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In recent years, it has been argued that the tension parameter driving the fluctuations of
fluid membranes should differ from the imposed lateral stress, the “frame tension” [1,2]. In
particular, stress-free membranes were predicted to have a residual fluctuation tension. Some
experimental evidence of this property has been reported in [3]. In a recent paper [4], Schmid
argued that the reasoning published in [2] (where the frame tension is calculated by averaging
the stress tensor and by differentiating the free energy), is inherently inconsistent—in the
sense that a linearized theory, the Monge model, was used to predict a non-linear effect. In
the present comment, we show that the criticism argued in [4] does not hold.

The correct way to proceed in the calculations is to be consistent at first-loop order, i.e.,
at first order in the small parameter kBT/κ, where kBT is the temperature in energy units
and κ the membrane bending rigidity. In [4], however, all energies were given in units of
kBT , and thus all tracks of the small parameter in which the expansion should be made
were lost.

Restoring the kBT factors, eq. (3) of [4] reads
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Here, G is the total free-energy of the membrane described at the Gaussian level in the
Monge gauge, N the total number of fluctuating degrees of freedom (proportional to the
total number of lipids), σint the “internal” tension appearing in the Gaussian Hamiltonian
H = 1
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∫

d2r⊥[σint(∇h)2 + κ(∇2h)2] functional of the membrane height function h(r⊥), Ap

the fixed projected area above which the membrane stands, and λ a small distance cutoff in
the direction orthogonal to the membrane.

Differentiating the free-energy with respect to the projected area, one obtains the frame
tension σf = ∂G/∂Ap, yielding
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which corresponds to eq. (4) of [4]. Note that this result is only valid at first-order in the
small parameter ǫ = kBT/κ because H is only the Gaussian approximation of the complete
Helfrich Hamiltonian.

The excess area (A − Ap)/Ap can be obtained from the relation A = ∂G/∂σint, yielding

A − Ap

Ap

=
kBT

8πκ
ln

(

1 +
4πκ(N − 1)

σintAp

)

+ O(ǫ2), (3)

which corresponds to eq. (5) of [4]. Thus (A − Ap)/Ap is also a first-order quantity.
The argumentation in [4] begins by defining
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Schmid, however, fails to notice that this is a zeroth-order quantity (in ǫ): omitting kBT in
the denominator, Schmid considers y as a first-order quantity, like (A − Ap)/Ap. However,
(A − Ap)/Ap = O(ǫ) is small, but 8πκ/(kBT ) = O(ǫ−1) is large, and so the product is
O(ǫ0 = 1).

Then, from eqs. (2) and (4), Schmid writes
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and says: “Hence the frame tension is found to differ from the internal tension to second
order in (A−Ap)/Ap. On the other hand, the Monge model approximates planar interfaces
only up to the first order in (∇h)2 or (A − Ap)/Ap. Thus the results (6) and (4)1 are not
rigorous”.

However, since y = O(1), using the power series expansion ey − y − 1 = 1

2
y2 + O(y3) in

eq. (5) is not justified. Even the result is in contradiction with the conclusion drawn: since
4πκ/(kBT ) = O(ǫ−1) and [(A−Ap)/Ap]

2 = O(ǫ2), the correction (σf −σint)/σint appearing
in eq. (5) would be a first-order correction.

The correct answer, at first-loop order (at first-order in kBT/κ), is thus the one given in
eq. (2). In conclusion, the reasoning in [4] arguing that the results of Fournier and Barbeta
are erroneous does not hold.
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1These equations correspond here to eqs. (5) and (2)
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