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, we propose a theoretical formula for the supremum of such a process and we compare it in particular with our simulated lower bound.

t = t . However, as it is only known that t belongs to the interval [L, U], Davies suggests the use of the test statistic :

sup {S(t) : L ≤ t ≤ U} (1)
where S(t) denotes the test statistic at t. Davies also considers the case :

S(t) = V 1 (t) 2 + ... + V d (t) 2 (2)
where the V i (t) are independent for each t and distributed as a standardized normal under the null hypothesis. The process S(.) is called a Chi-Square process with d degrees of freedom. The main results of [START_REF] Davies | Hypothesis testing when a nuisance parameter is present only under the alternative[END_REF] is the following formula :

pr sup t∈[L, U ] S(t) > c ≤ pr χ 2 d > c + U L Ψ (t)dt (3) 
where

Ψ (t) = E ( η(t) ) c d-1 2 e -c/2 π -1/2 2 -d/2 / Γ (d/2 + 1/2)
Γ is the Gamma function and χ 2 d is a random variable which follows a Chi-Square with d degrees of freedom. We refer to [START_REF] Davies | Hypothesis testing when a nuisance parameter is present only under the alternative[END_REF] to obtain the general expression of the quantity E ( η(t) ). The author specifies that formula (3) is suitable when the processes V i (.) have a derivative with a finite number of jumps.

In what follows, we will call Davies upper bound the right side of formula (3). We will focus only on Chi-Square processes S(.) where the V i (.) are independent (a particular case of formula 2).

2 Computation of the Discretized Lower Bound

Introduction

In this section, we present a lower bound for the critical value of the supremum of a Chi-Square process. This is a lower bound because we discretize the process. The probabilities needed for the lower bounds can then be explicitly written as multivariate normal integrals, which can be approximated with simulation methods.

The time interval [L, U] for the process is discretized using t i = L+i(U -L)/m for i = 1, 2, . . . , m. h will be the stepsize of discretization : h = (U -L)/m. Then we define A to be the m × m covariance matrix for the discretized process, with entries a ij = r(t i -t j ). If we also define X to be an d × m matrix, with columns x j , for j = 1, . . . , m, the integrals that are needed for computation of the lower bound are multivariate Normal probability integrals over a product of m d-dimensional spheres, given by

P (u) = ||x1|| 2 <u 2 ||x2|| 2 <u 2 • • • ||xm|| 2 <u 2 e -1 2 d i=1 [xi1,...,xim]A -1 [xi1,...,xim] {(2π) m |A|} d 2 d i=1 m j=1 dx ij ,
for real u ≥ 0. If we determine u so that P (u) = 1 -α, then u will be a lower bound for the critical value of the supremum of the Chi-Square process with covariance function r(t).

In order to describe some simulation methods for approximation of the P (u) integrals, we start with a change of variables designed to simplify the multivariate Normal density. Let L be the m × m lower triangular Cholesky factor for A (so that A = LL T ). Now define the change variables to an d × m matrix of variables Y by X = Y L T , so that dX = |A| d 2 dY and therefore

P (u) = ||x1(Y )|| 2 <u 2 ||x2(Y )|| 2 <u 2 • • • ||xm(Y )|| 2 <u 2 e -1 2 d i=1 m j=1 y 2 ij (2π) md 2 d i=1 m j=1 dy ij , (4)
where x ij (Y ) = j k=1 l jk y ik , and x j (Y ) is a function of y 1 , . . . y j .

Direct Simulation

A direct simulation method for approximating the integrals I(u) uses simulation from the univariate Normal distribution. Let Y (k) ij ∼ N (0, 1), and define

f Y (k) = max 1≤j≤m ||x j Y (k) || and g Y (k) = 1 if f Y (k) ≤ u 0 otherwise . Then P (u) ≈ P N = 1 N N k=1 g Y (k)
with standard error

E N = 1 N (N -1) N k=1 g Y (k) -P N 2 1 2 . Because the g Y (k) is 0 or 1, E N ≈ P (u){1-P (u)} N 1 2 ≈ P N (1-P N ) N 1 2
(see [START_REF] Fishman | Monte Carlo: Concepts, Algorithms, and Applications[END_REF]).

If u p is the value of u where P (u) = p for a given probability p, an approximate value for u p can easily be determined from this simulation. Define F to be the vector of sorted (ascending order) f Y (k) values and define [pN ] to be the value of pN rounded to the nearest integer. Then u p ≈ F [pN ] .

Conditional Simulation

The direct simulation method described in the previous section is an "acceptancerejection" algorithm which can be inefficient for some combinations of u and A, so a potentially more efficient method is considered in this section. This method is a generalization of the method described in the paper by [START_REF] Genz | Numerical computation of multivariate normal probabilities[END_REF], where MVN probabilities over hyper-rectangular regions were considered. The method in this paper begins with equation (4) for P (u) written in more detail in the form

P (u) = d i=1 (l11yi1) 2 <u 2 e -1 2 d i=1 y 2 i1 (2π) d 2 d i=1 (l21yi1+l22yi2) 2 <u 2 e -1 2 d i=1 y 2 i2 (2π) d 2 • • • d i=1 (lm1yi1+•••+lmmyim) 2 <u 2 e -1 2 d i=1 y 2 im (2π) d 2 1 j=m 1 i=d dy ij . (5) 
In order to simplify the notation, we assume that A is nonsingular and define a matrix C, determined by scaling the rows of L by the successive diagonal elements of L, so that c ij = l ij /l ii , which makes c ii = 1. If the scaled sphere radii are defined by u i = u/l ii , then

P (u) = d i=1 y 2 i1 <u 2 1 e -1 2 d i=1 y 2 i1 (2π) d 2 d i=1 (c21yi1+yi2) 2 <u 2 2 e -1 2 n i=1 y 2 i2 (2π) d 2 • • • d i=1 (cm1yi1+•••+cm-1,1yi,m-1+yim) 2 <u 2 m e -1 2 n i=1 y 2 im (2π) d 2 1 j=m 1 i=d dy ij .
The structure of the integration constraints permit the conditional integrations to be completed with many possible orderings for the variables. We describe a method which uses a variable ordering by rows, starting with y 11 , y 12 , . . . y 1m , followed by y 21 , y 22 , . . . y 2m , and so on, finishing with y d1 , y d2 , . . . y dm , as is indicated by the 1 j=m 1 i=d dy ij measure in equation ( 5). The "outermost" variable y 11 , has constraint -u 1 < y 11 < u 1 . Given y 11 , the next variable y 12 , has constraint -u 2 -c 11 y 11 < y 12 < u 2 -c 11 y 11 , and so on, with y 1j constrained by -u j < j-1 k=1 c jk y 1k + y 1j < u j . If values are given for y ik , i = 1, . . . , l -1, k = 1, . . . , m, and y lk , k = 1, . . . , j -1, then the integral for y lj has the constraint

l-1 i=1 ( j-1 k=1 c jk y ik ) 2 + ( j-1 k=1 c jk y lk + y lj ) 2 < u 2 j .
Solving for y lj , the constraint for y lj becomes

-u 2 j - l-1 i=1 ( j-1 k=1 c jk y ik ) 2 1/2 - j-1 k=1 c jk y lk ≤ (6) y lj ≤ u 2 j - l-1 i=1 ( j-1 k=1 c jk y ik ) 2 1/2 - j-1 k=1 c jk y 1k .
So the limits for y ij , which depend on y ij = (y 11 , y 12 , . . . , y 1,j-1 , y 21 , y 22 , . . . , y 2,j-1 , . . . , y i1 , . . . , y i,j-1 ), are

M ± ij (y ij ) = ± u 2 j - i-1 s=1 ( j-1 k=1 c jk y sk ) 2 1/2 - j-1 k=1 c jk y ik .
Using these limit expressions,

P (u) = M + 11 (y11) M - 11 (y11) φ(y 11 ) M + 12 (y21) M - 12 (y12) φ(y 12 ) M + 1m (y1m) M - 1m (y1m) φ(y 1m ) M + 21 (y21) M - 21 (y21)
φ(y 21 )

M + 22 (y22) M - 22 (y22) φ(y 22 ) M + 2m (y2m) M - 2m (yn2) φ(y 2m ) • • • M + d1 (y d1 ) M - d1 (y d1 ) φ(y d1 ) M + d2 (y d2 ) M - d2 (y d2 ) φ(y d2 ) M + dm (y dm ) M - dm (y dm ) φ(y dm ) 1 j=m 1 i=d dy ij ,
where φ(y) = e -1 2 y 2 /(2π)

1 2 , the standard univariate Normal pdf. If the changes of variables z ij = Φ(y ij ), where Φ(y) is the standard univariate Normal cdf, with dz ij = φ(y ij )dy ij , are completed, then

I(u) = N + 11 (z11) N - 11 (z11) N + 12 (z12) N - 12 (z12) • • • N + 1m (z1m) N - 1m (z1m) N + 21 (z21) N - 21 (z21) N + 22 (z22) N - 22 (z22) • • • N + 2m (z2m) N - 2m (z2m) • • • N + d1 (z d1 ) N - d1 (z d1 ) N + d2 (z d2 ) N - d2 (z d2 ) • • • N + dm (z dm ) N - dm (z dm ) 1 j=m 1 i=d dz ij . with N ± ij (z ij ) = Φ M ± ij Φ -1 (z ij ) and z ij = (z 11 , z 12 , . . . , z 1m , . . . , z i1 , . . . , z i,j-1
). Now make the final changes to (0, 1) variables using

z ij = N - ij (z ij ) + D ij (z ij )w ij , D ij (z ij ) = N + ij (z ij ) -N - ij (z ij ),
and then

P (u) = 1 0 D 11 {z 11 (w 11 )} • • • 1 0 D 1m {z n1 (w 1m )} 1 0 D 21 {z 21 (w 21 )} • • • 1 0 D 2m {z 2m (w 1m )} • • • 1 0 D d1 {z d1 (w d1 )} • • • 1 0 D dm {z nm (w dm )} 1 j=m 1 i=d dw ij ≡ 1 0 f (w) 1 j=m 1 i=d dw ij , with f (w) = d i=1 m j=1 N + ij {z ij (w ij )} -N + ij {z ij (w ij )} ,
so that P (u) can be approximated using any numerical integration method for the unit hypercube H (dm) = [0, 1] dm . If u p is the value of u where P (u) = p for a given probability p, an approximate value for u p can be determined by applying a numerical root-finding method (e.g. the the bisection or secant method) to function h(u) = P (u) -p.

Numerical Integration

A simple Monte Carlo (MC) method for the approximate computation of P (u), which uses U (0, 1) random numbers, takes the form

P (u) ≈ P N = 1 N N k=1 f (W k ),
with standard error

E N = 1 N (N -1) N k=1 {f (W k ) -P N } 2 1 2
, with all components of W k ∼ U (0, 1).

MC methods using N points have errors that are typically O(1/N 1 2 ), so quasi-Monte Carlo (QMC) methods (see [START_REF] Fox | Strategies for Quasi-Monte Carlo[END_REF], [START_REF] Sloan | Lattice Methods for Multiple Integration[END_REF], with asymptotic errors which can be approximately O(1/N ) for N points, are often be used to provide improved simulation approximations for these kinds of computations. Given a set of QMC points Z 1 , Z 2 , . . . , Z M from H (dm) , a typical M -point QMC method for P (u) uses

P (u) ≈ Q M = 1 M M s=1 f (Z s ).
Error estimates for Q M can be computed if the QMC method is randomized. A simple method for randomization uses random shifts of the QMC approximations in the form

Q M (W) = 1 M M s=1 f ({Z s + W} ),
where W has random U (0, 1) components and {X} denotes the vector of fractional parts of the components in X. Then an MCQMC approxmation for P (u) is given by

P (u) ≈ Q N,M = 1 N N k=1 Q M (W k ),
with standard error

E N,M = 1 N (N -1) N k=1 {Q M (W k ) -Q N,M } 2 1 2 .
For these approximations, N is usually chosen to be small (e.g. N = 12) relative to M .

Illustration of Davies upper bound and the discretized lower bound

In order to illustrate Davies upper bound and the MCQMC lower bound, we have to choose a process suitable for Davies assumptions : we will consider the Chi-Square process where each V i (.) is a stationary process with covariance function r(∆) = e -∆ 2 /2 . As mentioned previously, we consider independent processes V i (.). Let V i (t) = ∂V i (t)/∂t. As the processes V i (.) are independent, we have ∀j = i :

cov V i (t), V j (t) = 0 and cov {V i (t), V j (t)} = 0 Since V i (t) = lim ∆→0 Vi(t+∆)-Vi(t) ∆
, then E {V i (t)} = 0. Also, r (0) = -1, so var {V i (t)} = 1. On the other hand,

E {V i (t)V i (t)} = lim ∆→0 E {V i (t)V i (t + ∆)} ∆ -lim ∆→0 E V 2 i (t) ∆ = lim ∆→0 r(∆) -1 ∆ = 0
As a consequence, if we denote

V(t) =    V 1 (t) . . . V d (t)   , V (t) =    V 1 (t) . . . V d (t)    and I 2d the identity matrix 2d × 2d, then var V(t) V (t) = I 2d (7) 
As the covariance matrix ( 7) is the identity, we can use the following result of Davies :

E( η ) = 2 1/2 Γ (d/2 + 1/2)/Γ (d/2)
Then, according to formula (3) :

pr sup t∈[L, U ] S(t) > c ≤ pr(χ 2 d > c) + (U -L) c (d-1)/2 e -c/2 π -1/2 2 (1-d)/2 /Γ (d/2)
In order to perform a test at the level α, the challenge is to obtain the critical value c such as pr sup t∈[L, U ] S(t) > c = α : the MCQMC bound and Davies' bound allows us to obtain respectively a lower and an upper bound for the critical value c.

Tables 1, 2 and 3 give these bounds as a function of the level of the test α, the interval [L, U] and the number of degrees of freedom d of the Chi-Square process. The discretization used for the MCQMC method results in these tables was h = 1 4 (so m = 4 (U -L) ) for all cases.

4 About the supremum of a non regular Chi-Square process : the Ornstein-Uhlenbeck process

Introduction

In this section, the interest is on the critical value for the supremum of a non regular Chi-Square process : the Ornstein-Uhlenbeck Chi-Square process. It corresponds to the process S(.) of formula (2) with the processes V i (.) independent and cov {V i (t), V i (t )} = e -2|t-t | . Such a process has a direct application in genetics, in particular in Quantitative Trait Locus (QTL) detection.

4.2

The Ornstein-Uhlenbeck Chi-Square process in the QTL detection A QTL denotes a gene with quantitative effect on a trait. The method used by most of geneticists in order to detect a QTL on a chromosome, is the Interval Mapping proposed by [START_REF] Lander | Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[END_REF] (see [START_REF] Wu | Statistical Genetics of Quantitative Traits[END_REF]). Using the [START_REF] Haldane | The combination of linkage values and the calculation of distance between the loci of linked factors[END_REF] distance and modelling, each chromosome is represented by a segment [0, U]. The distance on [0, U] is called the genetic distance (measured in Morgans). At each location t ∈ [0, U], using the "genome information" brought by genetic markers, a likelihood ratio test (LRT) is performed, testing the presence of a QTL at this position. So, multi-testing leads to a LRT process, and taking as test statistic the supremum of this process comes down to perform a LRT in a model when the localisation of the QTL is an extra parameter.

In Rabier et al. ("Likelihood Ratio Test process for Quantitative Trait Loci detection", hal-00421215), the authors considered a population of progenies which are structured into families of sires. They prove that when the number of genetic markers and the number of progenies tends to infinity, the limiting process of the LRT process is an Ornstein-Uhlenbeck Chi-Square process (the number of degrees of freedom corresponds to the number of sires) under the null hypothesis of the absence of QTL on the interval [0, U]. So, in order to take decision about the presence of a QTL on [0, U], the critical value for the supremum of an Ornstein-Uhlenbeck Chi-Square process has to be calculated.

Critical value calculation for the Ornstein-Uhlenbeck Chi-Square process

Let OU denote an Ornstein-Uhlenbeck process and OUCS(d) an Ornstein-Uhlenbeck Chi-Square process with d degrees of freedom. We propose here different ways to calculate the critical value of the supremum of an OUCS(d). Since an OU is an AR(1) process, an OUCS(d) is the sum of d independent AR(1) processes. As a consequence, the critical value can easily be obtained using a Monte-Carlo method. On the other hand, an upper bound can be obtained using the MCQMC lower bound introduced in Section 2. Finally, we propose a formula in order to calculate the critical value theoretically.

Let W(t) =    W 1 (t) . . . W d (t)    a brownian motion in dimension d and X(t) =    X 1 (t) . . . X d (t)   
the process such as ∀t ∀i, X i (t) = Wi(e 2t ) e t

. We can remark that cov

{X i (t), X i (t )} = e -|t-t | and that W i (t) = √ tX i log(t) 2
. Besides :

X(t) 2 = e -2t W(e 2t ) 2
We can remark that cov {X i (2t), X i (2t )} = e -2|t-t | which corresponds to the covariance of an OU. So, we impose

V i (t) = X i (2t). Let T ∈ R + , it comes : sup t∈[0, log(T ) 4 ] S(t) = sup t∈[0, log(T ) 4 ] V(t) 2 = sup t∈[0, log(T ) 2 ] X(t) 2 = sup t∈[1, T ] W(t) √ t 2 (8)
Note that here L and U of formula ( 1) are respectively equal to 0 and log(T )/4. This is convenient to deal with this case in order to relate with Delong (1981)'s work. Indeed, in [START_REF] Delong | Crossing probabilities for a square root boundary by a Bessel process[END_REF], there are some important results about :

pr sup t∈[1, T ] W(t) √ t < c
In order to calculate this quantity, Delong uses very difficult methods. His results are presented in some exact tables. As a consequence, using formula (8), it is easy to calculate exact critical values for the supremum of the process S(.).

In his article, Delong also gives an approximative formula (cf. page 2205 of the article) suitable for c and T large :

pr sup t∈[1, T ] W(t) √ t < c = (c 2 /2) d/2 e -c 2 /2 Γ (d/2) log(T )(1 - d c 2 ) + 2 c 2 + O( 1 c 4 ) (9) 
According to formulas (8) and ( 9), we can deduce an approximative formula for the process S(.) suitable for c and T large :

pr    sup t∈[0, log(T ) 4 ] S(t) < c    = (c/2) d/2 e -c/2 Γ (d/2) log(T )(1 - d c ) + 2 c + O( 1 c 2 ) (10)
With the help of a Newton's method, it becomes easy to obtain the critical value c corresponding to a test at the α level, that is to say a test such as pr

sup t∈[0, log(T ) 4 ] S(t) > c = α.
A numerical study is presented in Tables 4,5, 6, and 7. Critical values for the process S(.) are calculated according to the different methods :

-DE refers to Delong Exact table (based on formula (8)) -DF refers to Delong Approximative Formula (based on formula (10)) -MC refers to the Monte-Carlo method using AR(1) processes -MCQMC refers to the MCQMC lower bound Note that Davies bound has not been considered since it is only suitable when the processes V i (.) have a derivative with a finite number of jumps, which is not the case here.

The processes S(.) studied in Tables 4 to 7 are respectively the OUCS(4), the OUCS(5), the OUCS(6) and the OUCS(7). Note that since the exact tables of Delong are available only for d ≤ 4, DE has only been computed in Table 4. The MCQMC bounds were computed using the discretization stepsize h = log(T )/256 (so m = 64). Note that for MC, we also use a discretization (h = 10 -5 ) but as h is very small, it is closer to the continuous process.

According to Table 4, DF, DE and MC give in most of cases close results. Howewer, MCQMC give smaller critical values due to the discretization. In the same way, according to Tables 5 to 7, DF and MC give close results whereas MCQMC give smaller critical values. As a consequence, we can say that DF is a very good approximation for finding the critical value of an OUCS process, which is not the case of the MC-QMC method. The problem is that the discretization stepsize h we use for MCQMC is to large. Table 8 shows for the OUCS(4) how the CPU time and the critical value increase when h decreases. We can observe that as expected the critical value is affected by the discretization, and the CPU time increases fairly rapidly with increasing m.

4.4 Why is our MCQMC critical value interesting for QTL detection ?

Until now, we have computed thresholds for the OUCS(d) process. The problem is that in real life, the number of genetic markers never tends to infinity. As a consequence, we will never have to consider the OUCS(d) process to compute thresholds. In fact, we have to deal with dense map, that is to say a map with a large (but not infinite) number of markers equally spaced on the chromosome. Since we perform tests at each marker location to find QTL, the process is not continuous anymore : it is a discrete process. So, we have to compute thresholds for the Discrete OUCS process and not for the continuous one. The stepsize of discretization will be the distance between consecutive markers. In such a context, the MCQMC critical value can be computed and it correponds to the true threshold (contrary to the previous Section). Table 9 presents a comparison between MC and MCQMC thresholds. We study a map of size 1 Morgan and we study two configurations where markers are located every 1cM or every 2cM which is usual in genetics. We can see that MC and MC-QMC give almost same results, but we should rather use MCQMC since it is more accurate (cf. Section 2.4). long Approximate Formula), AR (Monte-Carlo method using AR(1) processes), MCQMC. For the simulation of the five Autoregressive processes, 10000

paths have been generated with a step of 10 -5
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  Critical values for the OUCS(6) as a function of the level α of the test and the interval considered. The critical values c ) > c = αwhere the process S(.) is an OUCS(6). These values are calculated by different methods : DE (Delong Exact table), DF (Delong Approximate Formula), MC (Monte-Carlo method using AR(1) processes), MCQMC. For the simulation of the six Autoregressive processes, 10000

  These values are calculated by different methods : DE (Delong Exact table), DF (De-

	1% α 10% 5%	MCQMC DF MC MCQMC T, log(T ) 4 ) Method `````````( DF MC MCQMC DF MC	14.21 14.09 14.21 13.28 16.16 16.10 16.08 15.16 20.43 20.58 20.16 19.27 17.13 22.78 22.75 21.44 (20, 0.75) 16.02 16.00 15.13 18.13 18.06	(30, 0.85) 14.52 14.44 14.52 13.49 16.48 16.43 16.56 15.41 20.70 20.89 20.34 19.46 17.38 23.11 23.23 21.65 (30, 0.85) 16.39 16.48 15.37 18.48 18.58	(40, 0.92) 14.67 14.66 14.67 13.65 16.65 16.65 16.65 15.58 20.88 21.10 20.70 19.63 17.50 23.31 23.14 21.74 (40, 0.92) 16.63 16.65 15.55 18.71 18.84	(50, 0.98) 14.82 14.83 14.75 13.76 16.81 16.81 16.65 15.64 20.98 21.23 20.88 19.75 17.66 23.46 23.14 21.89 (50, 0.98) 16.80 16.81 15.62 18.86 18.92	(60, 1.02) 14.90 14.95 14.82 13.86 16.89 16.93 16.65 15.71 21.07 21.34 21.25 19.84 17.69 23.58 23.33 21.95 (60, 1.02) 16.93 16.89 15.67 18.99 19.01	(70, 1.06) 15.05 15.05 15.98 13.91 16.97 17.02 16.81 15.79 21.16 21.44 20.79 19.91 17.75 23.67 23.52 22.00 (70, 1.06) 17.04 17.06 15.81 19.09 19.10	(80, 1.10) 15.13 15.14 15.13 13.97 17.06 17.11 17.06 15.85 21.25 21.51 21.44 19.98 17.85 23.75 23.62 22.07 (80, 1.10) 17.13 16.97 15.85 19.18 19.10	(100, 1.15) 15.21 15.28 15.13 14.05 17.14 17.23 17.22 15.94 21.34 21.64 21.07 20.05 17.94 23.87 23.62 22.16 (100, 1.15) 17.27 17.22 15.95 19.32 19.18	Table 4 Critical values for the OUCS(4) as a function of the level α of the test and the interval considered. The critical values c correspond to correspond to of the test and the interval considered. The critical values c Table 5 Critical values for the OUCS(5) as a function of the level α	pr sup t∈[0, log(T ) 4 ] S(t) > c = α where the process S(.) is an OUCS(4). These values are calculated by different methods : DE (Delong Exact table), DF (De-pr sup t∈[0, log(T ) 4	paths have been long Approximate Formula), MC (Monte-Carlo method using AR(1) processes), MCQMC. For the simulation of the four Autoregressive processes, 10000	generated with a step of 10 -5

] S(t) > c = α where the process S(.) is an OUCS(5).

Table 7

 7 Critical values for the OUCS(7) as a function of the level α of the test and the interval considered. The critical values c These values are calculated by different methods : DE (Delong Exact table), DF (Delong Approximate Formula), MC (Monte-Carlo method using AR(1) processes), MCQMC. For the simulation of the seven Autoregressive processes, 10000

	correspond to

] S(t) > c = α where the process S(.) is an OUCS(7).

Table 8

 8 Critical values c and CPU time for the OUCS(4) using the MCQMC method and as a function of the discretization stepsize h (

			log(T ) 4	= 0.75)				
	α			10%		5%		1%
	````````( d, h, m)	Method	MC	MCQMC	MC	MCQMC	MC	MCQMC

log(T )
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