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In recent years, it has been argued that the tension parameter driving the fluctuations of fluid membranes should differ from the imposed lateral stress, the "frame tension" [1,2]. In particular, stress-free membranes were predicted to have a residual fluctuation tension. Some experimental evidence of this property has been reported in [3]. In a recent paper [4], Schmid argued that the reasoning published in [2] (where the frame tension is calculated by averaging the stress tensor and by differentiating the free energy), is inherently inconsistent-in the sense that a linearized theory, the Monge model, was used to predict a non-linear effect. In the present comment, we show that the criticism argued in [4] does not hold.

The correct way to proceed in the calculations is to be consistent at first-loop order, i.e., at first order in the small parameter k B T /κ, where k B T is the temperature in energy units and κ the membrane bending rigidity. In [4], however, all energies were given in units of k B T , and thus all tracks of the small parameter in which the expansion should be made were lost.

Restoring the k B T factors, eq. ( 3) of [4] reads

G(N, σ int , A p ) = σ int A p + k B T N -1 2 ln 2σ int λ 2 k B T -2 + 1 + σ int A p 4πκ(N -1) ln 1 + 4πκ(N -1) σ int A p . (1) 
Here, G is the total free-energy of the membrane described at the Gaussian level in the Monge gauge, N the total number of fluctuating degrees of freedom (proportional to the total number of lipids), σ int the "internal" tension appearing in the Gaussian Hamiltonian

H = 1 2 d 2 r ⊥ [σ int (∇h) 2 + κ(∇ 2 h) 2
] functional of the membrane height function h(r ⊥ ), A p the fixed projected area above which the membrane stands, and λ a small distance cutoff in the direction orthogonal to the membrane.

Differentiating the free-energy with respect to the projected area, one obtains the frame tension σ f = ∂G/∂A p , yielding

σ f σ int = 1 + k B T 8πκ ln 1 + 4πκ(N -1) σ int A p - k B T 8πκ 4πκ(N -1) σ int A p + O(ǫ 2 ), (2) 
Comment which corresponds to eq. ( 4) of [4]. Note that this result is only valid at first-order in the small parameter ǫ = k B T /κ because H is only the Gaussian approximation of the complete Helfrich Hamiltonian. The excess area (A -A p )/A p can be obtained from the relation A = ∂G/∂σ int , yielding

A -A p A p = k B T 8πκ ln 1 + 4πκ(N -1) σ int A p + O(ǫ 2 ), (3) 
which corresponds to eq. ( 5) of [4]. Thus (A -A p )/A p is also a first-order quantity. The argumentation in [4] begins by defining

y = ln 1 + 4πκ(N -1) σ int A p ≃ 8πκ k B T A -A p A p = O(1). (4) 
Schmid, however, fails to notice that this is a zeroth-order quantity (in ǫ): omitting k B T in the denominator, Schmid considers y as a first-order quantity, like (A -A p )/A p . However,

(A -A p )/A p = O(ǫ) is small, but 8πκ/(k B T ) = O(ǫ -1
) is large, and so the product is O(ǫ 0 = 1). Then, from eqs. ( 2) and ( 4), Schmid writes

σ f σ int = 1 - k B T 8πκ (e y -y -1) ≈ 1 - 4πκ k B T A -A p A p 2 + . . . . (5) 
and says: "Hence the frame tension is found to differ from the internal tension to second order in (A -A p )/A p . On the other hand, the Monge model approximates planar interfaces only up to the first order in (∇h) 2 or (A -A p )/A p . Thus the results (6) and (4) 1 are not rigorous". However, since y = O(1), using the power series expansion e yy -1 = 1 2 y 2 + O(y 3 ) in eq. ( 5) is not justified. Even the result is in contradiction with the conclusion drawn: since 4πκ/(k B T ) = O(ǫ -1 ) and [(A -A p )/A p ] 2 = O(ǫ 2 ), the correction (σ f -σ int )/σ int appearing in eq. ( 5) would be a first-order correction.

The correct answer, at first-loop order (at first-order in k B T /κ), is thus the one given in eq. ( 2). In conclusion, the reasoning in [4] arguing that the results of Fournier and Barbeta are erroneous does not hold.