which is the analogous of Corollary 1. OnlyqZ
andqY are now unknown.

Corollary 3 If we consider a statistical model with two unknown parameters (qZ , qY ), then
underH0Y and underHaY :

i) κ̃1 =

{
1− r2

γ
+

r2

κ1

}−1

ii) κ̃2 =

{
1− r2

γ
+

r2

κ3

}−1

iii) κ̃1 = κ̃2 ⇔ p =
1

2

iv) ∀p ∈]0, 1[ κ̃1 andκ̃2 reach their maximum forγ+ = γ− =
γ

2
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whereκ1 andκ3 are the quantities of Corollary 1.

The proof is given in Section 3 of “Online Ressource 1”. According to this Corollary, the
two strategies have same ARE if and only ifp = 1/2. Whenp 6= 1/2, the non extreme phe-
notypesY bring some extra information for statistical inference onqZ . As a consequence,
there is a loss of generality to consider the parametersµY andµZ known. However, we
still have to genotype symetrically. Note that Corollary 3 establishes a link with the ARE of
Corollary 1.

To conclude, in the following Corollary 4, we consider all the parameters known except
qZ .

Corollary 4 If we consider a statistical model with one unknown parameter (qZ), then
∀p ∈]0, 1[ :

κ̃1 = κ̃2 =
P (Y /∈ [S−, S+])

1− r2
.

The proof is given in Section 4 of “Online Ressource 1”. Here,qY is a known constant : con-
trary to Theorem 2 and Corollary 3,qY does not depend onn. The quantityP (Y /∈ [S−, S+])
depends onqY , and is asymptotically the percentage of individuals genotyped. According
to Corollary 4, we don’t have to genotype symetrically anymore whenqY is known : we can
genotype only the individuals with the largest (resp. smallest) phenotypes. Another interest-
ing result is that, whenP (Y /∈ [S−, S+]) > 1 − r2, selective genotyping becomes more
powerful than the oracle test. This surprising result is dueto the fact thatqY is known.

6 Illustration

In this Section, we propose to illustrate our theoretical results. To begin, Figure 1 represents
the efficiencies with respect to the oracle test, for a selective genotyping with one phenotype
(left-side) and for two phenotypes (right-side). These efficiencies correspond to the two main
theorems of this article : Theorem 1 for a selective genotyping with one phenotype, and
Theorem 2 for a selective genotyping with two phenotypes. Inother words, it corresponds
to the situation where all the parameters are unknown. Note that the efficiencies do not
depend on the QTL effects (see Theorem 1 and 3) andp. We study here the efficiencies
as a function of the percentage of individuals genotypedγ and also as a function of the
ratio γ+/γ (ie the percentage of individuals genotyped with large phenotypes among the
individuals genotyped). For instance,γ+/γ = 1/2 refers that we genotype symetrically
whereasγ+/γ = 1/4 means that we genotype three times more individuals with small
phenotypes than with large phenotypes. According to the graphs, we can see that we have to
genotype symetrically. The worst configuration is to genotype only the large phenotypes (see
γ+/γ = 1) or to genotype only the small phenotypes (same curve as the one forγ+/γ = 1).
Obviously, we can remark that whenγ = 1, all the efficiencies are equal to one, since all
the individuals are genotyped.

In Tables 1, 2 and 3, we will study the performances of our tests on simulated data in
order to see if our tests which are based on asymptotic results, are suitable in real life. We
will consider one-sided tests at the5% level. In Table 1, we consider a selective genotyping
with one phenotype. We focus on the most interesting situation : all the parameters are
unknown. We consider the test based on the statisticT2. It is very easy to perform since it
is a comparison of means, between the two genotypes at the QTL. Note that we consider
the easier expression ofT2 (see the remark below Lemma 1). We genotype symetrically
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(γ+/γ = 1/2) and we considerp = 1/2 which corresponds in genetics to the backcross.
Besides,a = 2 andn = 100. We remind thatq = a/

√
n, so we haveq = 0.2 in our case.

β2 refers to the theoretical power whereasβMC to the Monte-Carlo power based on10000
samples.CI refers to a95% confidence interval for the true value of the power :

CI =

[
βMC − 1.96

√
βMC(1− βMC)

10000
; βMC + 1.96

√
βMC(1− βMC)

10000

]
.

According to Table 1, we can see thatβ2 is always in the confidence interval, whatever the
value ofγ. As a consequence, our test is suitable forn = 100.

In Tables 2 and 3, we consider a selective genotyping with twophenotypes.(µZ , qZ , µY , qY )
are the unknown parameters. In this context, we focus on the test based on the test statistic
W̃1 of Lemma 2. Indeed, in order to obtain the the MLEq̂Z , we need to compute the MLE
q̂Y , which can be obtained by EM (resp. Newton method) for strategy 1 (resp. strategy 2)
(see Section 9 for details). As a consequence, the test basedon strategy 1 is the easiest to
compute. As previously, we considerp = 1/2 andγ+/γ = 1/2. To begin, in Table 2,
we study the situation where the QTL has no effect on the phenotypeZ (ie. qZ = 0). We
compute the percentage of false positive (FP) and the confidence interval (CI) for the true
value of FP (in the same way as previously). According to the table, we can see that for
n = 50, 5% is always in the confidence interval, whatever the value ofqY andr. In Table
3, we focus on the alternative. We considerb = 4, soqZ = 0.5657. We can see that the
theoretical power̃β1 is always in the confidence interval, despite the fact thatqZ is not so
close to0. As a consequence, our test gives good performances forn = 50. That’s why, it
must be interesting for geneticists.
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Fig. 1 Efficiency as a function ofγ and as a function of the ratioγ+/γ
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γ βMC β2 CI in %
0.1 36.74% 37.45% [35.80 ; 37.68]
0.2 48.01% 48.61% [47.03 ; 48.99]
0.3 54.28% 54.77% [53.30 ; 55.26]
0.4 58.00% 58.58% [57.03 ; 58.97]
0.5 60.10% 60.93% [59.14 ; 61.06]
0.6 62.19% 62.33% [61.24 ; 63.14]
0.7 62.26% 63.13% [61.31 ; 63.21]
0.8 62.67% 63.52% [61.72 ; 63.62]
0.9 63.30% 63.68% [62.36 ; 64.24]
1 63.02% 63.68% [62.07 ; 63.97]

Table 1 Study of strategy 2 for a selective genotyping with one phenotype. Theoretical power(β2) and
Monte-Carlo power(βMC) as a function ofγ (10000 samples,n = 100, a = 2, q = 2√

100
= 0.2, µ = 0,

σ = 1, p = 1/2, γ+/γ = 1/2)

a qY = a√
n

r FP CI in %

0 0 0.4 5.81 % [5.35 ; 6.27]
0 0 0.7 5.76 % [5.30 ; 6.22]
0 0 0.9 5.62 % [5.17 ; 6.07]
2 0.2828 0.4 4.87 % [4.45 ; 5.29]
2 0.2828 0.7 5.13 % [4.70 ; 5.56]
2 0.2828 0.9 4.71 % [4.29 ; 5.13]

Table 2 Study of strategy 1 for a selective genotyping with two phenotypes. Percentage of false positives
(FP) as a function ofa andr (b = 0, qZ = 0, µY = 0, µZ = 0, σ = 1, p = 1/2, γ = 0.30, n = 50,
10000 samples)

a qY = a√
n

r βMC β̃1 CI in %

0 0 0.4 73.96 % 74.47 % [73.10 ; 74.82]
0 0 0.7 82.23 % 82.31 % [81.48 ; 82.98]
0 0 0.9 92.24 % 92.61 % [91.72 ; 92.76]
2 0.2828 0.4 74.72 % 74.47 % [73.87 ; 75.57]
2 0.2828 0.7 83.18 % 83.47 % [82.45 ; 83.91]
2 0.2828 0.9 92.21 % 92.61 % [91.68 ; 92.74]

Table 3 Study of strategy 1 for selective genotyping with two phenotypes. Theoretical power (̃β1) and
Monte-Carlo power (βMC ) (b = 4, qZ = 0.5657, µY = 0, µZ = 0, σ = 1, p = 1/2, γ = 0.30,
n = 50, 10000 samples)

7 Proof for the oracle statistical test (µ, q, σ)

A natural estimator of the QTL effectq is the following comparison of means :

1

2

{∑n
j=1 Yj 1Xj=1∑n
j=1 1Xj=1

−
∑n

j=1 Yj 1Xj=−1∑n
j=1 1Xj=−1

}

However, this estimator is not convenient because of the random denominators. So, we want
to build an easier estimator. Letη = qX + ε, we can remark that under the local alternative
Ha :
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EHa

{
1
2n

(∑n
j=1

ηj

p 1Xj=1 − ηj

1−p 1Xj=−1

)}
= q.

Besides underH0, EH0

(
η
p 1X=1 − η

1−p 1X=−1

)
= 0 and

EH0

{(
η
p 1X=1 − η

1−p 1X=−1

)2}
= EH0

(
η2

p2 1X=1 + η2

(1−p)2 1X=−1

)
= σ2

p(1−p) .

It comes,VH0

(
η
p 1X=1 − η

1−p 1X=−1

)
= σ2

p(1−p) .

Besides, under the local alternativeHa :

EHa

(
η

p
1X=1 − η

1− p
1X=−1

)
= 2q , (1)

EHa

{(
η
p 1X=1 − η

1−p 1X=−1

)2}
= 1

p (σ
2 + q2) + 1

1−p (σ
2 + q2) → σ2

p(1−p) ,

VHa

(
η
p 1X=1 − η

1−p 1X=−1

)
= 1

p (σ
2 + q2) + 1

1−p (σ
2 + q2) − 4q2.

We remark thatVHa

(
η
p 1X=1 − η

1−p 1X=−1

)
→ VH0

(
η
p 1X=1 − η

1−p 1X=−1

)
.

As a consequence, let̃T be the following test statistic :

T̃ =

∑n
j=1

ηj

p 1Xj=1 − ηj

1−p 1Xj=−1

σ
√

n
p (1−p)

.

The asymptotic laws are :̃T
H0→ N (0, 1) and T̃

Ha→ N

(
2a

√
p (1−p)

σ , 1

)
.

However, we don’t observe the r.v.η but the phenotypesY . Let Y andη be the empirical
means :Y = 1

n

∑
Yj andη = 1

n

∑
ηj . Then,Y = µ + η andY − Y = η − η. Let T be

the following test statistic :

T =

∑n
j=1

1
p (Yj − Y ) 1Xj=1 − 1

1−p (Yj − Y ) 1Xj=−1

σ
√

n
p (1−p)

. (2)

We have

T = T̃ + η

∑n
j=1

1
1−p 1Xj=−1 − 1

p 1Xj=1

σ
√

n
p (1−p)

.

Notation 1 oP (1) will be a sequence of random vectors which tend to0 in probability and
OP (1) will be a sequence bounded in probability.

According to Prohorov,η = OP (
1√
n
) and

∑n
j=1

1
1−p1Xj=−1 − 1

p 1Xj=1 = OP (
√
n).

It comes,

η

∑n
j=1

1
1−p 1Xj=−1 − 1

p 1Xj=1

σ
√

n
p (1−p)

→ 0.

As a consequence (we remind that we are underH0 or underHa):

T = T̃ + oP (1).
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It comesT has the same asymptotic laws asT̃ . We need now to estimate the varianceσ2

which is unknown in the model studied. We will consider the empirical varianceσ̂2 =
1
n

{∑n
j=1(Yj − Y )2

}
with Y = 1

n

∑n
j=1 Yj . σ̂2 is a consistant estimator underH0 and

Ha by contiguity. We just have to adapt the previous test statistic T . T is now such as :

T =

∑n
j=1

1
p (Yj − Y ) 1Xj=1 − 1

1−p (Yj − Y ) 1Xj=−1

σ̂
√

n
p (1−p)

.

The asymptotic laws are unchanged :T
H0→ N (0, 1) and T

Ha→ N

(
2a

√
p (1−p)

σ , 1

)
.

This test has the same asymptotic laws as the Wald test (proofgiven in Section 1 of “Online
Ressource 1”).

8 Proof of Theorem 1

Notation 2 Iθ will be the Fisher information matrix taken at the pointθ . Iij(θ) refers to
the elementij of Iθ. I−1

ij (θ) refers to the elementij of I−1
θ , the inverse ofIθ.

8.1 Theoretical elements needed for the study

To begin, we introduce a theorem. It will be very convenient to calculate the power for the
Wald tests.

Theorem 3 LetC1, ..., Cn be an independent and equally distributed sample from a prob-
ability distribution Pθ. We suppose thatΘ is an open subset ofRd and that the model
(Pθ : θ ∈ Θ) is regular. Letθ̂ be the Maximum Likelihood Estimator (MLE) ofθ and
θ0 ∈ Θ, then for every converging sequencehn → h, asn → +∞, we have :

i) underPθ0
,

√
n(θ̂ − θ0) → N(0, I−1(θ0))

ii) underPθ0+hn/
√

n ,
√
n(θ̂ − θ0) → N(h, I−1(θ0)).

Proof LetPn be the law corresponding toP ⊗n
θ0

, Qn the law corresponding toP ⊗n
θ0+hn/

√
n

and dQn

dPn
the likelihood ratio.

Since the model is regular, we have i). Besides, we can use Theorem 7.2 of Van der Vaart
(1998) which gives an explicit expression of the log likelihood underPn. According to the
central limit theorem, the law of large numbers and the properties of the Fisher Information
matrix, we have (withht the transpose ofh):

log

(
dQn

dPn

)
Pn→ N(−1

2
ν2, ν2) with ν2 = htIθ0

h.

Notation 3 Qn ⊳ Pn will mean the sequenceQn is contiguous with the respect to the
sequencePn.
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By the iii) of Le Cam’s first lemma, we haveQn⊳Pn. So, we can use Le Cam’s third lemma.
Since the model is regular, we can use Theorem 5.39 of Van der Vaart (1998) :

√
n(θ̂ − θ0) = I−1

θ0

1√
n

n∑

j=1

ℓ̇θ0
(Cj) + oPθ0

(1)

whereℓ̇θ0
(Cj) denotes the score function taken atθ0, for an observationCj .

According to Theorem 7.2 of Van der Vaart (1998) :

log

(
dQn

dPn

)
=

1√
n

n∑

j=1

htℓ̇θ0
(Cj) − 1

2
htIθ0

h + oPθ0
(1).

Let h(i) be the ith component ofh. At the ith line, we have :

Cov

(
log

(
dQn

dPn

)
,

√
n(θ̂ − θ0)

)
=

d∑

k=1

h(k)

{
I−1
i1 (θ0)I1k(θ0) + ...+ I−1

id (θ0)Idk(θ0)
}

+ oPθ0
(1)

= h(i) + oPθ0
(1).

Then, according to Le Cam’s third lemma :

√
n(θ̂ − θ0)

Qn→ N(h, I−1(θ0)).

This gives the result.

8.2 First strategy (Wald test using all the phenotypes)

8.2.1 Likelihood

To begin, we remind that the r.v.X is such as :

X =

{
X if Y /∈ [S− , S+]

0 otherwise.

So,X = 0 refers to the case where the genotype is missing. (X , Y ) has a density with
respect to the Lebesgue measure× the counting measure.

Notation 4 ∀ i ∈ {−1, 1} and∀ k ∈ {−1, 0, 1}, P {i | k} andP {k | i} are the quantities
such as :

P {i | k} = P(X = i | X = k) and P {k | i} = P(X = k | X = i).

Notation 5 q−1, q1 andq0 are the quantities such as :
q−1 = P(X = −1) , q1 = P(X = 1) and q0 = P(X = 0).
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It comesP {i | i} = Φ
(

S
−
−µ−iq
σ

)
+1−Φ

(
S+−µ−iq

σ

)
whereΦ is the cumulative distri-

bution of a standard normal distribution,q−1 = P {−1 | −1} (1− p) , q1 = P {1 | 1} p
and
q0 = (1− P {−1 | −1}) (1− p) + (1− P {1 | 1}) p.
As a consequence :

P {−1 | k} =
P {k | −1} (1− p)

qk
, P {1 | k} =

P {k | 1} p

qk
.

According to Bayes theorem,∀ k ∈ {−1, 1}, ∀ y ∈ R, we have

P(Y ∈ [y , y + dy] | X = k) = P(Y ∈ [y , y + dy] | X = k ∩ X 6= 0) =
ϕ(y−µ−kq

σ )1y/∈[S
−

, S+]

σ P {k | k} dy ,

P(Y ∈ [y , y + dy] ∩ X = k) =
ϕ(y−µ−kq

σ )1y/∈[S
−

, S+]

σ P {k | k} qk dy ,

whereϕ(.) denotes the density of a standard normal distribution.
It comes :

P(Y ∈ [y , y + dy] ∩ X = −1) =
1− p

σ
ϕ
(y − µ+ q

σ

)
1y/∈[S

−
, S+] dy ,

P(Y ∈ [y , y + dy] ∩ X = 1) =
p

σ
ϕ
(y − µ− q

σ

)
1y/∈[S

−
, S+] dy .

Besides,

P(Y ∈ [y , y + dy] | X = 0) =
∑

i∈{−1,1}
P(Y ∈ [y , y + dy] ∩ X = i | X = 0)

=
p ϕ(y−µ−q

σ )1y∈[S
−

, S+]

σ q0
dy +

(1− p) ϕ(y−µ+q
σ )1y∈[S

−
, S+]

σ q0
dy .

Then,

P(Y ∈ [y , y + dy] ∩ X = 0) =
p

σ
ϕ
(y − µ− q

σ

)
1y∈[S

−
, S+] dy

+
1− p

σ
ϕ
(y − µ+ q

σ

)
1y∈[S

−
, S+] dy .

Finally, the likelihoodL for an observation
(
X,Y

)
is such as :

L =
1− p

σ
ϕ
(y − µ+ q

σ

)
1X=−1 +

p

σ
ϕ
(y − µ− q

σ

)
1X=1

+

{
1− p

σ
ϕ
(y − µ+ q

σ

)
+

p

σ
ϕ
(y − µ− q

σ

)}
1X=0 .
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8.2.2 Statistical test(µ, q)

We consider a statistical model with two unknown parameters(µ, q). We first introduce a
useful lemma obtained mainly using integration by parts.

Lemma 3 LetV ∼ N(µ, σ2), then :

i) E

(

V 21V /∈[S
−
, S+]

)

= (µ2 + σ2) P(V /∈ [S−, S+]) + σ (S+ + µ) ϕ
(

S+−µ

σ

)

− σ (S− + µ) ϕ
(

S
−
−µ

σ

)

ii) E

(

V 1V /∈[S
−
, S+]

)

= µ P(V /∈ [S−, S+]) + σ ϕ
(

S+−µ

σ

)

− σ ϕ
(

S
−
−µ

σ

)

iii) E

{

(V − µ)21V /∈[S
−
, S+]

}

= σ2
P(V /∈ [S−, S+]) + σ (S+ − µ) ϕ

(

S+−µ

σ

)

− σ (S− − µ) ϕ
(

S
−
−µ

σ

)

iv) E

{

(V − µ)1V /∈[S
−
, S+]

}

= σ ϕ
(

S+−µ

σ

)

− σ ϕ
(

S
−
−µ

σ

)

v)E
{

(V − µ)21V ∈[S
−
, S+]

}

= σ2
− σ2

P(V /∈ [S−, S+])− σ(S+ − µ) ϕ
(

S+−µ

σ

)

+ σ (S− − µ) ϕ
(

S
−
−µ

σ

)

.

Notation 6 γ, γ+ andγ− are respectively the quantitiesPH0
(Y /∈ [S−, S+]),PH0

(Y > S+)
andPH0

(Y < S−). zα denote the quantile of order1−α of a standard normal distribution.
A is the quantity such asA = σ2

{
γ + zγ+

ϕ(zγ+
) − z1−γ

−

ϕ(z1−γ
−

)
}

.

According to this lemma, we haveA = EH0

{
(Y − µ)21Y /∈[S

−
, S+]

}
.

Let θ = (µ, q) be the parameter of the model andθ0 = (µ, 0) be true value of the parameter
underH0. We first compute the score functions and the Fisher Information matrix. We have

∂logL

∂q
|θ0

= −
(y − µ

σ2

)
1X=−1 +

(y − µ

σ2

)
1X=1 +

(y − µ

σ2

)
(2p− 1)1X=0 ,

(
∂logL

∂q
|θ0

)2

=
(y − µ)2

σ4
1X=−1 +

(y − µ)2

σ4
1X=1 +

(y − µ)2

σ4
(2p− 1)2 1X=0 .

It comesI22(θ0) = A
σ4 + (2p−1)2

σ4 (σ2 −A). Besides,∂logL∂µ |θ0
= y−µ

σ2 . So,

I11(θ0) = 1
σ2 . Furthermore,

∂logL

∂q ∂µ
|θ0

=
1

σ2
1X=−1 − 1

σ2
1X=1 − 1

σ2
(2p− 1)1X=0 .

Since we are underH0, PH0
{−1 | −1} = PH0

{1 | 1}, it comesI12(θ0) = 1
σ2 (2p − 1).

As a consequence :

I−1
22 (θ0) =

σ4

4 A p(1− p)
.

q̂, the MLE ofq, can be obtained using a EM algorithm. Since the model is regular :

√
n q̂

H0→ N( 0 , I−1
22 (θ0) ) .

We can deduce the Wald test :

W1 =
2
√
n

σ2

√
A p(1− p) q̂

H0→ N(0, 1) .
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According to Theorem 3 withhn = h = (0, a) :

W1
Ha→ N

(
2a

σ2

√
A p(1− p), 1

)
. (3)

8.3 Second strategy (comparison of means based on the extreme phenotypes)

8.3.1 Statistical test(µ, q, σ)

Let δ̂ be the following estimator :

δ̂ =
1

p
(Y − µ)1X=1 − 1

1− p
(Y − µ)1X=−1 .

According to formula (1) in Section 7,EHa
(δ̂) = 2q when we are in the oracle situation.

So, δ̂ is an estimator of twice the QTL effect. If now, we consider selective genotyping, we
would like to definêδ such as :

δ̂ =
1

p
(Y − µ)1X=1 − 1

1− p
(Y − µ)1X=−1 .

According to Lemma 3 :

E

(
δ̂
)
=

1

p
E
(
Y − µ | X = 1

)
P(X = 1) − 1

1− p
E
(
Y − µ | X = −1

)
P(X = −1)

= q (P {1 | 1}+ P {−1 | −1}) + σ ϕ

(
S+ − µ− q

σ

)
− σ ϕ

(
S− − µ− q

σ

)

− σ ϕ

(
S+ − µ+ q

σ

)
+ σ ϕ

(
S− − µ+ q

σ

)
.

We remark that̂δ is not a good estimator ofq anymore, but we can propose a test based onδ̂
since the expectation depends ofq. We haveEH0

(δ̂) = 0 andVH0
(δ̂) = EH0

(δ̂2). Besides
:

δ̂2 =
1

p2
(Y − µ)2 1X=1 +

1

(1− p)2
(Y − µ)2 1X=−1 .

According to Lemma 3 :

E(δ̂2) =
1

p2
E

{
(Y − µ)2 | X = 1

}
P(X = 1) +

1

(1− p)2
E

{
(Y − µ)2 | X = −1

}
P(X = −1)

=
1

p
E

{
(Y − µ)21Y /∈[S

−
,S+] | X = 1

}
+

1

1− p
E

{
(Y − µ)21Y /∈[S

−
,S+] | X = −1

}
.

It comesEH0
(δ̂2) = A

p(1−p) . So, we can define the test statisticT2 corresponding to the
second strategy. According to the Central Limit theorem,

T2 =

∑n
j=1

1
p (Yj − µ)1Xj=1 − 1

1−p (Yj − µ)1Xj=−1√
n A

p(1−p)

H0→ N(0, 1) . (4)
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According to a Taylor expansion at first order :

ϕ

(
S− − µ+ q

σ

)
=

1√
2π

e
− 1

2

(

S
−

− µ

σ

)2
{
1− (S− − µ) q

σ2
+ o(q)

}
.

We also have (working on integrals) :

P {1 | 1} = Φ

(
S− − µ

σ

)
− q

σ
ϕ

(
S− − µ

σ

)
+ 1 − Φ

(
S+ − µ

σ

)
+

q

σ
ϕ

(
S+ − µ

σ

)
+ o(q) .

It comes :

EHa
{T2} → 2a

{
γ − z1−γ

−

ϕ(z1−γ
−

) + zγ+
ϕ(zγ+

)
}
√

p(1− p)

A .

We can remark that this limit is equal to2aσ2

√
A p(1− p).

Besides,EHa
(δ̂) → 0.

Using Portmanteau theorem (since∀i ∈ {−1, 1}, Y | X = i → N(µ, σ2) ):

EHa
(δ̂2) → A

p(1− p)
.

SoVHa
(δ̂) → VH0

(δ̂) and it comes

T2
Ha→ N

(
2a

σ2

√
A p(1− p), 1

)
. (5)

Sinceµ andσ are unknown, we have to adapt the test statisticT2. We can replaceµ by
µ̂, estimator which depends of the extreme phenotypes.µ̂ can be obtained by maximum
likelihood or by the method of moments, because these two estimators are

√
n consistent

(same kind of proof as in Section 7). Besides, we can use the following consistent estimator
of A :

Â =
1

n

n∑

j=1

(Yj − µ̂)21Xj 6=0 .

The asymptotic laws ofT2 are unchanged.

8.3.2 Asymptotic Relative Efficiency

We compute here the Asymptotic Relative Efficiency (ARE) of the test of comparison of
mean based on extreme phenotypes, with respect to the oracletest(µ, q, σ) where all the
genotypes are known. Until now, we have consideredn individuals. Let consider nown⋆

individuals for a selective genotyping experiment.T2 has to be adapted. It comes

T2 =

∑n⋆

j=1
1
p (Yj − µ̂)1Xj=1 − 1

1−p (Yj − µ̂)1Xj=−1√
n⋆ Â

p(1−p)

H0→ N(0, 1)

whereÂ andµ̂ are the same estimators as previously but adapted forn⋆ individuals.
Let ζ be the quantity such asζ = n⋆

n , then (we remind thatq = a/
√
n) :

T2
Ha→ N

(
2a

σ2

√
ζ A p(1− p), 1

)
.
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We will focus in particular on the appropriate one sided testwhena > 0. The test based on
T2 will be more powerful than the oracle test(µ, q, σ) when (we supposea > 0) :

zα − 2a

σ2

√
ζ A p(1− p) < zα − 2a

√
p(1− p)

σ
⇔ ζ >

σ2

A .

As a result, the efficiencyκ2 is such asκ2 = A/σ2. That is to say,

κ2 = γ + zγ+
ϕ(zγ+

) − z1−γ
−

ϕ(z1−γ
−

) . (6)

8.4 Proof of i) of Theorem 1

Let β(µ,q,σ)
i (resp.β(µ,q)

i ) be the power of the test(µ, q, σ) (resp.(µ, q)) corresponding to

strategy i. According to formulae (5) and (3) :β(µ,q,σ)
2 = β

(µ,q)
1 . Besides, by definition :

β
(µ,q,σ)
2 6 β

(µ,q,σ)
1 6 β

(µ,q)
1 . It comesβ(µ,q,σ)

1 = β
(µ,q,σ)
2 . As a consequence,κ1 = κ2.

In the same way, by definition :β(µ,q,σ)
2 6 β

(µ,q,σ)
3 6 β

(µ,q,σ)
1 . So,κ1 = κ2 = κ3.

8.5 Proof of ii) of Theorem 1

We have to answer the following question : how must we chooseγ+ andγ− to maximize
the efficiency ? We remind thatγ+ + γ− = γ. Let g(.) be the function such as :g(zγ+

) =
Φ−1

{
γ − 1 + Φ(zγ+

)
}

. Then,z1−γ
−

= g(zγ+
).

Let k1(.) be the following function :k1(zγ+
) = zγ+

ϕ(zγ+
)− g(zγ+

) ϕ
{
g(zγ+

)
}

.
In order to maximizeκ1, we have to maximize the functionk1(.). Letk′

1(.), g
′(.) andϕ′(.)

be respectively the derivative ofk1(.), g(.) andϕ(.). We have :

k′
1(zγ+

) = ϕ(zγ+
) + zγ+

ϕ′(zγ+
) − g′(zγ+

) ϕ
{
g(zγ+

)
}

− g(zγ+
) g′(zγ+

) ϕ′ {g(zγ+
)
}

,

g′(zγ+
) =

ϕ(zγ+
)

ϕ(z1−γ
−

)
.

Then,k′
1(zγ/2) = ϕ(zγ/2) −

{
zγ/2

}2
ϕ(zγ/2) − ϕ(z1−γ/2) +

{
z1−γ/2

}2
ϕ(z1−γ/2) =

0. As a result, the efficiencyκ1 reaches its maximum whenγ+ = γ− = γ
2 .

9 Proof of Theorem 2

To begin, we suppose that we are in the oracle situation, ie nogenotypes are missing. So,
we observeZ andX whatever the value ofY . In order to perform the linear regression of
Z | X onY | X which will be calledZ̃ | X, we define the following scalar product, for2
r.v. U1 andU2 which take value inR : < U1 , U2 > = E [U1U2]. We have :

Z̃ | X = < Z | X ,
Y | X − µY X

σ
>

Y | X − µY X

σ
+ < Z | X , 1 > 1

= r Y | X − r µY X + µZX .

LetZ⋆ andµ⋆
ZX be the two following quantities :

Z⋆ =
Z − r Y

σ
√
1− r2

and µ⋆
ZX =

µZX − r µY X

σ
√
1− r2

.
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This way,Z⋆ | X ∼ N(µ⋆
ZX , 1). By construction,(Z−Z̃) | X andZ̃ | X are independent.

So,Z⋆ | X andY | X are independent.
If we consider now a selective genotyping experiment,Z⋆ will be available only whenY is
extreme. However, sinceZ⋆ | X andY | X are independent,Z⋆ | X is not affected by the
fact thatY is extreme.

9.1 First strategy (Wald test using all the phenotypes)

Notation 7 L⋆(µ⋆
Z−1, µ

⋆
Z1, µY , qY ) is the likelihood for an observation(X,Y, Z⋆) and

L(µZ , qZ , µY , qY ) is the likelihood for an observation(X,Y, Z).

Obviously, we have the relationshipL⋆(µ⋆
Z−1, µ

⋆
Z1, µY , qY ) = L(µZ , qZ , µY , qY ).

We have :

L⋆(µ⋆
Z−1, µ

⋆
Z1, µY , qY ) =

{
1− p

σ
ϕ
(y − µY + qY

σ

)
+

p

σ
ϕ
(y − µY − qY

σ

)}
1X=0

+
p

σ
ϕ
(y − µY − qY

σ

)
ϕ(z⋆ − µ⋆

Z1) 1X=1 +
1− p

σ
ϕ
(y − µY + qY

σ

)
ϕ(z⋆ − µ⋆

Z−1) 1X=−1 .

The respective MLÊµY andq̂Y , of µY andqY can be obtained using an EM algorithm.

Besides, since∂ logL⋆

∂µ⋆
Z1

= (z⋆−µ⋆
Z1)1X=1 and∂ logL⋆

∂µ⋆
Z−1

= (z⋆−µ⋆
Z−1)1X=−1, we easily

obtainµ̂⋆
Z−1 andµ̂⋆

Z1 respective MLE ofµ⋆
Z−1 andµ⋆

Z1 for n observations :

µ̂⋆
Z1 =

1∑n
j=1 1Xj=1

n∑

j=1

z⋆j 1Xj=1 and µ̂⋆
Z−1 =

1∑n
j=1 1Xj=−1

n∑

j=1

z⋆j 1Xj=−1 .

Let θ = (µZ , qZ , µY , qY ) andθ⋆ =
(
µ⋆
Z−1, µ

⋆
Z1, µY , qY

)
. Then,θ corresponds to param-

eters ofL andθ⋆ to parameters ofL⋆. We have :

qZ =
σ

2

√
1− r2 (µ⋆

Z1 − µ⋆
Z−1) + r qY ,

µZ =
σ

2

√
1− r2 (µ⋆

Z1 + µ⋆
Z−1) + r µY .

LetM be the matrix such asθ = Mθ⋆ :

M =




σ
2

√
1− r2 σ

2

√
1− r2 r 0

−σ
2

√
1− r2 σ

2

√
1− r2 0 r

0 0 1 0
0 0 0 1


 .

The inverse ofM , calledM−1, verifies :

M−1 =




1
σ
√

1−r2
− 1

σ
√

1−r2
− r

σ
√

1−r2

r
σ
√

1−r2

1
σ
√

1−r2

1
σ
√

1−r2
− r

σ
√

1−r2
− r

σ
√

1−r2

0 0 1 0
0 0 0 1


 .

Let θ00 = (µZ , 0, µY , 0) andθ⋆00 = M−1θ00. It comes :

θ⋆00 =

(
µZ

σ
√
1− r2

− rµY

σ
√
1− r2

,
µZ

σ
√
1− r2

− rµY

σ
√
1− r2

, µY , 0

)
.
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Notation 8 Iθ (resp.I⋆θ⋆ ) will be the Fisher information matrix corresponding to thelikeli-
hoodL (resp.L⋆) and taken at pointθ (resp.θ⋆).

Let’s calculateI⋆θ⋆
00

:
∂ logL⋆

∂µY
|θ⋆

00
= y−µY

σ , ∂ logL⋆

∂µ⋆
Z−1

|θ⋆
00
= (z⋆ − µZ

σ
√

1−r2
+ rµY

σ
√

1−r2
) 1X=−1 ,

∂ logL⋆

∂µ⋆
Z1

|θ⋆
00
= (z⋆ − µZ

σ
√

1−r2
+ rµY

σ
√

1−r2
) 1X=1 and

∂ logL⋆

∂qY
|θ⋆

00
= −

(
y−µY

σ2

)
1X=−1 +

(
y−µY

σ2

)
1X=1 +

(
y−µY

σ2

)
(2p− 1) 1X=0 .

It comes

I⋆11(θ
⋆
00) = (1− p) γ , I⋆22(θ

⋆
00) = p γ and I⋆33(θ

⋆
00) = 1/σ2 .

Let’s adapt the previous notations for the configuration with two phenotypes.

Notation 9 γ, γ+ andγ− are respectively the quantities
PH0Y

(Y /∈ [S−, S+]), PH0Y
(Y > S+) andPH0Y

(Y < S−).

We remind thatA = σ2
{
γ + zγ+

ϕ(zγ+
) − z1−γ

−

ϕ(z1−γ
−

)
}

. According to Section
8.2.2, we have

I⋆44(θ
⋆
00) =

A
σ4

+
(2p− 1)2

σ4
(σ2 −A) and I⋆34(θ

⋆
00) =

2p− 1

σ2
.

Besides, all the other terms ofI⋆θ⋆
00

are equal to zero.

Let θ̂ andθ̂⋆ be the respective MLE ofθ andθ⋆, then we havêθ = Mθ̂⋆. Since the model
is regular :

V

{ √
n (θ̂⋆ − θ⋆00)

}
H0Y H0Z→ I⋆ −1

θ⋆
00

.

Besides,
√
n (θ̂ − θ00) =

√
n M (θ̂⋆ − θ⋆00) , it comes :

V

{ √
n (θ̂ − θ00)

}
H0Y H0Z→ M I⋆ −1

θ⋆
00

M t and I−1
θ00

= M I⋆ −1
θ⋆
00

M t .

After some calculations, we obtain :

I−1
22 (θ00) =

σ2 (1− r2)

4 p (1− p) γ
+

σ4 r2

4 p (1− p) A .

Let define the Wald statisticW1 :

W1 =
√
n q̂Z/

√
I−1
22 (θ00) .

The MLE q̂Z can easily be obtained using the MLÊµ⋆
Z−1, µ̂⋆

Z1, andq̂Y (q̂Y can be obtained
by EM). Since the model is regular :

W1
H0ZH0Y→ N(0, 1) .
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We apply Theorem 3 respectively withhn = h = (0, 0, 0, a), hn = h = (0, b, 0, 0),
hn = h = (0, b, 0, a). Then, we have :

W1
H0ZHaY→ N (0, 1)

W1
HbZH0Y→ N

(
b/

√
I−1
22 (θ00) , 1

)

W1
HbZHaY→ N

(
b/

√
I−1
22 (θ00) , 1

)
.

It comes, whatever that we consider the null hypothesis or the local alternative forY , we
always have :

W1
H0Z→ N(0, 1) and W1

HbZ→ N

(
b/

√
I−1
22 (θ00) , 1

)
.

The efficiencỹκ1 of this test, with respect to the oracle test(µZ , qZ) is obtained easily :

κ̃1 =

{
1− r2

γ
+

r2

γ + zγ+
ϕ(zγ+

) − z1−γ
−

ϕ(z1−γ
−

)

}−1

.

We remark that :

κ̃1 =

{
1− r2

γ
+

r2

κ1

}−1

whereκ1 is given in Theorem 1. According to Theorem 1,κ1 reaches its maximum for
γ+ = γ− = γ/2. So, it is the same for̃κ1.

9.2 Second strategy (Wald test using only the extreme phenotypesY )

In this case, the likelihood is :

L⋆(µ⋆
Z−1, µ

⋆
Z1, µY , qY ) = P(X = 0) 1X=0 +

p

σ
ϕ
(y − µY − qY

σ

)
ϕ(z⋆ − µ⋆

Z1) 1X=1

+
1− p

σ
ϕ
(y − µY + qY

σ

)
ϕ(z⋆ − µ⋆

Z−1) 1X=−1 .

Let’s calculate the Fisher Information matrix.I⋆11(θ
⋆
00) andI⋆22(θ

⋆
00) are the same as previ-

ously :

I⋆11(θ
⋆
00) = (1− p) γ , I⋆22(θ

⋆
00) = p γ .

Besides,

∂ logL⋆

∂µY
|θ⋆

00
=

y − µY

σ2

{
1X=−1 + 1X=1

}
+

ϕ
(
z1−γ

−

)
− ϕ

(
zγ+

)

σ (1− γ)
1X=0 ,

I⋆33(θ
⋆
00) =

A
σ4

+

{
ϕ
(
z1−γ

−

)
− ϕ

(
zγ+

)}2

σ2 (1− γ)
.
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According to formula (1) of Section 2.4 of “Online Ressource1” :

I⋆44(θ
⋆
00) =

A
σ4

+ (2p− 1)2
{
ϕ
(
z1−γ

−

)
− ϕ

(
zγ+

)}2

σ2 (1− γ)
.

Besides,

∂ logL⋆

∂µY ∂qY
|θ⋆

00
=

1

σ2
(1X=−1 − 1X=1) +

2p− 1

σ2(1− γ)

{
z1−γ

−

ϕ(z1−γ
−

)− zγ+
ϕ(zγ+

)
}
1X=0

− 2p− 1

σ2(1− γ)2
{
ϕ(z1−γ

−

)− ϕ(zγ+
)
}2

1X=0 .

It comes :

I⋆34(θ
⋆
00) = (1− 2p)

[
A
σ4

+

{
ϕ(z1−γ

−

)− ϕ(zγ+
)
}2

σ2(1− γ)

]
.

The other components of the Fisher Information matrix ar equal to zeros. Using block matrix
inversion, we obtain :

I⋆ −1
11 (θ⋆00) =

1

(1− p) γ
, I⋆ −1

22 (θ⋆00) =
1

p γ
, I⋆ −1

44 (θ⋆00) =
σ4

4 A p(1− p)
.

Let defineΛ such as :

Λ =

{
4 A p(1− p)

σ4

[
A
σ4

+

{
ϕ(zγ+

)− ϕ(z1−γ
−

)
}2

σ2 (1− γ)

]}−1

.

Then :

I⋆ −1
33 (θ⋆00) =

Λ

σ4

[
A+ (2p− 1)2

{
ϕ(zγ+

)− ϕ(z1−γ
−

)
}2

1− γ

]

I⋆ −1
34 (θ⋆00) = Λ (2p− 1)

[
A
σ4

+

{
ϕ(zγ+

)− ϕ(z1−γ
−

)
}2

σ2 (1− γ)

]
.

In the same way as previously :

I−1
θ00

= M I⋆ −1
θ⋆
00

M t .

After calculations, we obtain :

I−1
22 (θ00) =

σ2(1− r2)

4 γ p(1− p)
+

r2σ4

4 A p(1− p)
.

We deduce the Wald test statisticW2 and its asymptotic law (same proof as for the first
strategy)

W2 =
√
n q̂Z/

√
I−1
22 (θ00)

H0Z→ N(0, 1)

W2
HbZ→ N

(
b/

√
I−1
22 (θ00) , 1

)
.

The MLE q̂Z can be obtained usinĝµ⋆
Z−1, µ̂⋆

Z1 andq̂Y (q̂Y can be obtained using a New-
ton method). This test has the same power as the test corresponding to the first strategy. It
concludes the proof.
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