
HAL Id: hal-00658364
https://hal.science/hal-00658364v4

Submitted on 20 Dec 2012 (v4), last revised 13 Aug 2013 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotic behavior of some statistics in Ewens random
permutations

Valentin Féray

To cite this version:
Valentin Féray. Asymptotic behavior of some statistics in Ewens random permutations. 22nd In-
ternational Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of
Algorithms (AofA’12), Jun 2012, Canada. pp.43-54. �hal-00658364v4�

https://hal.science/hal-00658364v4
https://hal.archives-ouvertes.fr


ASYMPTOTIC BEHAVIOR OF SOME STATISTICS IN EWENS

RANDOM PERMUTATIONS

VALENTIN FÉRAY

ABSTRACT. The purpose of this article is to present a general method to find
limiting laws for some renormalized statistics on random permutations. The
model of random permutations considered here is Ewens sampling model, which
generalizes uniform random permutations. Under this model, we describe the
asymptotic behavior of some statistics, including the number of occurrences of
any dashed pattern. Our approach is based on the method of moments and relies
on the following intuition: two events involving the images of different integers
are almost independent.

1. INTRODUCTION

1.1. Background. Permutations are one of the most classical objects in enumer-
ative combinatorics. Several statistics have been widely studied: total number of
cycles, number of cycles of a given length, of descents, inversions, excedances or
more recently, of occurrences of a given (generalized) pattern... A classical ques-
tion in enumerative combinatorics consists in computing the (multivariate) gener-
ating series of permutations with respect to some of these statistics.

A probabilistic point of view on the topic raises other questions. Let us consider,
for each N , a probability measure µN of permutations of size N . Then any statistic
above can be interpreted as a sequence of random variables (XN )N≥1. The natural
question is now: what is the asymptotic behavior (possibly after normalization) of
(XN )N≥1?

The simplest model of random permutations is of course the uniform random
permutations (for each N , µN is the uniform distribution on the symmetric group
SN ). A generalization of this model has been introduced by W.J. Ewens in the
context of population dynamics [16]. It is defined by

(1) µN ({σ}) = θ#(σ)

θ(θ + 1) · · · (θ +N − 1)
,

where θ > 0 is a fixed real parameter and #(σ) stands for the number of cycles
of the permutation σ. Of course, when θ = 1, we recover the uniform distribu-
tion. From now on, we will allow ourselves a small abuse of language and use the
expression Ewens random permutation for a random permutation distributed with
Ewens measure.
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2 V. FÉRAY

The purpose of this article is to introduce a new general approach to this family
of problems, based on the method of moments.

We then use it to determine the second-order fluctuations of a large family of
statistics on permutations: occurrences of dashed patterns (Theorem 1.6).

Random permutations, either with uniform or Ewens distribution, are well-
studied objects. Giving a complete list of references is impossible. In Section
1.5, we compare our results with the literature.

1.2. Motivating examples. Let us begin by describing a few examples of results,
which suggest a uniform and intuitive approach.

Number of cycles of a given length p. Let Γ(N)
p be the random variable given by

the number of cycles of length p in an Ewens random permutation σ in SN . The
asymptotic distribution of Γ(N)

p has been studied by V.L. Goncharov [19] and V.F.
Kolchin [24] in the case of uniform measure and by G.A. Watterson [32, Theorem
5] for the framework of a general Ewens distribution (see also [1, Theorem 5.1]).

Theorem 1.1 ([32]). Let p be a positive integer. When N tends to infinity, Γ
(N)
p

converges in distribution towards a Poisson law of parameter θ/p. Moreover, the

sequences of random variables (Γ
(N)
p′ )N≥1 for p′ ≤ p are asymptotically indepen-

dent.

Let us give an intuitive (but false) explanation of the first part of the result,
assuming that some non-independent variables are independent.

If i1, . . . , ip is a list of pairwise distinct integers between 1 and N such that its
minimum is i1 (there are (N)p/p such lists, where (N)p is the usual notation for
the falling factorial (N)p = N(N − 1) . . . (N − p+ 1)), we define

(2) Bc,N
(i1,...,ip)

(σ) =

{
1 if (i1 . . . ip) is a cycle of σ;

0 otherwise.

Each Bc,N
(i1,...,ip)

is distributed according to a Bernoulli law of parameter θ/(N)p

(see Lemma 3.1). These variables are not independent. Nevertheless the sum Γ
(N)
p

of these (N)p/p Bernoulli variables of parameter θ/(N)p converges in distribution
towards a Poisson variable of parameter θ/p.

Excedances. A (weak) excedance of a permutation σ in SN is an integer i such
that σ(i) ≥ i. Let Bex,N

i be the random variable defined by:

Bex,N
i (σ) =

{
0 if σ(i) < i;

1 if σ(i) ≥ i.

When σ is a Ewens random permutation, this random variable is distributed ac-
cording to a Bernoulli law of parameter i+θ

N+θ−1 (see Lemma 3.1).
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Let x be a fixed real number in [0; 1] and σ a permutation of size N . When Nx
is an integer, we define

F (N)
σ (x) :=

∑Nx
i=1 B

ex,N
i (σ)

N

and we extend the function F
(N)
σ by linearity between the points i/N and (i+1)/N

(for 1 ≤ i ≤ N − 1). In sections 6.1 and 6.2, we explain why we are interested
in this quantity: it is related to a statistical physics model, the symmetric simple

exclusion process (SSEP), and to permutation tableaux, some combinatorial objects
which have been intensively studied in the last few years.

We show the following.

Theorem 1.2. Let x be a real number between 0 and 1 and σ a random permuta-

tion of size N , taken with Ewens distribution. Then, almost surely,

lim
N→∞

F (N)
σ (x) =

1− (1− x)2

2
.

Moreover, if we define the rescaled fluctuations

Z(N)
σ (x) :=

√
N
(
F (N)
σ (x)− E(F (N)

σ (x))
)
,

then, for any x1, . . . , xr, the vector (Z
(N)
σ (x1), . . . , Z

(N)
σ (xr)) converges towards

a Gaussian vector (G(x1), . . . , G(xr)) of covariance matrix (K(xi, xj))1≤i,j≤r,

for some explicit function K (see section 6.4).

If i 6= j, the variables Bex,N
i and Bex,N

j are not independent (their covariance
is computed explicitly in section 6.4). Nevertheless, the first-order limit and the
Gaussian fluctuations of order N−1/2 correspond to what would happen with in-
dependent variables (only the actual value of the covariance matrix K(xi, xj) is
different).

With this formulation, Theorem 1.2 is new, but the first part is quite easy while
the second is a consequence of [15, Appendix A] (see section 6). We also refer to
an article of A. Barbour and S. Janson [5], where the case of the uniform measure
is addressed with another method.

Adjacencies. We consider here only uniform random permutations, that is the
case θ = 1. An adjacency of a permutation σ in SN is an integer i such that
σ(i+1) = σ(i)±1. As above, we introduce the random variable Bad,N

i which takes
value 1 if i is an adjacency and 0 otherwise. Then Bad,N

i is distributed according
to a Bernoulli law of parameter 2

N . An easy computation shows that they are not

independent.
We are interested in the total number of adjacencies in σ, that is the random

variable on SN defined by A(N) =
∑N−1

i=1 Bad,N
i .

Theorem 1.3 ([34]). A(N) converges in distribution towards a Poisson variable of

parameter 2.



4 V. FÉRAY

This result first appeared in papers of J. Wolfowitz and I. Kaplansky [34, 23]
and was rediscovered recently in the context of genomics (see [35] and also [11,
Theorem 10]). Note that it corresponds exactly to what would have been obtained
if the variables Bad,N

i were independent.

Of course, as the Bernoulli random variable considered in each of these exam-
ples are not independent, the explanations given for these results are not rigorous
proofs. Nevertheless, the considered events involve (most of the time) the images
of different integers by the permutation σ. Therefore, speaking informally, they are
almost independent. The main lemma of this paper is a precise statement of this
almost independence, that is an upper bound on joint cumulants. This result allows
us to give new proofs of the three results presented above in a uniform way.

1.3. The main lemma. From now on, N is a positive integer and σ a random
Ewens permutation in SN .

If i and s are two integers in [N ], we consider the Bernoulli variable B(N)
i,s which

takes value 1 if and only if σ(i) = s. Despite its simple definition, this collection
of events allows to reconstruct the permutation and thus generates the full algebra
of observables (we call them elementary events).

For random variables X1, . . . ,Xℓ on the same probability space, we denote
κ(X1, . . . ,Xℓ) their joint cumulant. Joint cumulants generalize the notion of co-
variance (corresponding to ℓ = 2). They somehow measure how dependent ran-
dom variables are. Their definition is given in Section 2.2.

Our main lemma is a bound on joint cumulants of products of elementary events.
To state it, we introduce the following notations. Consider two lists of positive
integers of the same length i = (i1, . . . , ir) and s = (s1, . . . , sr) and define the
graphs G1(i, s) and G2(i, s) as follows:

• the vertex set of G1(i, s) is [r] and j and h are linked in G1(i, s) if and
only if ij = ih and sj = sh.

• the vertex set of G2(i, s) is also [r] and j and h are linked in G2(i, s) if and
only if {ij , sj} ∩ {ih, sh} 6= ∅.

The connected components of a graph G form a set partition of its vertex set that we
denote CC(G). In particular, #(CC(G)) is the number of connected components
of G.

Theorem 1.4 (main lemma). Fix a positive integer r. There exists a constant Cr,

depending on r, such that for any set partition τ = (τ1, . . . , τℓ) of [r], any N ≥ 1
and lists i = (i1, . . . , ir) and s = (s1, . . . , sr) of integers in [N ], one has:

(3)∣∣∣∣∣∣
κ



∏

j∈τ1

B
(N)
ij ,sj

, . . . ,
∏

j∈τℓ

B
(N)
ij ,sj




∣∣∣∣∣∣
≤ CrN

−#
(
CC(G1(i,s))

)
−#
(
CC(G2(i,s))∨τ

)
+1.

Note that the integer #
(
CC(G1(i, s))

)
is the number of different couples (ij , sj).

The second quantity involved in the theorem #
(
CC(G2(i, s)) ∨ τ

)
does not have
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a similar interpretation. However, it admits an equivalent description. Consider
the graph G′

2, obtained from G2 by merging vertices corresponding to elements
in the same part of τ . Then #

(
CC(G2(i, s)) ∨ τ

)
is the number of connected

components of G′
2.

As an example, let us consider the case where the entries in the lists i and s

are pairwise distinct. In this case, the joint moment of products of B(N)
i,s is simply

1/(N + θ − 1)a, where a is the number of factors (the case θ = 1 is obvious, the
general case is explained in Lemma 3.1). Joint cumulant can be expressed in terms
of joint moments – see Eq. (8) –, so the left-hand side of (3) can be written as an
explicit rational function of degree −r. According to our main lemma, the sum has
degree at most −ℓ− r + 1, which means that many simplifications are happening

(they are not at all trivial to explain!). This reflects the fact that the variables B(N)
ij ,sj

are very weakly correlated.

Remark 1.5. It is worth noticing that our proof of the main lemma goes through a
very general criterion for a family of sequences of random variables to have small
cumulants: see Lemma 3.2.

1.4. Applications. Theorem 1.4 can be used to give new proofs of Theorems 1.1,
1.2 and 1.3. Moreover, we get an extension of Theorem 1.3 to any value of the
parameter θ.

We must confess that our proofs of these results are quite technical. However,
an important part of the difficulty is contained in the proof of Theorem 1.4 and
hence must not be done again for each application. Moreover, these proofs are
natural in the following sense: they are based on the idea that, when σ is a uniform
random permutation, σ(i) and σ(j) are almost independent. Besides, although the
problems may seem quite different (in particular the limit law is not always the
same), these proofs all follow roughly the same guidelines.

To give more evidence that our approach is quite general, we study the number
of occurrences of dashed patterns. This notion has been introduced1 in 2000 by E.
Babson and E. Steingrimsson, because it gives a general setting which includes a
lot of usual statistics of permutations [3].

Thanks to our main lemma, we describe the second order asymptotics of the
number of occurrences of any given dashed pattern in a random Ewens permuta-
tion.

Theorem 1.6. Let (τ,X) be a dashed pattern of size p (see definition 7.3) and

σN a sequence of random permutations, each σN being of size N distributed with

Ewens measure. We denote q = |X|. Then,
O

(N)
τ,X(σN )

Np−q , that is the renormalized

number of occurrences of (τ,X), tends almost surely towards 1
p!(p−q)! . Besides,

1In the paper of Babson and Steingrimsson, they are called generalized patterns. But, as some
more general generalized patterns have been introduced since (see next section), we prefer to use
dashed patterns.
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one has the following central limit theorem:

Z
(N)
(X,τ) :=

√
N


O

(N)
τ,X

Np−q
− 1

p!(p− q)!


→ N (0, Vτ,X ),

where the arrow denotes a convergence in distribution and Vτ,X is some nonnega-

tive real number.

This theorem is proved in section 7.3 using Theorem 1.4.
Unfortunately, we are not able to show in general that the constant Vτ,X is posi-

tive (Vτ,X = 0 would mean that we have not chosen the good normalization). The
following partial result has been proved by M. Bóna [9, Propositions 1 and 2] (M.
Bóna works with the uniform distribution, but it should be not too hard to show
that Vτ,X does not depend on θ).

Proposition 1.7. For any k ≥ 1, τ = Idk and X = ∅ or X = [k − 1], the

conjecture holds true.

The proof relies on an expression of Vτ,X as a signed sum of products of bino-
mial coefficients. This expression can be extended to the general case and we have
checked by computer the following conjecture for all patterns of size 8 or less.

Conjecture 1.8. For any dashed pattern (τ,X), one has Vτ,X > 0.

1.5. Comparison with other methods. There is a huge literature on random per-
mutations. While we will not make a comprehensive survey of the subject, we shall
try to present the existing methods and results related to our paper.

Our Poisson convergence results have been obtained previously by the moment
method in the articles [23] and [32]. Our cumulant approach is not really different
from these proofs. Yet, we have chosen to present these examples for two reasons:

• first, it illustrates the fact that our approach can be used with different limit
laws ;

• second, the combinatorics is simpler in the Poisson cases, so they serve as
toy model to explain the general structure of the proofs.

Let us mention also the existence of a powerful method, called the Stein-Chen
method, that proves Poisson convergence, together with precise bounds on total
variation distances – see, e.g., [4, Chapter 4].

Let us now consider our normal approximation results. For uniform permuta-
tions, both are already known or could be obtained easily with methods existing in
the literature.

• Theorem 1.2 has been proved by A. Barbour and S. Janson [5], who estab-
lished a functional version of a combinatorial central limit theorem from
Hoeffding [21]. This theorem deals with statistics of the form

∑

1≤i,j≤N

a
(N)
i,j Bi,j

where A(N) is a sequence of deterministic N ×N matrices.
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• Theorem 1.6 has been proven for some particular patterns using depen-
dency graphs and cumulants: see [9, Theorems 10 and 17] and [20, Section
6]. The case of a general pattern (under uniform distribution) can be held
with the same arguments.

These methods are very different one from each other and none of them can be
used to prove both results in a uniform way. Note also that they only work in the
uniform case. Yet, going from the uniform model to a general Ewens distribution
should be doable with a coupling argument, see below.

Our method has the advantage to provide a uniform proof for both results and
to extend directly to a general Ewens distribution. As it uses cumulants, our ap-
proach is close to the dependency graph method. However, we deal with sum of
pairwise dependent random variables and, to our knowledge, it is the first time that
cumulants are used in this framework. We hope that this idea can be used on other
objects than permutations, see next section.

To be comprehensive, let us mention two other tools. The first one is the use
of bivariate generating series, as illustrated in the book from P. Flajolet and R.
Sedgewick – see [18, Examples IX.3, IX.4, IX.5, IX.9]. However, computing the
bivariate generating series of permutations with respect to their size and the number
of occurences of a given pattern is known to be a hard problem, so it is very unlikely
that this method could be used to establish Theorem 1.6.

The second one is the use of couplings. A well-known coupling for random
permutations is Feller coupling – see, e.g., [1, page 16] – that allows to prove The-
orem 1.1 with bounds on total variation distances. There also exists the so-called
chinese restaurant process [1, Example 2.4], which defines a coupling between
Ewens random permutations and uniform random permutations. With this cou-
pling, a Ewens random permuation differs from a uniform random permutation by
O(2|θ− 1| log(n)) values. Therefore, it should be possible to deduce Theorem 1.2
and Theorem 1.6 for the general Ewens distribution from the case of the uniform
distribution.

1.6. Future work. In addition to the conjecture above, we mention three direc-
tions for further research on the topic.

The notion of dashed patterns has been further extended to the notion of gener-

alized patterns in a recent paper of M. Bousquet-Mélou, A. Claesson, M. Dukes
and S. Kitaev [10, Section 2]. Unfortunately, we have not been able to obtain a
general result for the asymptotic number of occurrences of generalized patterns.
Finding such a result is, in the author’s opinion, a challenging open problem. One
could even consider a more general framework, see section 7.4.

Another direction consists in refining our convergence results (speed of conver-
gence, large deviations, local limit laws) by following the same guideline.

Finally, it is natural to wonder if the method can be extended to other family
of objects. The extension to colored permutations should be straightforward. A
promising direction is the following: consider a graph G with vertex set [n] and
take some random subset S of its vertices, uniformly among all subset of size p
(for some fixed number p). If p grows linearly with n, then the events “i lies in S”
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(for 1 ≤ i ≤ n) have small joint cumulants (this is easy to see with the material of
section 3).

1.7. Outline of the paper. The paper is organized as follows. Section 2 presents
the necessary material: set-partitions and cumulants. In section 3, we prove our
main lemma. Then, in section 4, we give two easy lemmas on connected com-
ponents of graphs, which appear in all our applications. The three last sections
are devoted to the different applications: section 5 for the cycles, section 6 for the
excedances and finally, section 7 for the generalized patterns (including the adja-
cencies and the dashed patterns).

2. PRELIMINARIES : SET PARTITIONS AND JOINT CUMULANTS

2.1. Set partitions. The combinatorics of set partitions is central in the theory of
cumulants (as explained below) and will be important in this article.

A set partition of a set S is a (non-ordered) family of non-empty disjoint subsets
of S (called parts of the partition), whose union is S.

Denote P(S) the set of set partitions of a given set S. Then P(S) may be
endowed with a natural partial order: the refinement order. We say that π is finer

than π′ or π′ coarser than π (and denote π ≤ π′) if every part of π is included in a
part of π′.

Endowed with this order, P(S) is a complete lattice, which means that each
family F of set partitions admits a join (the finest set partition which is coarser
than all set partitions in F , denoted with ∨) and a meet (the coarsest set partition
which is finer than all set partitions in F , denoted with ∧). In particular, there
is a maximal element {S} (the partition in only one part) and a minimal element
{{x}, x ∈ S} (the partition in singletons).

Moreover, this lattice is ranked: the rank rk(π) of a set partition π is |S|−#(π),
where #(π) denotes the number of parts of π. The rank is compatible with the
lattice structure in the following sense: for all set partitions π and π′,

(4) rk(π ∨ π′) ≤ rk(π) + rk(π′).

Lastly, denote µ the Möbius function of the partition lattice P(S). In this paper,
we only use evaluations of µ at pairs (π, {S}) (that is the second argument is the
maximum element of P(S)). In this case, the value of the Möbius function is given
by:

(5) µ(π, {S}) = (−1)#(π)−1(#(π)− 1)!.

2.2. Cumulants. We present in this section the definition and basic properties of
joint cumulants. Most of this material can be found in Leonov’s and Shiryaev’s
paper [25] (see also [22, Proposition 6.16]).

Definition.

They are defined as follows: if X1, . . . , Xℓ are random variables on the same
probability space (denote E the expectation on this space), then

(6) κ(X1, . . . ,Xℓ) = [t1 . . . tℓ] ln

(
E
(
exp(t1X1 + · · · + tℓXℓ)

))
.
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As usual, [t1 . . . tℓ]F stands for the coefficient of t1 . . . tℓ in the series expansion
of F in positive powers of t1, . . . , tℓ. Note that joint cumulants are multilinear
functions. In the case where all the Xi are equal, we recover the ℓ-th cumulant
κℓ(X) of a single variable [17].

Joint cumulants can be expressed in terms of joint moments, and vice-versa.
Denote [ℓ] the set {1, . . . , ℓ}.

E
(
X1 · · ·Xℓ

)
=

∑

π∈P([ℓ])

∏

C∈π

κ(Xi; i ∈ C);(7)

κ(X1, . . . ,Xℓ) =
∑

π∈P([ℓ])

µ(π, {[ℓ]})
∏

C∈π

E

(
∏

i∈C

Xi

)
.(8)

Recall that µ(π, {[ℓ]}) has an explicit expression given by Equation (5). For ex-
ample the joint cumulants of one or two variables are simply the mean of a single
random variable (κ(X1) = E(X1)) and the covariance of a couple of random vari-
ables (κ(X1,X2) = E(X1X2)− E(X1)E(X2)). For three variables, one has

κ(X1,X2,X3) = E(X1X2X3)− E(X1X2)E(X3)− E(X1X3)E(X2)

− E(X2X3)E(X1) + 2E(X1)E(X2)E(X3).

Cumulants of independent random variables.

An interesting property of cumulants is the following: if the set of variables
{Xi, 1 ≤ i ≤ ℓ} can be split into two sets {Xi, i ∈ A} and {Xi, i ∈ B} (with
A ⊔ B = [ℓ]) such that the variables from the first set are independent from the
variables from the second, then

κ(X1, . . . ,Xℓ) = [t1 . . . tℓ] ln

(
E
(
exp(

∑

i∈A

tiXi)
))

+ [t1 . . . tℓ] ln

(
E
(
exp(

∑

i∈B

tiXi)
))

= 0.

Because of this strong property, joint cumulants can be seen as a quantification of
the dependence of random variables.

Convergence in distribution using cumulants.

Consider now m sequences of random variables: (X
(i)
n )n≥1 for i ∈ [m]. A

consequence of Equations (7) and (8) is that the convergence of all joint cumulants

κ
(
X(i1)

n , . . . ,X(iℓ)
n

)
; ℓ ≥ 1, 1 ≤ i1, . . . , iℓ ≤ m

is equivalent to the convergence of all joint moments

E
(
X(i1)

n · · ·X(iℓ)
n

)
; ℓ ≥ 1, 1 ≤ i1, . . . , iℓ ≤ m.

In particular, if Y (1), . . . , Y (m) are random variables such that the law of the m-
tuple (Y (1), . . . , Y (m)) is entirely determined by its joint moments, then the two
following statements are equivalent (see [6, Theorem 30.2] for the same property
in terms of moments).
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• For any ℓ and any list i1, . . . , iℓ in [m],

lim
n→∞

κ
(
X(i1)

n , . . . ,X(iℓ)
n

)
= κ

(
Y (i1), . . . , Y (iℓ)

)
.

• The sequence of m-tuples (X
(1)
n , . . . ,X

(m)
n ) converges in distribution to-

wards (Y (1), . . . , Y (m)).

Recall that Gaussian and Poisson variables are determined by their moments, see
e.g. the criterion [6, Theorem 30.1]. Hence, cumulants can be used to prove con-
vergence in distribution towards Gaussian or Poisson variables, such as the results
of the previous section.

3. PROOF OF THE MAIN LEMMA

3.1. Joint moments. The first step of the proof consists in computing the joint

moments of the family of random variables (B(N)
i,s )1≤i,s≤N .

Note that (B(N)
i,s )2 = B

(N)
i,s , while B

(N)
i,s B

(N)
i,s′ = 0 if s 6= s′ and B

(N)
i,s B

(N)
i′,s = 0

if i 6= i′. Therefore, we can restrict ourselves to the computation of the joint mo-

ment E
(
B

(N)
i1,s1

· · ·B(N)
ir ,sr

)
, in the case where i = (i1, . . . , ir) and s = (s1, . . . , sr)

are two lists of pairwise distinct indices (some entry in the list i can be equal to an
entry of s).

We see these two lists as a partial permutation

σ̃i,s =

(
i1 . . . ir
s1 . . . sr

)
,

which sends ij to sj . The notion of cycles of a permutation can be naturally ex-
tended to partial permutations: (ij1 , . . . , ijγ ) is a cycle of the partial permutation if
sj1 = ij2 , sj2 = ij3 and so on until sjγ = ij1 . Note that a partial permutation does
not necessarily have cycles. The number of cycles of σ̃i,s is denoted #(σ̃i,s).

The computation of E
(
B

(N)
i1,s1

· · ·B(N)
ir ,sr

)
relies on two important properties of

the Ewens measure. First, it is conjugacy-invariant. Second, a random sampling
can be obtained inductively by the following procedure (see, e.g. [1, Example
2.19]).

Suppose that we have a permutation σ of size N −1 taken with this distribution.
Write it as a product of cycles and apply the following transformation.

• With probability θ/(N + θ − 1), add N as a fixed point. More precisely,
σ′ is defined by:

{
σ′(i) = σ(i) for i < N ;

σ′(N) = N.
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• For each j, with probability 1/(N+θ−1), add N just before j in its cycle.
More precisely, σ′ is defined by:





σ′(i) = σ(i) for i 6= σ−1(j), N ;

σ′(N) = j;

σ′(σ−1(j)) = N.

Then σ′ is a random permutation of SN distributed with Ewens measure. Iterating
this, one obtains a linear time and space algorithm to pick a random permutation
distributed with Ewens measure.

Let us come back now to the computation of joint moments.

Lemma 3.1. Let σ be a random permutation taken with Ewens distribution. Then

one has

E
(
B

(N)
i1,s1

· · ·B(N)
ir ,sr

)
=

θ#(σ̃i,s)

(N + θ − 1) . . . (N + θ − r)
.

For example, the parameter of the Bernoulli variables B(N)
i,s are given by

E(B(N)
i,s ) =

{
θ

N+θ−1 if i = s;
1

N+θ−1 if i = s.

Proof. As Ewens measure is constant on conjugacy classes of SN , one can assume
without loss of generality that i1 = N − r + 1, i2 = N − r + 2, . . . , ir = N .
Then permutations of SN with σ(ij) = sj are obtained in the previous algorithm
as follows:

• Choose any permutation in SN−r.
• For 1 ≤ j ≤ r, add ij in the place given by the following rule: if sj < ij ,

add ij just before sj in its cycle. Otherwise, look at σ̃i,s(ij), σ̃2
i,s(ij) and so

on until you find an element smaller than ij and place ij before it. If there
is no such element, then ij is a minimum of a cycle of σ̃i,s. In this case,
put it in a new cycle.

It is easy to check with the description of the construction of a permutation under
Ewens measure that these choices of places happen with a probability

θ#(σ̃i,s)

(N + θ − 1) . . . (N − r + θ)
. �

3.2. A general criterion for small cumulants. Let A(N)
1 ,. . . ,A(N)

ℓ be ℓ sequences
of random variables. We introduce the following notation for joint moments and
cumulants of subsets of these variables: if ∆ = {j1, . . . , jh} is a subset of [ℓ], then

M
(N)
A,∆ = E

(
A

(N)
j1

. . . A
(N)
jh

)
, κ

(N)
A,∆ = κ

(
A

(N)
j1

, . . . , A
(N)
jh

)
.

We also introduce the auxiliary quantity U
(N)
A,∆ implicitly defined by: for any subset

∆ ⊆ [ℓ], ∏

δ⊂∆

U
(N)
A,δ = M

(N)
A,∆.
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Using Möbius inversion on the boolean lattice, we have explicitly: for any subset
∆ ⊆ [ℓ],

U
(N)
A,∆ =

∏

δ⊂∆

(
M

(N)
A,δ

)(−1)|δ|

Lemma 3.2. Let A
(N)
1 , . . . , A

(N)
ℓ be a list of sequences of random variables with

normalized expectations, that is, for any N and j, E(A(N)
j ) = 1. Then the follow-

ing statements are equivalent:

I. Quasi-factorization property: for any subset ∆ ⊆ [ℓ] of size at least 2, one

has

(9) U
(N)
A,∆ = 1 +O(N−|∆|+1);

II. Small cumulant property: for any subset ∆ ⊆ [ℓ] of size at least 2, one has

(10) κ
(N)
A,∆ = O(N−|∆|+1).

Proof. Let us consider the implication I ⇒ II. We denote T
(N)
∆ = U

(N)
A,∆ − 1 and

assume that T (N)
∆ = O(N−|∆|+1) for any ∆ ⊆ [ℓ] of size at least 2. The goal is to

prove that κ(N)
A,[ℓ]

= O(N−ℓ+1). Indeed, this corresponds to the case ∆ = [ℓ] of II,

but the same proof will work for any ∆ ⊆ [ℓ].
Recall the relation between moments and cumulants (Equation (8)):

κ
(N)
A,[ℓ] =

∑

π∈P([ℓ])

µ(π, {[ℓ]})
∏

C∈π

M
(N)
A,C .

But joint moments can be expressed in terms of T :

M
(N)
A,C =

∏

∆⊆C
|∆|≥2

(1 + T
(N)
∆ ) =

∑

∆1,...,∆m

T
(N)
∆1

. . . T
(N)
∆m

,

where the sum runs over all finite lists of pairwise distinct (but not necessarily
disjoint) subsets of C of size at least 2 (in particular, the length m of the list is
not fixed). When we multiply this over all blocks C of a set partition π, we obtain

the sum of T (N)
∆1

. . . T
(N)
∆m

over all lists of pairwise distinct subsets of [ℓ] of size at
least 2 such that each ∆i is contained in a block of π. In other terms, for each
i ∈ [m], π must be coarser than the partition Π(∆i), which, by definition, has ∆i

and singletons as blocks. Finally,

(11) κ
(N)
A,[ℓ] =

∑

∆1,...,∆m
pairwise distinct

T
(N)
∆1

. . . T
(N)
∆m




∑

π∈P([ℓ])
for all i, π≥Π(∆i)

µ(π, {[ℓ]})


 .

The condition on π can be rewritten as

π ≥ Π(∆1) ∨ · · · ∨Π(∆m).

Hence, by definition of the Möbius function, the sum in the parenthesis is equal to
0, unless Π(∆1)∨· · ·∨Π(∆m) = {[ℓ]} (in other terms, unless the hypergraph with
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edges (∆i)1≤i≤m is connected). On the one hand, by Equation (4), it may happen
only if:

m∑

i=1

rk
(
Π(∆i)

)
=

m∑

i=1

(|∆i| − 1) ≥ rk([ℓ]) = ℓ− 1.

On the other hand, one has

T
(N)
∆1

. . . T
(N)
∆m

= O
(
N−

∑m
i=1(|∆i|−1)

)
.

Hence only summands of order of magnitude N−ℓ+1 or less survive and one has

κ
(N)
A,[ℓ] = O(N−ℓ+1)

which is exactly what we wanted to prove.

Let us now consider the converse statement. We proceed by induction on ℓ and
we assume that, for all ℓ′ smaller than a given ℓ ≥ 2, the theorem holds.

Consider some sequences of random variables A
(N)
1 , . . . , A(N)

ℓ such that II

holds. By induction hypothesis, one gets immediately that

for all ∆ ( [ℓ], U
(N)
A,δ = 1 +O(N−|∆|+1).

Note that an immediate induction shows that the joint moment fulfills

for all ∆ ( [ℓ], M
(N)
A,∆ = O(1) and (M

(N)
A,∆)

−1 = O(1).

It remains to prove that

U
(N)
A,[ℓ] =

∏

∆⊆[ℓ]

(M
(N)
A,∆)

(−1)|∆|
= 1 +O(N−ℓ+1).

Thanks to the estimate above for joint moment, this can be rewritten as

(12) M
(N)
A,[ℓ] =

∏

∆([ℓ]

(M
(N)
A,∆)

(−1)ℓ−1−|∆|
+O(N−ℓ+1).

Consider ℓ sequences of random variables B
(N)
1 ,. . . , B(N)

ℓ such that the equality

M
(N)
B,∆ = M

(N)
A,∆ holds for ∆ ( [ℓ] and such that Equation (12) is fulfilled when

A is replaced by B (the reader may wonder whether such a family B exists; let
us temporarily ignore this problem, which will be addressed in Remark 3.3). By
definition, the family B of sequences of random variables fulfills condition I of
the theorem and, hence, using the first part of the proof, has also property II. In
particular:

κ
(N)
B,[ℓ] = O(N−ℓ+1).

But, by hypothesis,

κ
(N)
A,[ℓ] = O(N−ℓ+1).

As A and B have the same joint moment, except for M (N)
A,[ℓ] and M

(N)
B,[ℓ], this implies

that
M

(N)
A,[ℓ] −M

(N)
B,[ℓ] = κ

(N)
A,[ℓ] − κ

(N)
B,[ℓ] = O(N−ℓ+1).
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But the family B fulfills Equation (12) and, hence, so does family A. �

Remark 3.3. Let ℓ be a fixed integer and I a finite subset of (N>0)
ℓ. Then, for

any list (mi)i∈I of numbers, one can find some complex-valued random variables
X1, . . . ,Xℓ such that

E(Xi1
1 . . . Xiℓ

ℓ ) = mi1,...,iℓ .

Indeed, one can look for a solution where X1 is uniform on a finite set {z1, . . . , zT }
and Xj = Xdj−1

1 , where d is an integer bigger than all coordinates of all vectors in
I . Then the quantities

{T · E(Xi1
1 . . . Xiℓ

ℓ ), i ∈ I}
correspond to different power sums of z1, . . . , zT . Thus we have to find a family
{z1, . . . , zT } of complex number with specified power sums until degree dj . This
exists as soon as T ≥ dj , because C is algebraically closed. In particular, the
family B considered in the proof above exists.

However, we do not really need that this family exists. Indeed, during the whole
proof, we are doing manipulations on the sequences of moments and cumulants
using only the relations between them (equations (7) and (8)). We never consider
the underlying random variables. Therefore, everything could be done even if the
random variables did not exist, as it is often done in umbral calculus [29].

3.3. Case with distinct indices. We consider here the case where all entries in
the sequences i and s are distinct. To be in the situation of Lemma 3.2, we set, for
h ∈ [ℓ] and N ≥ 1:

A
(N)
h = (N + θ − 1)aj

∏

j∈τh

B
(N)
ij ,sj

,

where aj = |τj |. The normalization factor has been chosen such that E(A(N)
h ) = 1.

Hence, we will be able to apply Lemma 3.1.

Let us prove that A(N)
1 , . . . , A

(N)
ℓ fulfills property I of this lemma. Of course,

the case ∆ = [ℓ] is generic. The joint moments of the family A have in this case
an explicit expression: for δ ⊆ [ℓ],

M
(N)
A,δ =

∏

j∈δ

(N + θ − 1)aj

(N + θ − 1)∑
j∈δ aj

.

Therefore, we have to prove that the quantity

Qa1,...,aℓ :=
∏

δ⊆[ℓ]
|δ|≥2

(M
(N)
A,δ )

(−1)|δ| =
∏

δ⊆[ℓ]

(
(N + θ − 1)∑

j∈δ aj

)(−1)|δ|+1

write as 1 +O(N−ℓ+1).

We proceed by induction over aℓ. If aℓ = 0, for any δ ⊆ [ℓ − 1], the factors
corresponding to δ and δ ⊔ {ℓ} cancel each other. Thus Qa1,...,aℓ−1,0 = 1 and the
statement holds.
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If aℓ > 0, the quantity Qa1,...,aℓ can be written as

Qa1,...,aℓ = Qa1,...,aℓ−1 ·
∏

δ⊆[ℓ]
ℓ∈δ


N + θ − 1−

∑

j∈δ

aj




(−1)|δ|+1

.

Setting X = N + θ − 1− aℓ, the second factor becomes

Ra1,...,aℓ−1
(X) :=

∏

δ⊆[ℓ−1]


X −

∑

j∈δ

aj




(−1)|δ|

.

We will prove below (Lemma 3.4) that Ra1,...,aℓ−1
(X) = 1+O(X−ℓ+1). Besides,

the induction hypothesis implies that Qa1,...,aℓ−1 = 1 +O(N−ℓ+1) and hence

Qa1,...,aℓ = 1 +O(N−ℓ+1)

Finally, the family A
(N)
1 , . . . , A

(N)
ℓ of sequences of random variables has the quasi-

factorisation property of Lemma 3.2. Thus it also has the small cumulant property
and in particular

κ(A
(N)
1 , . . . , A

(N)
ℓ ) = O(N−ℓ+1).

Using the definition of the A
(N)
h , this can be rewritten:

κ



∏

j∈τ1

B
(N)
ij ,sj

, . . . ,
∏

j∈τℓ

B
(N)
ij ,sj


 = O(N−r−ℓ+1),

which is Theorem 1.4 in the case of distinct indices. �

Here is the technical lemma that we left behind in the proof:

Lemma 3.4. For any positive integers a1, . . . , aℓ−1,

∏

δ⊆[ℓ−1]


X −

∑

j∈δ

aj




(−1)|δ|

= 1 +O(X−ℓ+1).

Proof. Define Rev (resp. Rodd) as

∏

δ


X −

∑

j∈δ

aj


 ,

where the product runs over subsets of [ℓ− 1] of even (resp. odd) size. Expanding
the product, one gets

Rev =
∑

m≥0

∑

δ1,...,δm

∑

j1∈δ1,...,jm∈δm

(−1)maj1 . . . ajmX
2ℓ−2−m.

The index set of the second summation symbol is the set of lists of m distinct (but
not necessarily disjoint) subsets of [ℓ−1] of even size. Of course, a similar formula
with subsets of odd size holds for Rodd.
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Let us fix an integer m < ℓ − 1 and a list j1, . . . , jm. Denote j0 the smallest
integer in [ℓ−1] different form j1, . . . , jm (as m < ℓ−1, such an integer necessarily
exists). Then one has a bijection:




lists of subsets
δ1, . . . , δm of even size such
that, for all h ≤ m, jh ∈ δh



 →





lists of subsets
δ1, . . . , δm of odd size such
that, for all h ≤ m, jh ∈ δh





(δ1, . . . , δm) 7→ (δ1∇{j0}, . . . , δm∇{j0}),
where ∇ is the symmetric difference operator. This bijection implies that the sum-
mand (−1)maj1 . . . ajmX

2ℓ−2−m appears as many times in Rev than in Rodd. Fi-
nally, all terms corresponding to values of m smaller than ℓ − 1 cancel in the
difference Rev −Rodd and one has

Rev −Rodd = O
(
X2ℓ−2−ℓ+1

)
. �

Remark 3.5. Thanks to a result of Leonov and Shiryaev that expresses cumulants
of products of random variables as product of cumulants (see [25] or [30, Theorem
4.4]), it would have been enough to prove our result for a1 = · · · = aℓ = 1. But,
as our proof uses an induction on aℓ, we have not done this choice.

Remark 3.6. We would like to point out the fact that our result is closely related to
a result of P. Śniady. Indeed, thanks to our multiplicative criterion to have small cu-
mulants, the computation in this section is equivalent to Lemma 4.8 of paper [30].
However, Śniady’s proof relies on a non trivial theory of cumulants of observables
of Young diagrams. Therefore, it seems to us that it is worth giving an alternative
argument.

3.4. General case. Let A(N)
1 , . . . , A(N)

ℓ be some sequences of random variables.
We introduce some truncated cumulants: if π0, π1, π2 and so on, are set partitions
of [ℓ], we set

k
(N)
A (π0) =

∑

π∈P([ℓ])
π≥π0

µ(π, {[ℓ]})
∏

C∈π

M
(N)
A,C

k
(N)
A (π0;π1, π2, . . . ) =

∑

π∈P([ℓ])
π≥π0

π�π1,π2,...

µ(π, {[ℓ]})
∏

C∈π

M
(N)
A,C

In the context of Lemma 3.2, it is also possible to bound the truncated cumulants.

Lemma 3.7. Let A
(N)
1 ,. . . ,A

(N)
ℓ be some sequences of random variables as in

Lemma 3.2, fulfilling property I (or equivalently property II).

• If π0 is a set partition of [ℓ],

k
(N)
A (π0) = O(N−#(π0)+1).

• More generally, if π0;π1, π2, . . . are set partitions of [ℓ],

k
(N)
A (π0;π1, π2, . . . ) = O(N−#(π0∨π1∨π2... )+1).
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Proof. For the first statement, the proof is similar to the one of I ⇒ II of Lemma
3.2. One can write an analogue of equation (11):

k
(N)
A (π0) =

∑

∆1,...,∆m
pairwise distinct

T
(N)
∆1

. . . T
(N)
∆m




∑

π∈P([ℓ])
π≥(π0∨π(∆1)∨... )

µ(π, {[ℓ]})


 .

The same argument as above says that only terms corresponding to lists such that
π0 ∨ π(∆1) ∨ · · · = [ℓ] survives. Such lists fulfills

m∑

i=1

|∆i| − 1 ≥ rk([ℓ])− rk(π0) = #(π0)− 1.

The first item of the Lemma follows because, by hypothesis,

T
(N)
∆1

. . . T
(N)
∆m

= O(N−
∑

i(|∆i|−1)).

For the second statement, we use an inclusion/exclusion:

k
(N)
A (π0;π1, . . . , πh) =

∑

I⊆[h]

(−1)IkA

(
π0 ∨

(
∨

i∈I

πi

))
.

Then the second item follows from the first. �

Let us come back to the proof of Theorem 1.4. We fix two lists i and s of length
r, as well as a set partition τ of r. We want to find a bound for

κ



∏

j∈τ1

B
(N)
ij ,sj

, . . . ,
∏

j∈τℓ

B
(N)
ij ,sj


 =

∑

π∈P([r])
π≥τ

∏

C∈π

E

(
∏

i∈C

B
(N)
ij ,sj

)
.

We split the sum according to the values of the partitions π1 = π ∧ CC(G1(i, s))
and π2 = π ∧ CC(G2(i, s)). More precisely,

κ



∏

j∈τ1

B
(N)
ij ,sj

, . . . ,
∏

j∈τℓ

B
(N)
ij ,sj


 =

∑

π1≤CC(G1(i,s))
π2≤CC(G2(i,s))

Y (N)
π1,π2

,

where

Y (N)
π1,π2

=
∑

π≥τ
π∧CC(G1(i,s))=π1
π∧CC(G2(i,s))=π2

∏

C∈π

E

(
∏

i∈C

B
(N)
ij ,sj

)
.

We call the summation index the slice determined by π1 and π2.
Let us fix some partitions π1 and π2. For each block C of π1, we consider some

sequence of random variables (A(N)
C )N≥1 such that: for each list of distinct blocks

C1, . . . , Ch

E(A(N)
C1

· · ·A(N)
Ch

) =
1

(N + θ − 1)(N + θ − 2) . . . (N + θ − h)
.
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For readers which wonder whether such variables exist, we refer to Remark 3.3,
which remains valid here. Consider the family

(13)
(
(N + θ − 1)A

(N)
C

)

C∈π1

.

Its joint moment are the same than the ones of the B
(N)
i,s in the previous section. It

has been proven that such a family has the quasi-factorization property and, hence,
its cumulants and truncated cumulants are small (Lemma 3.2).

But, if π is in the slice determined by π1 and π2, one can check easily (see
the description of joint moments in section 3.1) that the corresponding product of
moment is given by:

∏

C∈π

E

(
∏

i∈C

B
(N)
ij ,sj

)
= απ1,π2

∏

C∈π

E



∏

C′∈π1
C′⊆C

A
(N)
C′


 ,

where απ1,π2 depends only on π1 and π2 and is given by:

• 0 if π2 contains in the same block two indices j and h such that ij = ih but
sj 6= sh or sj = sh but ij 6= ih;

• θγ otherwise, where γ is the number of cycles of the partial permutation
(i, s), whose indices are all contained in the same block of π2.

As a consequence,
(14)

Y (N)
π1,π2

=
απ1,π2

(N + θ − 1)#(π1)

∑

π≥τ
π∧CC(G1(i,s))=π1
π∧CC(G2(i,s))=π2

∏

C∈π

E



∏

C′∈π1
C′⊆C

(N + θ − 1)AC′


 .

But the condition π ∧ CC(G1(i, s)) = π1 can be rewritten as follows: π ≥ π1
and π � π′ for any π1 ≤ π′ ≤ CC(G1(i, s)). A similar rewriting can be per-
formed for the condition π ∧ CC(G2(i, s)) = π2. Finally, the sum in equation
(14) above is a truncated cumulant of the family (13) and is bounded from above
by O(N−|CC(G2(i,s))∨τ |+1). This implies

Y (N)
π1,π2

= O(N−#(π1)−|CC(G2(i,s))∨τ |+1),

which ends the proof of Theorem 1.4 because π1 has necessarily at least as many
parts as CC(G1(i, s)). �

Remark 3.8. So far, we have considered the lists i and s as fixed. Therefore, the
constant hidden in the Landau symbol O may depend of these lists. However, the
quantity for which we establish an upper bound depends only on the partition τ and
on which entries of the lists i and s coincide. For a fixed r, the number of partitions
and of possible equalities is finite. Therefore, we can choose a constant depending
only on r, as it is done in the statement of Theorem 1.4.
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FIGURE 1. An example of a graph, its contraction and surcontraction.

4. GRAPH-THEORETICAL LEMMAS

In this section, we present two quite easy lemmas on the number of connected
components on contractions of graphs. These lemmas will be useful in the next
sections for applications of Theorem 1.4.

4.1. Notations. Let us consider a graph G with vertex set V and edge set E. By
definition, if V ′ is a subset of V , the graph G[V ′] induced by G on V ′ has vertex set
V ′ and edge set E[V ′], where E[V ′] is the subset of E consisting of edges having
both their extremities in V ′.

Let us consider a surjective map f from V to another set W . Then the contrac-

tion of G by f is the graph G/f with vertex set W and which has an edge between
w and w′ if, in G, there is at least one edge between a vertex of f−1(w) and a
vertex of f−1(w′).

Example. Consider the graph G of figure 1. Its vertex set is the 10-element
set V = {1, 2, 3, 4, 5, 1̄, 2̄, 3̄, 4̄, 5̄}. Consider the application f from V to the set
W = {1, 2, 3, 4, 5}, consisting in forgetting the bar (if any). The contracted graph
G/f is drawn on the bottom left picture of Figure 1.

4.2. Connected components of contractions.

Lemma 4.1. Let G be a graph with vertex set V and f a surjective map from V to

another set W . Then

#(CC(G)) ≤ #(CC(G/f)) +
∑

w∈W

(#(CC(G[f−1(w)])) − 1).

Proof. For each edge (w,w′) in G/f , we choose arbitrarily an edge (v, v′) in G
such that f(v) = w and f(v′) = w′ (by definition of G/f , such an edge exists but
is not necessarily unique). Thereby, to each edge of G/f or of G[f−1(w)] (for any
w in W ) corresponds canonically an edge in G.

Take covering forests FG/f and (Fw)w∈W of graphs G/f and G[f−1(w)] for
w ∈ W . With the remark above, to each covering forest corresponds a set of edges
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in G. Consider the union F of these sets. It is an acyclic set of edges of G. Indeed,
if it contained a cycle, it must be contained in one of the fibers f−1(w), otherwise
it would induce a cycle in FG/f . But, in this case, all edges of the cycles belong to
Fw, which is impossible, since Fw is a forest.

Finally, F is an acyclic set of edges in G and

#(CC(G)) ≤ |V | − |F | = |W | − |FG/f |+
∑

w∈W

(|f−1(W )| − 1− |Fw|)

≤ #(CC(G/f)) +
∑

w∈W

(#(CC(G[f−1(w)])) − 1). �

Continuing the example. All fibers f−1(i) (for i = 1, 2, 3, 4, 5) are of size 2.
Three of them contains one edge (for i = 3, 4, 5) and hence are connected, while
the other two have two connected components. Finally, the sum in the lemma is
equal to 2, which is equal to the difference

#(CC(G)) −#(CC(G/f)) = 4− 2 = 2.

4.3. Fibers of size 2. In this section, we further assume that V = W ⊔ W and
that f is the canonical application W ⊔W → W consisting in forgetting to which
copy of W the element belongs. Throughout the paper, for simplicity of notations,
we will use overlined letters for elements of the second copy of W .

In this context, in addition to the contraction G/f , one can consider another
graph with vertex set W . By definition, G//f has an edge between w and w′ if, in
G, there is an edge between w and w′ and an edge between w̄ and w̄′. We call this
graph the surcontraction of G.

Continuing the example. The graph G and the function f in the example above
fit in the context described in this section. The surcontration G//f is drawn on
Figure 1 (bottom right picture).

Lemma 4.2. Let G and f be as above. Then

#(CC(G)) ≤ #(CC(G/f)) + #(CC(G//f)).

Proof. Set G1 = G/f , G2 = G//f and G3 = G.
By definition, an edge in G1 between j and k corresponds to two edges in G3.

In contrast, an edge (i, j) in G2 corresponds to at least one edge in G3.
Consider a spanning forest F1 in G1. As the set of edges of G1 is smaller than the

one of G2, F1 can be completed into a spanning forest F2 of G2. We consider the
subset F3 of edges of G3 obtained as follows: for each edge of F1, we take the two
corresponding edges in G3 and for each edge of F2\F1, we take the corresponding
edge in G3 (if there is several corresponding edges, choose one arbitrarily).

We will prove by contradiction that F3 is acyclic. Suppose that F3 contains a
cycle C3. Each edge of C3 projects on an edge in F2 and thus the projection of C3

is a list S = (e1, . . . , eh) of consecutive edges in F2 (consecutive means that we
can orient the edges such that, for each ℓ ∈ [h], the end point of eℓ is the starting
point of eℓ+1, with the convention eh+1 = e1). This list is not necessarily a cycle
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because it can contain twice the same edges (either in the same direction or in
different directions). Indeed, F3 contains some pairs of edges of the form

(
{w,w′}, {w,w′}

)

which project on the same edge in G2. But as edges from these pairs have no ex-
tremities in common, they can not appear consecutively in the cycle C3. Therefore,
the same edge can not appear twice in a row in the list S. This implies that the list
S contains a cycle C2 as a factor. We have reached a contradiction as the edges in
C2 are edges of the forest F2. Thus F3 is acyclic.

The number of edges in F3 is clearly 2|F1|+ |F2 \F1| = |F1|+ |F2|. Therefore

#(CC(G3)) ≤ 2|W | − |F3| = (|W | − |F1|) + (|W | − |F2|)
= #(CC(G1)) + #(CC(G2)). �

5. TOY EXAMPLE: NUMBER OF CYCLES OF A GIVEN LENGTH p

In this section, we are interested in the number Γ(N)
p of cycles of length p in a

random Ewens permutation of size N . The asymptotic behavior of Γ(N)
p is easy to

determine (see Theorem 1.1), as its generating series is explicit and quite simple.
We will give another proof which relies on Theorem 1.4 and does not use an explicit

expression for the generating series of Γ(N)
p .

The main steps of the proof are the same in the other examples, so let us empha-
size them here.

Step 1: expand the cumulants of the considered statistic.

In this step, one has to express the statistic we are interested in in terms of the

variables B(N)
i,s : here,

Γ(N)
p =

∑

1≤i1<i2,i3,...,ip≤N

Bc,N
(i1,...,ip)

,

where Bc,N
(i1,...,ip)

= B
(N)
i1,i2

. . . B
(N)
ip−1,ip

B
(N)
ip,i1

is defined by equation (2). Therefore,
one has

(15) κℓ(Γ
(N)
p ) =

∑

i1
1
<i1

2
,i1
3
,...,i1p

...
iℓ
1
<iℓ

2
,iℓ
3
,...,iℓp

κ
(
B

(N)

i11,i
1
2
. . . B

(N)

i1p,i
1
1
, · · · , B(N)

iℓ1,i
ℓ
2
. . . B

(N)

iℓp,i
ℓ
1

)
.

Step 2: Give an upper bound for the elementary cumulants.

Now, we would like to apply our main lemma to every summand of equation
(15). For this, one has to understand what is the exponent of N in the upper bound
given by Theorem 1.4.

For a matrix
(irj) 1≤j≤p

1≤r≤ℓ

,

we denote:
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• M(i) = |{(irj , irj+1); 1 ≤ j ≤ p, 1 ≤ r ≤ ℓ}| the number of different
entries in the matrix of couples (irj , i

r
j+1) (by convention, irp+1 = ir1);

• Q(i) the number of connected components of the graph G(i) on [ℓ] where
r1 is linked with r2 if

{ir1j ; 1 ≤ j ≤ p} ∩ {ir2j ; 1 ≤ j ≤ p} 6= ∅;
• t(i) the number of distinct entries.

Clearly, M(i) is always at least equal to t(i). In the case where τ has ℓ blocks of
size p and where the list s is obtained by a cyclic rotation of the list i in each block,
Theorem 1.4 writes as:

(16)
∣∣κ
(
B

(N)

i11,i
1
2
. . . B

(N)

i1p,i
1
1
, · · · , B(N)

iℓ1,i
ℓ
2
. . . B

(N)

iℓp,i
ℓ
1

)∣∣ ≤ CpℓN
−M(i)−Q(i)+1

≤ CpℓN
−M(i) ≤ CpℓN

−t(i).

Step 3: give an upper bound for the number of lists.

As the number of summands in Equation (15) depends on N , we can not use
directly inequality (16). We need a bound on the number of matrices i with a given
value of M(i).

This bound comes from the following simple lemma:

Lemma 5.1. For each L ≥ 1, there exists a constant C ′
L with the following prop-

erty. For any N ≥ 1 and t ∈ [L], the number of lists i of length L with entries in

[N ] such that

|{i1, . . . , iL}| = t

is bounded from above by C ′
LN

t.

Proof. If we specify which indices correspond to entries with the same values (that
is a set partition of the set of indices), the number of corresponding lists is

(N
t

)
and

hence is bounded from above by N t. This implies the lemma, with C ′
L being equal

to the number of set partitions of [L]. �

Step 4: conclude.

By inequality (16) and Lemma 5.1, for each t ∈ [p · ℓ], the contribution of lists
(irj) taking exactly t different values is bounded from above by C ′

pℓCpℓ and hence

for all ℓ ≥ 1, κℓ(Γ
(N)
p ) = O(1).

To compute the component of order 1, let us make the following remark: by the
argument above, the total contribution of lists (irj) with M(i) > t(i) or Q(i) > 1

is O(N−1).
But M(i) = t(i) implies that, as soon as

{ir1j ; 1 ≤ j ≤ p} ∩ {ir2j ; 1 ≤ j ≤ p} 6= ∅,
the cyclic words (ir11 , . . . , ir1p ) and (ir21 , . . . , ir2p ) are equals. As ir1 is always the
minimum of the irj , the two words are in fact always equal in this case. In particular
G(i) is a disjoint union of cliques. If we further assume Q(i) = 1, i.e. G(i) is
connected, G(i) is the complete graph and we get that irj does not depend on r.
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Finally

(17) κℓ(Γ
(N)
p ) =

∑

i1<i2,i3,...,ip

κℓ
(
B

(N)
i1,i2

. . . B
(N)
ip,i1

)
+O(N−1).

But each B
(N)
i1,i2

. . . B
(N)
ip,i1

is a Bernoulli variable of parameter θ/(N + θ − 1)p.
Therefore their moments are all equal to θ/(N + θ − 1)p and by formula (8), their
cumulants are θ/(N + θ − 1)p +O(N−2p). Finally, as there are (N)p/p terms in
equation (17),

κℓ(Γ
(N)
p ) =

θ

p
+O(N−1),

which implies that Γ(N)
p converges in distribution towards a Poisson law of param-

eter θ
p .

Moreover, a simple adaptation of the proof of Equation (17) implies that

κ(Γ(N)
p1 , . . . ,Γ(N)

pℓ
) = O(N−1)

as soon as two of the pr’s are different. Indeed, no matrices (irj) 1≤r≤ℓ
1≤j≤pr

with rows

of different sizes fulfill simultaneously M(i) = t(i) and Q(i) = 1. Finally, for

any p ≥ 1, the vector (Γ
(N)
1 , . . . ,Γ

(N)
p ) tends in distribution towards a vector

(P1, . . . , Pp) where the Pi are independent Poisson-distributed random variables
with respective parameters θ/i. �

Remark. After equation (17), one could have finished the proof without compu-

tation by the following argument: Γ(N)
p has asymptotically the same cumulants as

a virtual variable XN , which writes as a sum of independent random variables with
the same distribution as the Bc,N

(i1,...,ip)
. As each Bc,N

(i1,...,ip)
is a Bernoulli variable of

expectation θ/(N+θ−1)p and as there are (N)p/p such variables, XN converges

in distribution towards a Poisson law of parameter θ/p. And so does Γ(N)
p .

As promised in the introduction, this argument follows the idea that everything

happens as if the variables Bc,N
(i1,...,ip)

were independent.

6. NUMBER OF EXCEDANCES

In this section, we look at our second motivating problem, the number of ex-
cedances in random permutations. The first two subsections make a link between
a physical statistics model and this problem, justifying our work. The last two
subsections are devoted to the proof of Theorem 1.2 and related results.

6.1. Symmetric simple exclusion process. The symmetric simple exclusion pro-
cess (SSEP for short) is a model of statistical physics: we consider particles on a
discrete line with N sites. No two particles can be in the same site at the same
moment. The system evolves as follows:

• if its neighboring site is empty, a particle can jump to its left or its right
with probability 1

N+1 ;
• if the left-most site is empty (resp. occupied), a particle can enter (resp.

leave) by the left with probability α
N+1 (resp. γ

N+1 );
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• if the right-most site is empty (resp. occupied), a particle can enter (resp.
leave) by the right with probability δ

N+1 (resp. β
N+1 );

• otherwise (we suppose α, β, γ, δ < 1 such that, in a given state, the sum of
the probabilities of the events which may occur is smaller than 1), nothing
happens.

Mathematically, this defines an irreducible aperiodic Markov chain on the finite set
{0; 1}N (a state of the SSEP can be encoded as a word in 0 and 1 of length N ,
where the entries with value 1 correspond to the positions of the occupied sites).

This model is quite popular among physicists because, despite its simplicity,
it exhibits interesting phenomenons like the existence of different phases. For a
comprehensive introduction on the subject and a survey of results, see [14].

A good way to describe a state τ of the SSEP is the function F
(N)
τ defined as

follows: when Nx is an integer,

F (N)
τ (x) =

1

N
·
Nx∑

i=1

τi

and, for each i ∈ [N ], the function F
(N)
τ is affine between (i−1)/N and i/N . One

should see F
(N)
τ as the integral of the density of particles in the system.

We are interested in the steady state of the SSEP, that is the unique probability
measure µN on {0; 1}N , which is invariant by the dynamics. More precisely, we

want to study asymptotically the properties of the random function F
(N)
τ , where τ

is distributed with µN and N tends to infinity.

6.2. Link with permutation tableaux and Ewens measure. From now on, we
restrict to the case α, γ, δ = 1. In this case, thanks to a result of S. Corteel and
L. Williams [13], the measure µN is related to some combinatorial objects, called
permutation tableaux.

The latter are fillings of Young diagrams (which can have empty rows, but no
empty columns) with 0 and 1 respecting some rules, the details of which will not be
important here. The Young diagram is called the shape of the permutation tableau.
The size of a permutation tableau is its number of rows, plus its number of columns
(and not the number of boxes!).

In addition with their link with statistical physics, permutation tableaux also ap-
pear in algebraic geometry: they index the cells of some canonical decomposition
of the totally positive part of the Grassmannian [28, 33]. They have also been
widely studied from a purely combinatorial point of view [31, 12, 2].

To a permutation tableau T of size N + 1, one can associate a word wT in
{0; 1}N as follows: we label the steps of the border of the tableau starting from the
North-East corner to the South-West corner. The first step is always a South step.
For the other steps, we set wT

i = 1 if and only if the i + 1-th step is a south step.
Clearly, the word wT depends only on the shape of the tableau T . This procedure
is illustrated on figure 2.
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7→ 101001

FIGURE 2. From permutation tableaux to words in {0; 1}N−1.

With this definition, the border of a tableau T of size N + 1 is the parametric
broken line

{(
n1(w

T )−NF
(N)

wT (x),−N(x− F
(N)

wT (x))− 1
)
: x ∈ [0; 1]

}
,

where n1(w
T ) is the number of 1 in wT and F

(N)

wT the function associated to the

word wT as defined in the previous section. Hence, F (N)

wT is a good way to encode
the shape of the permutation tableau T .

S. Corteel and L. Williams also introduced a statistics on permutation tableaux
called number of unrestricted rows and denoted u(T ). If β is a positive real param-
eter, this statistics induces a measure µT

N (β) on permutation tableaux of size N , for
which the probability to pick a tableau T is proportional to β−u(T ). This measure
is related to the SSEP by the following result (which is in fact a particular case
of [13, Theorem 3.1] but we do not know how to deal with the extra parameters
there).

Theorem 6.1. [13] The steady state of the SSEP µN is the push-forward by the

application T 7→ wT of the probability measure µT
N+1(β).

It turns out that this measure can also been described using random permuta-
tions. Indeed, S. Corteel and P. Nadeau [12, Theorem 1 and Section 3] have exhib-
ited a simple bijection Φ between permutations of N +1 and permutation tableaux
of size N + 1, which satisfies:

• If a permutation σ is mapped to a tableau T = Φ(σ), then:

wT = (δ2(σ), δ3(σ), . . . , δN+1(σ)),

where δi = 1 if i is an ascent, that is if σ(i) < σ(i + 1) (by convention
δσ(N+1)(σ) = 1).

• The number of unrestricted rows of a tableau T = Φ(σ) is the number of
right-to-left minima of σ: recall that i is a right-to-left minimum of σ if
σℓ > i for any ℓ > σ−1(i).

We are rather interested in the number of cycles of permutations rather than their
number of right-to-left minima. The following bijection, which is a variant of the
first fundamental transformations on permutation [26, § 10.2], sends one of this
statistics to the other. Take a permutation σ, written in its cycle notation such that:

• its cycles ends with their minimum;
• the minima of the cycles are in increasing order.
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For example, σ = (3 5 1)(7 4 2)(6). Now, erase the parenthesis: we obtain the
word notation of a permutation Ψ(σ).

The application Ψ is a bijection from SN to SN . Besides, the minima of the
cycles of σ are the right-to-left minima of Ψ(σ), while the ascents in Ψ(σ) are the
weak excedances in σ, that is the integers i such that σ(i) ≥ i (a similar statement
is given in [26, Theorem 10.2.3]).

From now on, we assume β · θ = 1. The properties above imply that µT
N (β) is

the push-forward of the Ewens measure of parameter θ by the application Φ ◦ Ψ.
Combining this with Theorem 6.1, the steady state of the SSEP µN is the push-
forward of Ewens measure by the application σ 7→ wΦ(Ψ(σ)). But this application
admits an easy direct description

SN+1 → {0; 1}N
σ 7→ (δσ(2)≥2, δσ(3)≥3, . . . , δσ(N+1)≥N+1).

Recall that, as explained above, we are interested in the random function F
(N)
τ ,

where τ is distributed according to the measure µN−1. The results above imply that

this random function has the same distribution than F
(N+1)
σ , where σ is a random

permutation of size N distributed with Ewens measure of parameter θ and F
(N+1)
σ

is the function defined in section 1.2.

6.3. Bounds for cumulants. Let us fix some real numbers x1, . . . , xℓ in [0; 1].
In this section, we will give some bounds on the joint cumulants of the random
variables (F (N)

σ (x1), . . . , F
(N)
σ (xℓ)).

Let us begin by the following bound (step 2 of the proof, according to the divi-
sion done in section 5).

Proposition 6.2. For any ℓ ≥ 1, any N ≥ 1 and any lists i1, . . . , iℓ and s1, . . . , sℓ
of integers in [N ],

κ(B
(N)
i1,s1

, . . . , B
(N)
iℓ,sℓ

) ≤ CℓN
−|{i1,...,iℓ,s1,...,sℓ}|+1,

where Cℓ is the constant defined by Theorem 1.4.

Proof. Using Theorem 1.4 for τ =
{
{1}, . . . , {ℓ}

}
, we only have to prove that

−#
(
CC(G1(i, s))

)
−#

(
CC(G2(i, s))

)
≥ −|{i1, . . . , iℓ, s1, . . . , sℓ}|.

The last quantity |{i1, . . . , iℓ, s1, . . . , sℓ}| can be seen as the number of connected
component of the graphs G3(i, s) defined as follows:

• its vertex set is [ℓ] ⊔ [ℓ] = {1, 1̄, . . . , ℓ, ℓ̄};
• there is an edge between j and k (resp. j and k̄, j̄ and k̄) if and only if
ij = ik (resp. ij = sk, sj = sk).

The inequality above is simply Lemma 4.2 applied to the graph G3(i, s) (G1(i, s)
and G2(i, s) are respectively its surcontraction and contraction). �

We can now prove the following bound:
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Proposition 6.3. There exists a constant C ′′
ℓ such that, for any integer N ≥ 1 and

real numbers x1, . . . , xℓ, one has

|κ(F (N)
σ (x1), . . . , F

(N)
σ (xℓ))| ≤ C ′′

ℓ N
−ℓ+1.

Proof. To simplify the notations, we suppose that Nx1, . . . , Nxℓ are integers, so
that

(N − 1) · F (N)
σ (xi) =

Nxi∑

i=2

Bex,N
i (σ).

But the Bernoulli variable Bex,N
i can be written as Bex,N

i =
∑

s≥iB
(N)
i,s . Finally,

by multilinearity, one has (step 1):
(18)
(N − 1)ℓκ(F (N)

σ (x1), . . . , F
(N)
σ (xℓ)) =

∑

2≤i1≤Nx1

...
2≤iℓ≤Nxℓ

∑

s1≥i1

...
sℓ≥iℓ

κ(B
(N)
i1,s1

, . . . , B
(N)
iℓ,sℓ

).

We apply Lemma 5.1 to the list i1, . . . , iℓ, s1, . . . , sℓ and get that the number of
couples of lists (i, s) such that |{i1, . . . , iℓ, s1, . . . , sℓ}| is equal to a given number
t is bounded from above by C ′

2ℓN
t (step 3).

Combining this with Proposition 6.2, we get that the total contribution of couples
of lists (i, s) with |{i1, . . . , iℓ, s1, . . . , sℓ}| = t to the right-hand side of (18) is
smaller than C ′

2ℓCℓN , which ends the proof of Proposition 6.3 (step 4). �

Illustration of the proof. Set ℓ = 5 and consider the lists i = (5, 2, 2, 7, 7) and
s = (8, 8, 2, 7, 7). The graph G3(i, s) associated to this couple of sequences is the
graph G drawn of Figure 1. It follows immediately that G1(i, s) = G//f has 4
connected components while G2(i, s) = G/f has 2. Therefore, by Theorem 1.4,

κ(B
(N)
5,8 , B

(N)
2,8 , B

(N)
2,2 , B

(N)
7,7 , B

(N)
7,7 ) ≤ C5N

−5.

The same bound is valid for all sequences i and s such that G3(i, s) = G. There
are fewer than N4 such sequences: to construct such a sequence, one has to choose
distinct values for the four connected components of G, such that they fulfill some
inequalities. Finally, their total contribution to (18) is smaller than C5N

−1.
Comparison with a result of B. Derrida, J.L. Lebowitz and E.R. Speer. In [15,

Appendix A], it is proven a long range correlation phenomenon for the SSEP.
Rewritten in terms of Ewens random permutations via the material of the previous
section, it asserts that, for i1 < · · · < iℓ,

κ(Bex,N
i1

, . . . , Bex,N
iℓ

) = O(N−ℓ+1).

In fact, their result is more general because it corresponds to the SSEP with all
parameters. This bound on cumulants can be obtained easily using our Propo-
sition 6.2 and Lemma 5.1. A slight generalization of it (taking into account the
case where some i’s can be equal) implies directly Proposition 6.3. Therefore, our
method does not give some new results on the SSEP. Nevertheless, it was natural
to try to understand the long range correlation phenomenon directly in terms of
random permutations and it is what our approach does.
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6.4. Convergence results. In this section, we explain how one can deduce from
the bound on cumulants, some results on the convergence of the random function

F
(N)
σ , in particular Theorem 1.2.
In addition to the bounds above, we need equivalents for the first and second

joint cumulants of the F
(N)
σ (x). An easy computation gives:

E(Bex,N
i ) =

N − i+ θ

N + θ − 1
;

Var(Bex,N
i ) =

(i− 1)(N − i+ θ)

(N + θ − 1)2
;

Cov(Bex,N
i , Bex,N

j ) = − (n− j + θ)(i− 1)

(N + θ − 1)2(N + θ − 2)
for i < j,

from which we get the limits:

lim
N→∞

E(F (N)
σ (x)) =

∫ x

0
(1− t)dt+ o(1) =

1− (1− x)2

2
;(19)

lim
N→∞

N Cov(F (N)
σ (x), F (N)

σ (y)) =

∫ min(x,y)

0
t(1− t)dt(20)

−
∫

0≤t≤x
0≤u≤y

min(t, u)(1 −max(t, u))dtdu.

We call K(x, y) the right-hand side of the second equation. We begin by a proof

of Theorem 1.2, which describes the asymptotic behavior of F
(N)
σ (x), for fixed

value(s) of x.

Proof. Consider the first statement. The convergence in probability of F
(N)
σ (x)

towards 1/2 · (1 − (1 − x)2) follows immediately from equations (19) and (20).
For the almost-sure convergence, we have to study the fourth centered moment.

From moment-cumulant formula (8) and using the fact that all cumulant but the
first are invariant by a shift of the variable,

E
(
(F (N)

σ (x)− E(F (N)
σ (x)))4

)
= κ4(F

(N)
σ (x)) + 3(κ2(F

(N)
σ (x)))2.

By proposition 6.3, this quantity is bounded from above by O(N−2) and, in par-
ticular, ∑

N≥1

E
(
(F (N)

σ (x)− E(F (N)
σ (x)))4

)
< ∞.

The end of the proof is classical. First, we inverse the summation and expectation
symbols (all quantities are nonnegative). As its expectation is finite, the random
variable ∑

N≥1

(F (N)
σ (x)− E(F (N)

σ (x)))4

is almost surely finite and hence its general term
(
(F

(N)
σ (x) − E(F (N)

σ (x))4
)
N≥1

tends almost surely to 0.
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Let us consider the second statement. Proposition 6.3 implies that, for any list
j1,. . . ,jℓ of integers in [r], one has

κ(Z(N)
σ (xj1), . . . , Z

(N)
σ (xjℓ)) = O(N−r/2+1).

In particular, for r > 2 the left-hand side tends to 0. As the variables Z
(N)
σ (xi)

are centered, this implies that (Z
(N)
σ (x1), . . . , Z

(N)
σ (xr)) tends towards a cen-

tered Gaussian vector. The covariance matrix is the limit of the covariance of the
Z

(N)
σ (xi), that is (K(xi, xj)). �

It is also possible to obtain some results concerning the sequence of random

function (F
(N)
σ )N≥1. In the following statement, we consider convergence in the

functional space (C([0; 1]), || · ||∞), that is uniform convergence of continuous
functions.

Theorem 6.4. Almost surely, the function F
(N)
σ converges towards the function

x 7→ 1/2 · (1− (1− x)2).

Moreover, the sequence of random functions (x 7→ Z
(N)
σ (x))N≥1 converges in

distribution towards the Gaussian process x 7→ G(x), whose finite dimension laws

are Gaussian vectors with covariance matrices given by (K(xi, xj))1≤i,j≤r.

Proof. As, for any N ≥ 1 and any σ ∈ SN , the function x 7→ F
(N)
σ (x) is non-

decreasing, the first statement follows easily from the convergence at any fixed x.
The argument can be found for example in a paper of J.F. Marckert [27, first page],
but it is so short and simple that we copy it here. By monotonicity of F (N)

σ and F ,
for any list 0 = x0 < x1 < · · · < xk = 1, one has

sup
x∈[0;1]

|F (N)
σ (x)− F (x)|

≤ max
0≤j<k

max
(
|F (N)

σ (xj+1)− F (xj)|, |F (N)
σ (xj)− F (xj+1)|

)

a.s.−→ max
0≤j<k

|F (xj)− F (xj+1)|,

which may be chosen as small as wanted.

Consider the second statement. If the sequence of random function x 7→ Z
(N)
σ (x)

has a limit, its finite-dimensional laws are necessarily the limits of the ones of

Z
(N)
σ , that is, by Theorem 1.2, Gaussian vectors with covariance matrices given by

(K(xi, xj))1≤i,j≤r. As a probability measure on C([0; 1]) is entirely determined
by its finite dimensional laws [7, Example 1.2], one just has to prove that the se-

quence x 7→ Z
(N)
σ (x) has indeed a limit. To do this, it is enough to prove that it is

tight [7, Section 5, Theorems 5.1 and 7.1], that is, for each ǫ > 0 there exists some
constant M such that:

for all N > 0, one has Prob
(
||Z(N)

σ ||∞ > M
)
≤ ǫ.

Once again, this follows from a careful analysis of the fourth moment.
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Let N ≥ 1 and s 6= s′ in [0; 1] such that Ns and Ns′ are integers. Using

equation (8) and the fact that Z(N)
σ (s) and Z

(N)
σ (s′) are centered, one has:

E
(
(Z(N)

σ (s)− Z(N)
σ (s′))4

)

= κ4(Z
(N)
σ (s)− Z(N)

σ (s′)) + 3κ2(Z
(N)
σ (s)− Z(N)

σ (s′))2

= N2
(
κ4(F

(N)
σ (s)− F (N)

σ (s′)) + 3κ2(F
(N)
σ (s)− F (N)

σ (s′))2
)
.

A simple adaptation of the proof of Proposition 6.3 shows that

κℓ(F
(N)
σ (s)− F (N)

σ (s′)) ≤ CℓN
−ℓ+1|s− s′|.

Indeed, in Lemma 5.1, if we ask that at least one entry of the list i is between Ns
and Ns′ then the number of lists is bounded from above by C ′

LN
t|s− s′|. Finally,

E
(
(Z(N)

σ (s)− Z(N)
σ (s′))4

)
≤ (N2(C4N

−3|s− s′|+ 3C2
2N

−2|s− s′|2))
≤ (C4 + 3C2

2 )|s − s′|2.
The last inequality has been deduced from |s− s′| ≥ N−1.

We can now apply Th. 10.2 of Billingsley’s book [7] with Si = Z
(N)
σ (i/N) (for

0 ≤ i ≤ N ), α = β = 1 and uℓ = (C4 + 3C2
2 )

1/2/N (see equation (10.11) of the
same book). We get that there exists some constant K such that

Prob
(
max
0≤i≤N

|Si| ≥ M
)
≤ KM−4,

which proves that the sequence Z
(N)
σ is tight. �

7. GENERALIZED PATTERNS

This section is devoted to the applications of our method to adjacencies (subsec-
tion 7.2) and dashed patterns (subsection 7.3). These two statistics belong in fact
to the same general framework and we discuss in subsection 7.4 the possibility of
unifying our results.

The proofs in this subsection are a little bit more technical than the ones before
and in particular we need a new lemma for step 3, given in subsection 7.1.

7.1. Preliminaries. Let L ≥ 1 be an integer. For each pair {j, k} ⊂ [L], we
choose a finite set of integers D{j,k}.

Consider a list i1, . . . , iL of integers. For each pair e = {j, k} ⊂ [L] (with
j < k), we denote δe(i) the difference ik − ij . Then we associate to i a graph of
vertex set [L] and edge set {e : δe(i) ∈ De}.

The following lemma is a slight generalization of Lemma 5.1

Lemma 7.1. For each L and families of sets (D{j,k})1≤j<k≤L, there exists a con-

stant C ′′
L,D with the following property. For any N ≥ 1 and t ≤ L, the number of

sequences i1, . . . , iL with entries in [N ], whose corresponding graph has exactly t
connected components is bounded from above by C ′′

L,DN t.
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Proof. If we fix a graph G with vertex set L and t connected components and
if we fix also, for each edge e of the graph, the actual value of δe(i), then the
corresponding number of lists i is smaller than N t. Indeed, the sequence will be
determined by the choice of one value per connected component of G (with some
constraints, such that no extra edges appear). But the number of graphs and of
values on edges are finite (the sets Dj,k are finite) and depend only on L and on the
family D. �

7.2. Adjacencies. In this section, we prove the following extension of Theorem
1.3.

Theorem 7.2. Let σN be a sequence of random permutations, such that σN has

size N and is distributed with respect to Ewens measure of parameter θ. Then the

number A(N) of adjacencies in σN converges in distribution towards a Poisson

variable of parameter 2.

Proof. As before, we write A(N) in terms of the B
(N)
i,s (we use the convention

B
(N)
i,s = 0 if i or s is not in [N ]):

A(N) =
∑

1≤i,s≤N
ǫ=±1

B
(N)
i,s B

(N)
i+1,s+ǫ.

Hence, for ℓ ≥ 1, its ℓ-th cumulant writes as (step 1):

(21) κℓ(A
(N)) =

∑

1≤i1,s1,...,iℓ,sℓ≤N

ǫ1,...,ǫℓ=±1

κ

(
B

(N)
i1,s1

B
(N)
i1+1,s1+ǫ1

, · · · , B(N)
iℓ,sℓ

B
(N)
iℓ+1,sℓ+ǫℓ

)
.

Given two lists i and s of positive integers, we consider the three following graph:

• H1 has vertex set [ℓ] and has an edge between j and k if |ij − ik| ≤ 2 and

|sj − sk| ≤ 2;
• H2 has vertex set [ℓ] and has an edge between j and k if

{ij , ij ± 1, sj , sj ± 1} ∩ {ik, ik ± 1, sk, sk ± 1} 6= ∅.

• H3 has vertex set [ℓ] ⊔ [ℓ] and has an edge between j and k (resp. j and k̄,
j̄ and k̄) if |ij − ik| ≤ 2 (resp. |ij − sk| ≤ 2, |sj − sk| ≤ 2)

We will use Theorem 1.4 to give a bound for
∣∣∣∣κ
(
B

(N)
i1,s1

B
(N)
i1+1,s1+ǫ1

, · · · , B(N)
iℓ,sℓ

B
(N)
iℓ+1,sℓ+ǫℓ

)∣∣∣∣

Clearly, the number M(i, s) of different couples in the set

{(ij , sj); 1 ≤ j ≤ ℓ} ∪ {(ij + 1, sj + ǫj); 1 ≤ j ≤ ℓ}
is at least equal to 2#(CC(H1)) ≥ #(CC(H1)) + 1. Besides, in this case, the
graph G′

2 introduced in section 1.3 has the same vertex set as H2 and fewer edges.
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Hence it has more connected components. Therefore, Theorem 1.4 implies (step
2):
∣∣∣∣κ
(
B

(N)
i1,s1

B
(N)
i1+1,s1+ǫ1

, · · · , B(N)
iℓ,sℓ

B
(N)
iℓ+1,sℓ+ǫℓ

)∣∣∣∣ ≤ C2ℓN
−#(CC(H1))−#(CC(H2)).

But, using the terminology of section 4.3, the graphs H1 and H2 are the surcon-
traction and contraction of H3. Therefore, by Lemma 4.2, one has:

(22) #(CC(H3)) ≤ #(CC(H1)) + #(CC(H2)).

Besides, Lemma 7.1 implies the number of lists i and s with entries in [N ] such
that H3 has exactly t connected components is bounded from above by C ′′

2ℓ,DN t

for D well-chosen (step 3). In particular the constant C ′′
2ℓ,D does not depend on

N . Therefore, the total contribution of these lists to equation (21) is bounded from
above by C2ℓN

−t · C ′′
2ℓ,DN t = C2ℓ · C ′′

2ℓ,D.
Finally,

κℓ(A
(N)) = O(1).

Moreover, only lists such that M(i, s) = 2 and #(CC(H1)) = 1 contribute to the
term of order 1. But this implies that the lists i, s and ε are constant. In other
words,

κℓ(A
(N)) =

∑

i,s≥1
ǫ=±1

κℓ(B
(N)
i,s B

(N)
i+1,s+ǫ) +O(N−1).

The 2(N − 1)2 variables B(N)
i,s B

(N)
i+1,s+ǫ are Bernoulli variables, whose parameters

are given by:

• if s = i ∈ [N − 1] and ǫ = 1, then the parameter is θ2

(N+θ−1)(N+θ−2)

(N − 1 cases);
• if s = i; ǫ = −1 (here 2 ≤ i ≤ N − 1) or s = i + 1; ǫ = −1 (here
1 ≤ i ≤ N − 1) or s = i + 2; ǫ = −1 (here 1 ≤ i ≤ N − 2), then the
parameter is θ

(N+θ−1)(N+θ−2) (3N − 5 cases);

• otherwise, the parameter is 1
(N+θ−1)(N+θ−2) .

Recall that the cumulants of a sequence of Bernoulli variables X(N) of parameters
(pN )N≥1 with pN → 0 are asymptotically given by kℓ(X

(N)) = pN + O(p2N ).
Hence,

kℓ(A
N ) = 2(N − 1)2

1

(N + θ − 1)(N + θ − 2)
+O

(
N−1

)
= 2 +O

(
N−1

)
.

Finally, the cumulants of AN converges towards those of a Poisson variable of
parameter 2, which implies the convergence of AN in distribution. �

7.3. Dashed patterns. Let us recall the definition of dashed patterns in a permu-
tation, as introduced by E. Babson and E. Steingrimsson [3].

Definition 7.3. A dashed pattern of size p is the data of a permutation τ ∈ Sp and
a subset X of [p− 1]. An occurrence of the dashed pattern (τ,X) in a permutation
σ ∈ SN is a list i1 < · · · < ip such that:
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• for any x ∈ X, one has ix+1 = ix + 1.
• σ(i1), . . . , σ(ip) is in the same relative order than τ(1), . . . , τ(p).

The number of occurrences of the pattern (τ,X) will be denoted O
(N)
τ,X (σ).

Example 7.4. O
(N)
21,∅ is the number of inversion, while O

(N)
21,{1} is the number of

descents. Many classical statistics on permutations can be written as the number of
occurrences of a given dashed patten or as a linear combination of such statistics,
see [3, section 2].

In this section, we prove Theorem 1.6, which gives, for any given dashed pattern

(τ,X), the asymptotic behavior of the sequence (O
(N)
τ,X )N≥1 of random variables.

Proof. As in the previous examples, we write the quantity we want to study in

terms of the variables B(N)
i,s . Here,

O
(N)
τ,X =

∑

i1<···<ip
for all x∈X,ix+1=ix+1

∑

s1,...,sp
s
τ−1(1)

<···<s
τ−1(p)

B
(N)
i1,s1

. . . B
(N)
ip,sp

.

Expanding its cumulants by multilinearity, we get (step 1)

(23) kℓ(O
(N)
τ,X ) =

∑

(irj )

∑

(srj )

κ

(
B

(N)

i11,s
1
1
. . . B

(N)
i1p,s

1
p
, . . . , B

(N)

iℓ1,s
ℓ
1
. . . B

(N)

iℓp,s
ℓ
p

)
.

The first (resp. second) summation index is the set of matrices (irj) (resp. (srj))
with (j, r) ∈ [p]× [ℓ] such that:

• for all r, ir1 < · · · < irp (resp. srτ−1(1) < · · · < srτ−1(p));
• for all r, for all x ∈ X, irx+1 = irx+1 (resp. no extra condition on the s’s).

Given such lists i and s, we consider the four following graphs:

• H1 has vertex set [p] × [ℓ] and has an edge between (j, r) and (k, t) if
|irj − itk| ≤ 1 and srj = stk;

• H2 has vertex set [p]× [ℓ] and has an edge between (j, r) and (k, t) if

{irj , irj + 1, srj} ∩ {itk, itk + 1, stk} 6= ∅.
• H3 has vertex set ([p] × [ℓ]) ⊔ ([p] × [ℓ]) and has an edge between (j, r)

and (k, t) (resp. (j, r) and (k, t); (j, r) and (k, t)) if |irj − itk| ≤ 1 (resp.
stk − irj = 0 or 1; srj = stk).

• H ′
2 has vertex set [ℓ] and has an edge between r and t if


⋃

1≤j≤p

{irj , irj + 1, srj}


 ∩



⋃

1≤k≤p

{itk, itk + 1, stk}


 6= ∅.

The graphs H1 and H2 are respectively the surcontraction and contraction of H3,
as defined in Section 4. Therefore, one has, by Lemma 4.2:

#(CC(H3)) ≤ #(CC(H1)) + #(CC(H2)).
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But one can further contract H2 by the map f : [p]× [ℓ] → [ℓ] defined by f(j, r) =
r and we obtain H ′

2. With the notation of Section 4, it implies:

#(CC(H2)) ≤ #(CC(H ′
2)) +

ℓ∑

r=1

[
#
(
CC

(
H2

[
[p]× {r}

]))
− 1
]
.

But each induced graph H2[[p] × {r}] (for 1 ≤ r ≤ ℓ) contains at least an edge
between (x, r) and (x+1, r) for each x ∈ X (because we assumed irx+1 = irx+1).
Thus it has at most p− q connected components. Finally,

(24) #(CC(H3)) ≤ #(CC(H1)) + #(CC(H ′
2)) + (p − q − 1)ℓ.

Let us apply the main lemma (Theorem 1.4) to obtain a bound for
∣∣∣∣κ
(
B

(N)

i11,s
1
1
. . . B

(N)
i1p,s

1
p
, . . . , B

(N)

iℓ1,s
ℓ
1
. . . B

(N)

iℓp,s
ℓ
p

)∣∣∣∣.

In this case, the number of different couples in the indices of the Bernoulli variables
is at least the number of connected components of H1. Besides, the graph G′

2

introduced in section 1.3 has the same vertex set, but fewer edges than H ′
2. Hence,

it has more connected components and we obtain:
∣∣∣∣κ
(
B

(N)

i11,s
1
1
. . . B

(N)
i1p,s

1
p
, . . . , B

(N)

iℓ1,s
ℓ
1
. . . B

(N)

iℓp,s
ℓ
p

)∣∣∣∣ ≤ CpℓN
−#(CC(H1))−#(CC(H′

2))+1.

Using inequality above, this can be rewritten as (step 2)
∣∣∣∣κ
(
B

(N)

i11,s
1
1
. . . B

(N)
i1p,s

1
p
, . . . , B

(N)

iℓ1,s
ℓ
1
. . . B

(N)

iℓp,s
ℓ
p

)∣∣∣∣ ≤ CpℓN
−#(CC(H3))+(p−q−1)ℓ+1.

As in the previous section, Lemma 7.1 asserts that the number of couples of lists
((irj), (s

r
j)) such that #(CC(H3)) = t is smaller than C ′′

2pℓ,DN t for a well chosen
D (step 3). Hence their total contribution to Equation (23) is bounded from above
by the quantity CpℓC

′′
pℓ,DN (p−q−1)ℓ+1. Finally, one has:

(25) κℓ(O
(N)
(X,τ)) = O(N (p−q−1)ℓ+1),

or equivalently κℓ(Z
(N)
(X,τ)

) = O(N−ℓ/2+1). As in section 6.4, the theorem follows
from this bound and from the limits of the normalized expectation and variance.

For the expectation, we have to consider the case ℓ = 1. In this case, one has
#(CC(H1)) = p and #(CC(H ′

2)) = 1. Therefore, if we want an equality in
Equation (24), we need #(CC(H3)) = 2p− q, which implies that all entries in the
lists i and s are distinct. For these lists, one has (Lemma 3.1)

κ(B
(N)

i11,s
1
1
. . . B

(N)
i1p,s

1
p
) = E(B(N)

i11,s
1
1
. . . B

(N)
i1p,s

1
p
) =

1

(N + θ − 1)p
.

But the number of lists with distinct entries in the index set of equation (23) is
asymptotically N2p−q

p!(p−q)! . Finally,

lim
N→∞

1

Np−q
E(O(N)

(X,τ)) =
1

p!(p − q)!
.
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It remains to prove that the renormalized variance N−2(p−q)+1κ2(O
(N)
(X,τ)) has a

limit Vτ,X ≥ 0, when N tends to infinity. But this follows from the bound (25) and

the fact that any κℓ(O
(N)
(X,τ)) is a rational function in N . Let us explain the latter

fact.
Recall that κℓ(O

(N)
(X,τ)) is given by equation (23). We can split the sum depending

on the graph H3 associated to the matrices i and s and on the actual value δe(i, s)
of irj − itk (or stk− irj and stk− srj respectively) for each edge e of H3. Then the fact

that κℓ(O
(N)
(X,τ)) is a rational function is an immediate consequence of the following

points:

• the number of graphs H3 and possible values for the differences δe(i, s)
(for e ∈ EH3) are finite;

• the cumulant κ
(
B

(N)

i11,s
1
1
. . . B

(N)
i1p,s

1
p
, . . . , B

(N)

iℓ1,s
ℓ
1
. . . B

(N)

iℓp,s
ℓ
p

)
is a rational func-

tion in N which depends only on the graph H3 and values of δe(i, s) (for
e ∈ EH3);

• the number of matrices i and s corresponding to a given graph G and given
values δe(i, s) is a polynomial in N . �

7.4. Generalized patterns and local statistics. The notion of dashed patterns has
been recently generalized by several authors in [10, Section 2]. The idea is roughly
that, in an occurrence of a generalized pattern, one can ask that some values are
consecutive (and not only some places as in dashed patterns). It would be in-
teresting to give a general theorem on the asymptotic behavior of the number of
occurrences of a given generalized pattern. This seems to be a hard problem as
many different behavior can occur:

• The number of adjacencies is the sum of the number of occurrences of two
different generalized patterns and converge towards a Poisson distribution.

• The dashed patterns are special cases of generalized patterns. As we have
seen in the previous section, their number of occurrences converges, after
normalization, towards a Gaussian law. Other generalized patterns exhibit
the same behavior, for example the one considered in [10] (the proof is
the same as for dashed patterns; note that Remark ?? does not hold for
occurrences of this pattern).

• Other behaviors can occur: for example, it is easy to see that the number of
occurrences of the pattern (123, {1}, {1}) (we use the notations of [10]),
has an expectation of order n, but a probability of being 0 with a positive
lower bound.

Even if we have not been able to give a general statement, our approach unifies the
first two cases.

The notion of generalized patterns can be further extended to the one of local

statistic. Fix a integer p ≥ 1 and a set S of constraints: a constraint is an equality
or inequality (large or strict) whose members are of the form ij+d or sj+d where
j belongs to [p] and d is some integer. Then, for a permutation σ of SN , we define

O
(N)
p,S (σ) as the number of lists i1, . . . , ip and s1, . . . , sp satisfying the constraints
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in S and such that σ(ij) = sj for all j in [p]. For instance, the number of d-descents
studied in [8] is a local statistic.

We call any linear combination of statistics O
(N)
p,S a local statistic. The number

of occurrences of a generalized patterns, but also the number of excedances or of
cycles of a given length p, are examples of local statistics. The method presented
in this article is suitable for the asymptotic study of joint vectors of local statistics.
We have failed to find a general statement, but we are convinced that our approach
can be adapted to many more examples than the ones studied in this article.

However, the method does not seem appropriate to global statistics, such as the
total number of cycles of the permutation or the length of the longest cycle.
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