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Abstract. The Multi-dimensional Optimal Order Detection (MOOD) method has been designed by authors in [5] and extended

in [7] to reach Very-High-Order of accuracy for systems of Conservation Laws in a Finite Volume (FV) framework on 2D

unstructured meshes. In this paper we focus on the extension of this method to 3D unstructured meshes. We present preliminary

results for the three-dimensional advection equation which confirm the good behaviour of the MOOD method. More precisely,

we show that the scheme yields up to sixth-order accuracy on smooth solutions while preventing oscillations from appearing on

discontinuous profiles.
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1 Introduction

The Multi-dimensional Optimal Order Detection (MOOD) has been introduced in [5–7] as an original High-Order

Finite Volume method for conservation laws on 2D structured or unstructured meshes. The MOOD method is

based on a high-order space discretization with local polynomial reconstructions coupled with a high-order TVD

Runge–Kutta method for time discretization as any multi-dimensional MUSCL [2–4, 12] or ENO/WENO methods

[1, 10, 14].

The main difference between classical high-order methods and the MOOD one is that the limitation process is

done a posteriori. Inside a time step, a solution is first computed with numerical fluxes evaluated from unlimited

high-order polynomial reconstructions. Then polynomial degrees are reduced on cells where prescribed stability

or physical constraints (maximum principle, positivity, etc.) are not fulfilled. The solution is re-evaluated on these

cells and their closest neighbors only. This iterative procedure converges towards a solution which respects the

user-prescribed constraints.

In a previous article [7] we have shown that the MOOD method is performing well for two-dimensional geometries

and can reach up to sixth-order spatial accuracy on polygonal meshes. Moreover genuinely physical problems can

be simulated with the MOOD method as shown in [6, 7].

The goal of this work is to develop the 3D extension of the MOOD method with the so-called u2 detection process on

advection problem. The paper is organized as follows. We recall the framework in section 2 and the main concepts

of the MOOD method (cell/face polynomial degrees, detection process) in section 3. Then in section 4 numerical

tests are carried out to show that the 3D extension of the u2 detection process behaves as the 2D version: Optimal

rates of convergence up to sixth-order on smooth profiles and oscillation-free solutions on discontinuous profiles.

2 Framework

We consider a generic autonomous hyperbolic equation defined on a domain Ω ⊂ R
3, t > 0 which casts in the

following conservative form

∂tU +∇ · F (U) = 0, (1a)

U(·, 0) = U0, (1b)
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where U = U(x, t) is the vector of unknown functions, x = (x, y, z) denotes a point of Ω, t is the time, F is the

physical flux function and U0 is the initial condition.

The computational domain Ω is a polyhedral bounded set of R3 divided into convex polyhedral cells Ki, i ∈ Eel, ci
being the cell centroid and Eel the cell index set. For each boundary face, Ki ∩ ∂Ω, we introduce a ghost cell Kj

with j /∈ Eel which represents the exterior side of Ω. We denote by Ebd the index set of ghost cells. Ẽel = Eel ∪ Ebd
is the index set of cells in Ω.

For each cell Ki, one denotes by fij the common face between Ki and Kj , with j ∈ ν(i) ⊂ Ẽel, ν(i) being the

index set of all the elements which share a face with Ki. We assume that the mesh is built in such a way that each

face is a convex polygonal. In other words any location computed as a convex combination of the points of the

face lies on the face. The extended neighborhood is represented by the index set ν(i) ⊂ Ẽel of all Kj such that

Ki ∩Kj 6= ∅.

Moreover |Ki| and |fij | measure the volume of Ki and the surface of fij respectively while nij is the unit outward

normal vector to fij pointing from Ki to Kj . The face being coplanar by assumption there is no ambiguity on its

definition. At last, qr

ij , r = 1, ..., R represent the Gaussian quadrature points employed for numerical integration

on a triangulation of the polygonal face fij (see Fig.1).

Ki

K j

f
ij

q
ij

r
Gauss points

nij

Figure 1: Mesh notation. Two neighbor cells Ki and Kj share a common face fij . nij is the unit outward normal

vector to fij pointing from Ki to Kj . qr

ij , r = 1, ..., R represent the Gaussian quadrature points employed for

numerical integration on face fij after triangulation.

The generic first-order explicit finite volume scheme writes as

Un+1
i = Un

i −∆t
∑

j∈ν(i)

|fij |

|Ki|
F(Un

i , U
n
j ,nij), (2)

where F(Un
i , U

n
j ,nij) is a numerical consistent and monotone flux. To reach higher-order accuracy, we substitute

in equation (2), the first-order approximation Un
i and Un

j for a better approximations of U at the quadrature points

of face fij . This leads to the generic spatial high-order finite volume scheme

Un+1
i = Un

i −∆t
∑

j∈ν(i)

|fij |

|Ki|

R∑

r=1

ξrF(U
n
ij,r, U

n
ji,r,nij), (3)

where Un
ij,r and Un

ji,r, r = 1, ..., R are high-order approximations of U at quadrature points qrij ∈ fij , r = 1, ..., R
respectively on both sides of face fij . The quadrature weights are denoted by ξr.

Let us write the scheme under the more compact form

Un+1
h = Un

h +∆t HR(Un
h ), (4)
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with Un
h =

∑

i∈Eel

Un
i 1IKi

the constant piecewise approximation of function U and operator HR being defined as

HR(Un
h ) := −

∑

i∈Eel


 ∑

j∈ν(i)

|fij |

|Ki|

R∑

r=1

ξrF(U
n
ij,r, U

n
ji,r,nij)


 1IKi

. (5)

Finally a high-order method in time is provided by means of the third-order TVD Runge-Kutta method (RK3). Note

that this corresponds to a convex combination of three explicit steps as follows

Un+1
h =

Un
h + 2U (3)

h

3
with





U (1)

h = Un
h +∆t HR(Un

h )
U (2)

h = U (1)

h +∆t HR(U (1)

h )

U (3)

h = Û (2)

h +∆t HR(Û (2)

h )

(6)

where Û (2)

h is the convex combination (3Un
h + U (2)

h )/4. Note also that a high-order scheme in space and time can

be rewritten as convex combinations of the first-order scheme. From a practical point of view, implementation of

the high-order scheme from an initial first-order scheme is then straightforward.

3 MOOD method

For the sake of clarity, we only consider a forward Euler method and one quadrature point per face. Consequently

we denote by Uij (resp. Uji) the high-order approximation of U on face fij from cell Ki (resp. Kj).

3.1 Basics

Polynomial reconstruction.

High-order approximations of the solution at quadrature points are constructed using multi-dimensional polynomial

reconstructions from mean values. We have chosen to use the one from [10] where a over-determined linear system

is solved using a QR decomposition. The reconstructed polynomial of arbitrary degree dmax writes

Ũ(x, y, z; dmax) = Ū +
∑

1≤α+β+γ≤dmax

Rαβγ

(
(x−cx)

α(y−cy)
β(z−cz)

γ−
1

|K|

∫

K

(x−cx)
α(y−cy)

β(z−cz)
γ dxdydz

)
,

where (cx, cy, cz) is the centroid of a generic cell K and Rαβγ are the unknowns polynomial coefficients. Note that

the mean value on K is conserved and the truncation of all terms of degree α+ β + γ > d̄ still produces a relevant

approximation of U as a polynomial of degree d̄ ≤ dmax.

At least N (d) = (d+ 1)(d+ 2)(d+ 3)/6 − 1 neighbors are needed to perform reconstructions but for the sake of

robustness at least 1.5 × N (d) elements are involved in practice. We first take the neighbors by nodes of K plus

the neighbors by faces of already chosen elements. Lastly, since the condition number of the generated system is

dependent of spatial characteristic length, we use the technique proposed in [8] to overcome this problem.

CellPD, FacePD and the set of constraints A.

We recall the fundamental notions introduced in 2D in [5, 7], here extended to 3D.

• di is the Cell Polynomial Degree (CellPD) which represents the degree of the polynomial reconstruction of

the solution within cell Ki.

• dij and dji are the Face Polynomial Degrees (FacePD) which correspond to the actual degrees used to

respectively build Uij and Uji on both sides of face fij .

• A is a set of prescribed physical and/or stability constraints. If for each cell Ki the mean values of the

numerical solution fulfill the constraints then the numerical solution is said to be A-eligible.

In this work we only focus on 3D advection problem, consequently we detail the MOOD method using both the

previous notions in the case of the scalar problem.
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Detection process and polynomial decrementing.

The MOOD method consists in computing a candidate solution for time tn+1 using the polynomial reconstructions

to evaluate the fluxes. The detecting process is designed to distinguish if the candidate solution is A-eligible. In

practice we decrement the CellPD di of any cell Ki which does not respect all constraints of set A. Such a cell is

called problematic. Moreover since neighbor cells fluxes may be affected by this process, the CellPD decrementing

is spread over the direct neighborhood. Once all CellPD of problematic cells have been decremented, a new candi-

date solution is evaluated. This decrementing procedure is repeated after each evaluation of a candidate solution up

to a di > 0 for which the set of constraints is fulfilled or to di = 0. At that ultimate step the robust and diffusive

first-order scheme is employed and its first-order solution is always taken as valid. In other words unlike traditional

high-order schemes (using a priori limiting process), we use an a posteriori detecting process where the decision to

alter the polynomial degree is taken after computing the candidate solution.

Solutions of autonomous scalar hyperbolic problems satisfy the Maximum Principle property. Such a property is

also valid for advection problem with divergence free velocity. Therefore the Discrete Maximum Principle (DMP)

seems to be a good candidate to detect problematic cells. Unfortunately the strict DMP applied to mean values

drastically reduces the order of accuracy to two, and can not be used alone. Deeper studies show that the accuracy

discrepancy only occurs at extrema [9, 11, 13]. We have then mainly focused on extrema since the DMP detection

process is still relevant where the solution is locally monotone. We proposed in [7] a relaxation of the strict DMP at

smooth extrema, called the u2 detection criterion, in order to avoid accuracy discrepancy that is . This leads to the

introduction of an additional step into the Detection Process to reveal smooth extrema.

Therefore the first detection criteria is the DMP: No polynomial degree decrementing is performed for cells where

the DMP is satisfied. Let us now consider a cell Ki where the candidate solution U⋆
i does not fulfill the DMP. Two

situations may arise whether we deal with a discontinuity or a smooth extrema. In [7] we have proposed a definition

for the concept of a smooth extrema from a numerical point of view based on the following definitions.

Definition 1. Let Ki be a cell and Ũi = Ũi(.; 2) a polynomial reconstruction of degree 2 for an underlying function

U on this cell. We define the second derivatives in x, y and z directions by Xi = ∂xxŨi ∈ R, Yi = ∂yyŨi ∈ R and

Zi = ∂zzŨi ∈ R. We will refer to these second derivatives as “curvatures”. �

For all cell Kj , j ∈ ν(i), we define the maximal and minimal local curvatures as

Xmin
i = min

j∈ν(i)
(Xi,Xj) and Xmax

i = max
j∈ν(i)

(Xi,Xj) ,

Ymin
i = min

j∈ν(i)
(Yi,Yj) and Ymax

i = max
j∈ν(i)

(Yi,Yj) ,

Zmin
i = min

j∈ν(i)
(Zi,Zj) and Zmax

i = max
j∈ν(i)

(Zi,Zj) .

We now introduce the new detection criterion to select smooth extrema.

Definition 2. A numerical solution U⋆
i in cell Ki which violates the DMP is nonetheless eligible if

Xmax
i Xmin

i > 0 and Ymax
i Ymin

i > 0 and Zmax
i Zmin

i > 0, (7)

|Xmin
i |

|Xmax
i |

≥ 1− εi and
|Ymin

i |

|Ymax
i |

≥ 1− εi and
|Zmin

i |

|Zmax
i |

≥ 1− εi, (8)

where εi is a cell dependent parameter defined by

εi = (∆xi)
1

2m , with ∆xi = |Ki|
1
m , (9)

with m the spatial dimension, 3 in this paper. �

We refer the reader to [7] for a deeper discussion and justification of such a detection process. We remark that at the

limit εi = 0 we recover the DMP. In [7] we have conjectured the form of εi and showed that the 2D results obtained

with this parameter behave as expected. Equation (9) above is its direct extension to 3D and we will show in the
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numerical section that such a definition is still relevant in 3D.

Finally the MOOD method algorithm consists of the following iterative procedure.

1. CellPD initialization. Each CellPD is initialized with dmax.

2. FacePD evaluation. Each FacePD is set up as the minimum of the two neighboring CellPD.

3. Quadrature points evaluation. Each Uij is evaluated with the polynomial reconstruction of degree dij .

4. Mean values update. The updated values U⋆
h are computed using the finite volume scheme (3).

5. u2 detection test.

1. The DMP criterion is first checked on each cell Ki

min
j∈ν(i)

(Un
i , U

n
j ) ≤ U⋆

i ≤ max
j∈ν(i)

(Un
i , U

n
j ). (10)

2. If U⋆
i does not satisfy (10) then

a- Compute Xk,Yk,Zk for k ∈ ν(i)
⋃
{i} and coefficient εi,

b- Check criteria (7) and (8). If cell i is not a smooth extrema then di is decremented, else U⋆
i is

eligible.

6. Stopping criterion. If all cells pass the u2 detection test then the iterative procedure stops with Un+1
h = U⋆

h

else go to Step 2.

Since only problematic cells and their neighbors in the compact stencil ν(i) have to be checked and re-updated

during the iterative MOOD procedure, the computational cost is dramatically reduced. Moreover the choice of re-

construction stencil is fixed at the beginning of the computation. This avoids the reconstruction of many polynomials

per cell per time step and the selection of the most appropriate ones, which is in 3D a point of crucial importance.

4 Numerical results

In this work we only consider the advection equation with F (U) = V U where V is the velocity V = (u, v, w) on the

unit cube Ω = [0; 1]3 with periodic boundary conditions. We use two types of meshes: The first one is constituted

of N3 cubes/hexahedron of size ∆x = ∆y = ∆z = 1/N . The second one is made of 24×N3 regular tetrahedron.

It is built by adding the cube center as a new vertex and further splitting each hexahedron into 24 tetrahedron, each

of them sharing the cell center, see Fig.2. The goal of these tests is to show that for the two schemes MOOD-P3 and

MOOD-P5 with the u2 detection process

• the optimal order of accuracy is reached when a smooth function is advected,

• an oscillation-free accurate solution is obtained when a discontinuous profile is advected.

As in [7] the decrementing procedure is done as follows, first from dmax to 2 then from 2 to 0 if necessary. Only the

MOOD-P3 and MOOD-P5 schemes will be tested for the sake of brevity and conciseness.

4.1 3D convergence test

Let us consider the 3D initial sine function

U0(x, y, z) = sin(2πx) sin(2πy) sin(2πz), (11)

and the following refined hexaedral meshes N = 8, 16, 32, 64 and tetrahedral meshes N = 2, 4, 8, 16. The advection

velocity is (1, 1, 1). Consequently at final time t = 2 the sine function is back to its initial position. The time step

is taken sufficiently small to maintain the time discretization error below the spacial discretization error. In Table 1

we report the L1, L∞ errors and rates of accuracy for the MOOD-P3 and MOOD-P5 schemes on the two types of

meshes.
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Figure 2: 24× 82 tetrahedral mesh used for the test cases where 1/8th of the cube has been removed.

MOOD-P3 MOOD-P5

Mesh L1 Rate L∞ Rate L1 Rate L∞ Rate

Hexahedron

83 5.601e− 1 — 6.007e− 1 — 1.884e− 1 — 2.034e− 1 —

163 3.557e− 2 3.98 3.985e− 2 3.91 2.816e− 3 6.06 2.790e− 3 6.19
323 1.609e− 3 4.47 2.109e− 3 4.24 4.208e− 5 6.06 4.040e− 5 6.11
643 8.464e− 5 4.25 1.213e− 4 4.12 7.794e− 7 5.75 6.731e− 7 5.90

Tetrahedron

23 × 24 9.994e− 1 — 1.046e− 0 — 6.614e− 1 — 8.767e− 1 —

43 × 24 2.273e− 1 2.13 2.551e− 1 2.03 3.326e− 2 4.31 3.366e− 2 4.70
83 × 24 1.665e− 2 3.77 1.418e− 2 4.17 6.415e− 4 5.70 5.029e− 4 6.06
163 × 24 1.081e− 3 3.95 8.192e− 4 4.11 1.234e− 5 5.70 1.038e− 5 5.59

exact 4 4 6 6

Table 1: Errors and rates of accuracy for the advection of the sine function. MOOD-P3 and MOOD-P5 schemes.

Top lines: Hexahedral mesh results — Bottom lines: Tetrahedral mesh results.

First of all one observes that the optimal order of convergence is achieved for both types of meshes. There is a

genuine gain when using a P5 scheme, as instance the L1 error for the 323 mesh is two times smaller than the P3

error for the 643 mesh. Note that the number of cells is eight times smaller and the total CPU cost for the P5 scheme

is 6 times less expensive than for the P3 scheme while the memory requirement is also less important, 4.4Gb vs

1.8Gb. Let us remark that for this smooth profile there is no problematic cell therefore the MOOD scheme is strictly

equivalent to the unlimited one (CPU time and errors). The same conclusion holds for the tetrahedral mesh.

4.2 3D Solid Body Rotation

In this section we consider the rotation of an H-like shape depicted in Fig.3-left. The computational domain is the

unit cube Ω = [0; 1]3 and the rotation axis is the line joining the origin and the point (1, 1, 1). After one full rotation

the body is back to its original position. Note that the problem is not autonomous since the velocity depends on the

spatial position. Nevertheless the velocity is divergence-free leading to a divergence-free flux i.e. ∇.F (x;U) = 0
for any constant U ∈ R so the maximum principle applies in that case.

In Fig.4 we display the results on the plane z = 1/2 depicted in Fig.3-right for the 403 hexahedron mesh for the

five following schemes: MUSCL, unlimited P3 and P5 and MOOD-P3 and P5. The top views present 3D elevations

while the bottom panels display the associated isolines (20 isolines between 0 (blue) and 1 (red)). Note that MUSCL
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Figure 3: Solid Body Rotation test case — Left: Initialization of the body in the unit cube. We display cells with

solution equals to 1 and hide the 0 valued cells — Right: Solution on the plane z = 1/2 (shaded cells correspond to

value 1 whereas white cells to value 0).

results have been added in order to compare MOOD with this classical scheme.

We observe that the unlimited P3 and P5 schemes produce important over- and undershoots in the vicinity of the

discontinuities. These oscillations could generate unphysical numerical results when real physics model is solved.

Contrarily the MOOD-P3 and P5 schemes do not produce such oscillations and the shape of the body is better

resolved while, as expected, the MOOD-P5 scheme is less diffusive than the P3 one.

Concerning the CPU time we observe that the MOOD method is two times more expensive than the unlimited

corresponding scheme due to mandatory decrementing. Moreover the P5 schemes are also two times more expensive

than the P3 ones.

Finally on average we observe 88% of cells updated with the maximal polynomial degree (3 or 5), 4% with degree

2 and 8% with degree 0 (i.e. first-order finite volume scheme).

5 Conclusion

In this paper we have presented the preliminary results of the 3D extension of the high-order MOOD method follow-

ing the same framework as in [5–7]. These results tend to confirm that the MOOD method behavior is independent

of the spatial dimension. In the numerical section we have provided evidences that the 3D MOOD method provides

solutions up to sixth-order of accuracy on the advection of a smooth profile on hexahedral and tetrahedral meshes.

We have also shown that on a discontinuous profile the diffusion of the MOOD method is less important with a

higher polynomial degree (P5 vs P3 in this paper). Moreover independently of the order of accuracy the MOOD

method prevents spurious oscillations from appearing.

These preliminary results and other on-going experiments tend to prove that the MOOD concept is efficient in 3D

in terms of CPU and memory costs. The next step is the extension of the MOOD method to 3D hydrodynamics

systems of equation.

REFERENCES

[1] R. Abgrall, On Essentially Non-oscillatory Schemes on Unstructured Meshes: Analysis and Implementation,

J. Comput. Phys. 114 45–58 (1994).

[2] T. J. Barth, Numerical methods for conservation laws on structured and unstructured meshes, VKI March

2003 Lectures Series.



S. Diot et al. | Young Investigators Conference 2012 8

Exact Unlimited P3 Unlimited P5

MUSCL MOOD-P3 MOOD-P5

Exact Unlimited P3 Unlimited P5

MUSCL MOOD-P3 MOOD-P5

Figure 4: Solid Body Rotation test case on the 403 hexahedron mesh — Solution on the 2D plane z = 1/2 — Top:

3D elevations — Bottom: 20 isolines between 0 (blue) and 1 (red).



S. Diot et al. | Young Investigators Conference 2012 9

[3] T. J. Barth, D. C. Jespersen, The design and application of upwind schemes on unstructured meshes, AIAA

Report 89-0366 (1989).

[4] T. Buffard, S. Clain, Monoslope and Multislope MUSCL Methods for unstructured meshes, J. Comput. Phys.

229 3745-3776 (2010).

[5] S. Clain, S. Diot, R. Loubère, A high-order finite volume method for hyperbolic systems: Multi-dimensional

Optimal Order Detection (MOOD), J. Comput. Phys. 230, Issue 10, pp 4028-4050, (2011).

[6] S. Clain, S. Diot, R. Loubère, Multi-dimensional Optimal Order Detection (MOOD) A very high-order Finite

Volume Scheme for conservation laws on unstructured meshes, FVCA 6, International Symposium, Prague,

June 6-10, 2011, Series: Springer Proceedings in Mathematics, Vol. 4, Fort, J.; Fürst, J.; Halama, J.; Herbin,

R.; Hubert, F. (Eds.) 1st Edition., 2011, XVII, 1065 p. 106 illus. in color.

[7] S. Diot, S. Clain, R. Loubère, Improved detection criteria for the Multi-dimensional Optimal Order Detection

(MOOD) on unstructured meshes with very high-order polynomials, in revision Comput. & Fluids (2012).

[8] O. Friedrich, Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstruc-

tured Grids, J. Comput. Phys. 144 (1998) 194–212.

[9] G.-S. Jiang, E. Tadmor, Non-oscillatory central schemes for multidimensional hyperbolic conservative laws,

SIAM J. Sci. Comput. 19 (1998) 1892–1917.

[10] C. F. Ollivier-Gooch, Quasi-ENO Schemes for Unstructured Meshes Based on Unlimited Data-Dependent

Least-Squares Reconstruction, J. Comput. Phys. 133 6–17 (1997).

[11] S. Osher, S. Chakravarthy, High resolution schemes and the entropy condition, SIAM J. Numer. Anal. 21

(1984) 955–984.

[12] J. S. Park, S.-H. Yoon, C. Kim, Multi-dimensional limiting process for hyperbolic conservation laws on un-

structured grids, J. Comput. Phys. 229 788–812 (2010).

[13] R. Sander, A third-order accurate variation non-expansive difference scheme for single nonlinear conservation

law, Math. Comput. 51 (1988) 535–558.

[14] W. R. Wolf , J. L. F. Azevedo, High-order ENO and WENO schemes for unstructured grids, International

Journal for Numerical Methods in Fluids, 55 Issue 10 917–943 (2007).


