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ASYMPTOTIC BEHAVIOR OF SOME STATISTICSIN EWENS
RANDOM PERMUTATIONS

VALENTIN FERAY

ABSTRACT. The purpose of this article is to present a general methdihdo
limiting laws for some renormalized statistics on randomnpgations. The
model of random permutations considered here is Ewens gagmpbdel, which
generalizes uniform random permutations. Under this moaleldescribe the
asymptotic behavior of some statistics, including the neimds occurrences of
any dashed patterns. Our approach is based on the methodwe#mtoand relies
on the following intuition: two events involving the image&different integers
arealmostindependent.

1. INTRODUCTION

1.1. Background. Permutations are one of the most classical objects in erumer
ative combinatorics. A lot of statistics on permutationsenbeen widely studied:
total number of cycles, number of cycles of a given lengtldesfcents, inversions,
excedances or more recently, of occurrences of a given i(@éeresl) pattern... A
classical question in enumerative combinatorics congistemputing the (multi-
variate) generating series of permutations with respesbine of these statistics.
It would be impossible to do an exhaustive list of the diffégrgtatistics which have
been considered and the results which have been obtained.

A probabilistic point of view on the topic raises other qumss$. Let us consider,
for eachV, a probability measurg of permutations of sizé&/. Then any statistic
above can be interpreted as a sequence of random vari{@bleisy>;. The natural
question is now: what is the asymptotic behavior (possiligr amormalization) of
(XN)N=1?

The simplest model of random permutations is of course thi@mm random
permutations (for eaclV, uy is the uniform distribution on the symmetric group
Sn). A generalization of this model has been introduced by Bens in the
context of population dynamics [13]. It is defined by

(14 6)#()
1 - )
M) m o) = G et T M
wheref) > —1 is a fixed real parameter aggé(o) stands for the number of cycles
of the permutatiors. Of course, wherd = 0, we recover the uniform distribu-
tion. From now on, we will allow ourselves a small abuse ofjlzage and use the
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2 V. FERAY

expressiorewens random permutatidior a random permutation distributed with
Ewens measure.

Random permutations, either with uniform or Ewens distidoy are well-
studied objects. A lot of examples in the seminal book of Bjdkt and R.
Sedgewick deal with the asymptotic behavior of some siegistn uniform ran-
dom permutations [15, Examples 1X.3, IX.4, IX.5, IX.9]. Arsay of important
techniques and results in the area can be found in the boolv[@$t of them in-
volve explicit formulae for generating series or algorithto generate a random
permutation.

The purpose of this article is to introduce a new generalGaagr to this family
of problems, based on the method of moments.

1.2. Motivating examples. Let us begin by describing a few examples of results,
which suggest that a more uniform and intuitive approachdcbe found.

Number of cycles of a given lengthLet FJS)N) be the random variable given by
the number of cycles of lengthin an Ewens random permutatienin Sy. The
asymptotic distribution of,(gN ) has been studied by V.L. Goncharov[17] and V.F.
Kolchin [19] in the case of uniform measure and by G.A. Watter[28, Theorem

5] for the framework of a general Ewens distribution (see fls Theorem 5.1]).

Theorem 1.1 ([28])). Letp be a positive integer. WheN tends to infinity,l“;N )
converges in distribution towards a Poisson law of paraméte+ 6)/p. More-

over, the sequences of random variab(l‘e“g,v )) ~n>1 for p’ < p are asymptotically
independent.

Let us give an intuitive (but false) explanation of the firstripof the result,
assuming that some non-independent variables are independ

If 41,...,1, is a list of pairwise distinct integers betwegmnd N such that its
minimum isé; (there arg V), /p such lists, wheréN),, is the usual notation for
the falling factorial( N), = N(IN —1)...(N — p+ 1)), we define

(2)

e N 1 if (iy ... 4p) is acycle ofo;
Byt (o) = .
(@1,--ip) 0 otherwise.

EachB®" s distributed according to a Bernoulli law of paraméterd)/(N),

(81,.+-y0p)
(see Lemm& 2]1). These variables motindependent. Nevertheless the stﬁ’)
of these(V),,/p Bernoulli variables of parametét + 6)/(N), converges in dis-
tribution towards a Poisson variable of paramétes- 0) /p.

ExcedancesA (weak) excedance of a permutatierin Sy is an integet such
thato (i) > i. Let B®" be the random variable defined by:

ex,N . 0 if O‘(Z) < 1;
B o) = {1 if o (i) > i.
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Wheno is a Ewens random permutation, this random variable isibliged ac-
cording to a Bernoulli law of parameté’ﬂﬁ@ (see Lemma2]1).

Let = be a fixed real number ij; 1] ando a permutation of sizé&/. WhenNz
is an integer, we define

T N

and we extend the functiafi!"’ by linearity between the poinig N and(i+1)/N
(for1 <i < N —1). In paragraphs 5.1 and 5.2, we explain why we are interested
in this quantity: it is related to a statistical physics miodee symmetric simple
exclusion proces&SSEP), and to permutation tableaux, some combinatorettsh
which have been intensively studied in the last few years.

We show the following.

Theorem 1.2. Letx be a real number betwednand 1. Then, almost surely,
1—(1—x)?

5 .
Moreover, if we define the rescaled fluctuations

28 (@) = VN (FN) (2) - B(FM (@)

lim FM)(z) =
N—oo

then, for anyzy, ..., z,, the vecton(Z(SN) (1)) ZMN) (z,)) converge towards a
Gaussian vectofG(z1), . .., G(x,)) of covariance matriX K (x;, z;))1<i j<r, fOr
some explicit functio (see paragraph 5]4).

If i # j, the variablesB™" and B®*" arenotindependent (their covariance
is computed explicitly in paragraMA). Nevertheless,litmit and the Gaussian
fluctuations correspond to what would happen with independariables (only the
actual value of the covariance mattiX(z;, ;) is different).

With this formulation, Theorerm 11.2 is new, but the first partjuite easy while
the second is a consequencelof [12, Appendix A] (see sdd}ion 5

Adjacencies.We consider here only uniform random permutations, thabes t
cased = 0. An adjacency of a permutatiosn in Sy is an integer; such that
o(i+1) = o(i)£1. As above, we introduce the random variaBl?éiN which takes

valuel if 7 is an adjacency andl otherwise. TherBf‘dN is distributed according
to a Bernoulli law of paramete)%. An easy computation shows that they aca
independent.

We are interested in the total number of adjacencies,ithat is the random
variable onSy defined byd(™) = " V-1 gadX,

Theorem 1.3 ([30]). A converges in distribution towards a Poisson variable of
parameter.

This result first appeared in papers of J. Wolfowitz and I. ldagky [30, 18]
and was rediscovered recently in the context of genomias [&# and alsol[[8,
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Theorem 10]). Note that it corresponds exactly to what wdialde been obtained
if the variablesB**" were independent.

Of course, as the Bernoulli random variable considered oh @ these exam-
ples arenot independent, the explanations given for these results@rggorous
proofs. Nevertheless, the considered events involve (ofdke time) the images
of different integers by the permutation Therefore, speaking informally, they are
almostindependent. The main lemma of this paper is a precise stateof this
almostindependence, that is an upper bound on joint cumulants. rékult allows
us to give new proofs and generalizations of the three epuoltsented above.

1.3. Set partitions. The combinatorics of set partitions is central in the theafry
cumulants (as explained below) and will be important in #rticle.

A set partitionof a setS'is a (non-ordered) family of non-empty disjoint subsets
of S (called parts of the partition), whose unionSs

DenoteP(S) the set of set partitions of a given s&t ThenP(S) may be
endowed with a natural partial order: trefinemenbrder. We say that is finer
thanz’ or 7’ coarserthann (and denoter < 7’) if every part ofr is included in a
part of ’.

Endowed with this orderP(S) is a complete lattice, which means that each
family F' of set partitions admits a join (the finest set partition vhis coarser
than all set partitions it¥', denoted withv) and a meet (the coarsest set partition
which is finer than all set partitions if', denoted withA). In particular, there
is a maximal elementS} (the partition in only one part) and a minimal element
{{z},x € S} (the partition in singletons).

Moreover, this lattice is ranked: the rarii(r) of a set partitionr is |S| — #(),
where# () denotes the number of parts of The rank is compatible with the
lattice structure in the following sense: for all set patis m andx’,

(3) rk(m V') < rk(m) + rk(7').

Lastly, denote. the M&bius function of the partition latticB(.S). In this paper,
we only use evaluations of at pairs(w, {S}) (that is the second argument is the
maximum element oP(S)). In this case, the value of the M6bius function is given

by:
(4) p(m, {S}) = (—1)#OL (G () — 1)L,

1.4. Cumulants. Joint cumulants of random variables form a classical tool to
guantify correlation. They generalize the notion of coamace. We present in this
paragraph their definition and basic properties.

Definition.
They are defined as follows: X1, ..., X, are random variables on the same
probability space (denoteé the expectation on this space), then

(5) R(X1, .., Xp) =[t1...t¢]In (E(exp(thl +- 4+ thg))).
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As usual,[t; ...t/ F stands for the coefficient df . ..¢, in the series expansion
of F' in positive powers ot4,...,t,. Note that joint cumulants are multilinear
functions. In the case where all tB¢ are equal, we recover thieth cumulant
r¢(X) of a single variable [14].

Joint cumulants can be expressed in terms of joint momemtyjiee-versd26].
Denote[/] the set{1, ..., ¢}.

(6) E(X X)) = >, J[sxuieo):
reP([(]) Cen

(7) K(X1,. .., X)) = Z ﬂ(w,{[e]})HE<HXi>.
weP([4]) Cenm eC

Recall thatu(r, {[¢]}) has an explicit expression given by Equatibh (4). For ex-
ample the joint cumulants of one or two variables are simipéyrhean of a single
random variable{(X;) = E(X;)) and the covariance of a couple of random vari-
ables (X1, X2) = E(X1X3) — E(X;)E(X>)). For three variables, one has

K(X1, Xo, X3) = E(X1X2X3) — E(X1X2)E(X3) — E(X1X3)E(X>)

— E(X2X3)E(X1) + 2E(X1)E(X2)E(X3).

Cumulants of independent random variables.

An interesting property of cumulants is the following: ifetlset of variables
{Xi,1 < i < (£} can be split into two set§X;,i € A} and{X;,i € B} (with
A U B = [{]) such that the variables from the first set are independent the
variables from the second, then

R(Xl, N ,Xg) = [tl N tg] In <E(exp(z thz))>
icA
+[t1...t]In (E(exp(z tz-XZ-))) =0.
icB
Informally speaking, this means that joint cumulants ofipendent random vari-

ables vanish. Therefore, joint cumulants can be seen as rdifipaion of the
dependence of random variables.

Convergence in distribution using cumulants.

Consider nowmn sequences of random variable(sX,(f))nZl fori € [m]. A
consequence of Equations (6) and (7) is that the converg#ratkjoint cumulants

K (X,g“),...,X,gm) 0>1,1<dy,...,00<m
is equivalent to the convergence of all joint moments
n

E(X@l)---X,(jf));ﬁz 1,1 <i1,... i <m.

In particular, ifY™, ..., Y (™) are random variables such that the law of the
tuple (Y, ..., Y (™) is entirely determined by its joint moments, then the two
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following statements are equivalent (see [4, Theorem J0rZhe same property
in terms of moments).

e For any/ and any listiy, . .., i, in [m],
i (i1) (i) ) — (1) (ie)
nh_)Igoli(an ey Xpt > —/-{<Y vy l).
e The sequence oh—tuples(X,(Ll), . ,X,(Lm)) converges in distribution to-

wards(Y(D ... y(m),
Recall that Gaussian and Poisson variables are determindtbip moments, see
e.g. the criterion [4, Theorem 30.1]. Hence, cumulants can bd ts@rove con-
vergence in distribution towards Gaussian or Poisson &sasuch as the results
of the previous paragraph.

1.5. The main lemma. From now on,N is a positive integer and a random
Ewens permutation iy

If i ands are two integers ifV], we consider the Bernoulli variab[éi(fsv) which
takes valud if and only if o(:) = s. Itis the characteristic function of one of the
simplest event we can think of in the symmetric group.

Our main lemma is a bound on joint cumulants of products ohsuiables.
To state it, we introduce the following notations. Consitleo lists of positive
integers of the same length= (i1,...,7,) ands = (s1,...,s,) and define the
graphsG (i,s) andGa(i, s) as follows:

e the vertex set of7(i,s) is [r] andj andh are linked inG(i,s) if and
only if i; = i, ands; = sy,.
e the vertex set of7»(i, s) is also[r| andj andh are linked inG(i, s) if and
only if {i;,s;} N {in,sn} # 0.
The connected components of a gra@pform a set partition of its vertex set that we
denoteCC(G). In particular,#(CC(G)) is the number of connected components
of G.

Theorem 1.4 (main lemma) Fix a positive integer. There exists a constant,,

depending om, such that for any set partition = (71,...,7) of [r], any N > 1
and listsi = (41,...,7,) ands = (s, ..., s,) of integers in[N], one has:
(8)
(N) (N) —#(CC(G1(i8))) —#( CO(Ga(i,s))vr) +1
K(HBiJ’SJ,...,HBiJ’SJ> < o, N—#( 0@ (i) —#(COGa(is)vr) +1
JETL JETY

Note that the integeft ( CC(G (i, s))) is the number offifferentcouples(i;, s;).
The second quantity involved in the theoreft CC(G»(i,s)) V 7) does not have
a similar interpretation. However, it admits an equivaldesgcription. Consider the
graphG), whose vertex set is indexed by the parts-@nd in whichr, is linked
with Th! if

({ij;j et U{sj;j € Th}) N ({ij;j ey} U{sj;j€ Th/}) # .
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Then#( CC(Gz(i,s)) V ) is the number of connected components4f

As an example, let us consider the case where the entriegilistai ands
are pairwise distinct. In this case, the joint moment of piaid ofBi(g) is simply
1/(N+80),, wherea is the number of factors (the cae= 0 is obvious, the general
case is explained in Lemma2.1). Thus, if we dengte= |7;|, the left-hand side
is the following explicit rational function

1
Z p(, [€]) H m

meP([6) mien &

Note that each summand has deg%eE;T:l a; = —{. According to our theorem,
the sum has degree at moest — r + 1, which means that many simplifications
are happening (they are not at all trivial to explain!). Ttaflects the fact that the

variablestjVs) are very weakly correlated.

J
Remarkl.5. It is worth noticing that our proof of the main lemma goes tigio a

very general criterion for a family of sequences of randomaiges to have small
cumulants: see Lemma?2.2.

1.6. Applications. Theoreni 1.4 can be used to give new proofs of Theofems 1.1,
1.2 and_1.B. Moreover, we get an extension of Thedrernh 1.3yovale of the
parameted. The result is the same (the limit law is a Poisson law of patam
2), but the usual approacha generating series for the uniform case seems hard to
extend to this framework: it would need an explicit form fbetbivariate generat-
ing series of permutations with respect to their number ofesyand of excedances
and such a result does not exist to our knowledge.

We must confess that our proofs of these results are quiteitead. However,
an important part of the difficulty is contained in the prodfldhheorem[ X and
hence must not be done again for each application. Moretivese proofs are
natural in the following sense: they are based on the ideéavinenos is a uniform
random permutations (i) ando () are almost independent. Besides, although the
problems may seem quite different (in particular the limaivlis not always the
same), these proofs all follow roughly the same guidelines.

To give more evidence that our approach is quite generaltuway she number
of occurrences aflashed patternsThis notion has been introdudic 2000 by E.
Babson and E. Steingrimsson, because it gives a geneiiabsetiich includes a
lot of usual statistics of permutatiorid [3].

Thanks to our main lemma, we describe the second order astiogobf the
number of occurrences of any given dashed pattern in a raffieems permuta-
tion.

Theorem 1.6. Let (7, X) be a dashed pattern of size(see definitio 613) and
on a sequence of random permutations, eaghbeing of sizeV distributed with

in the paper of Babson and Steingrimsson, they are calledrgkred patterns. But, as some
more generafjeneralized patternsave been introduced since (see next paragraph), we poaiset
dashed patterns
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oM (an) . .
Ewens measure. We denagte= |X|. Then,—57=, that is the renormalized
number of occurrences ¢f, X), tends almost surely towardﬁm. Besides,
one has the following central limit theorem:

(N)

o) 1
(N) X
Z(X,T) =VN No—1 " pip—q) — N(0,V; x),

where the arrow denotes a convergence in distribution Bpg is some nonnega-
tive real number.

This theorem is proved in paragraphl6.3 using Thedrein 1.4e Mat an ap-
proach with generating series would probably fail as it seemlikely that there
exists a general formula for the generating series of thebeurof occurrences of
any given dashed pattern.

Unfortunately, we are not able to show in general that theteonV. x is posi-
tive (V. x = 0 would mean that we have not chosen the good normalizatiors). |
nevertheless possible to writé x as a signed sum of products of binomial coef-
ficients and we have checked by computer the following conjedor all patterns
of size8 or less.

Conjecture 1.7. For any dashed patter(r, X), one has/; x > 0.

Remarkl.8 The asymptotic number of occurrences of some patternsoifg
have already been studied in the framework of random wortigyevresults sim-
ilar to Theoren_16 have been obtained|[22,(16, 6]. Note thetethods used
by these authors caa priori not be extended to the framework of permutation
patterns for the following reasons. First, it is not knowmto compute the gen-
erating functions of the number of occurrences of a givetepain permutations.
Second, except in the cage= 0 (uniform random permutations), the occurrences
of patterns in disjoint places are not independent eveatsreamark 65 for details).

1.7. Future work. In addition to the conjecture above, we mention three direc-
tions for further research on the topic.

The notion of dashed patterns has been further extendee twtfon ofgener-
alized patternsn a recent paper of M. Bousquet-Mélou, A. Claesson, M. Dukes
and S. Kitaev([[7, Section 2]. Unfortunately, we have not bable to obtain a
general result for the asymptotic number of occurrenceseakrplized patterns.
Finding such a result is, in the author’s opinion, a chalieggpen problem. One
could even consider a more general framework, see parai§tdph

Another direction consists in refining our convergence ltegapeed of conver-
gence, large deviations, local limit laws) by following th&me guideline.

Finally, it is natural to wonder if the method can be extenttedther measures
and objects. The extension to colored permutations shautdrhightforward. But
it would be interesting to obtain some result on other objéftir example other
families of rook placements) with the same ideas.
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1.8. Outline of the paper. The paper is organized as follows. In section 2, we
prove our main lemma. Then, in sectidn 3, we give two easy lasnom connected
components of graphs, which appear in all our applicatidh® three last sections
are devoted to the different applications: secfibn 4 fordheles, sectiofi]5 for
the excedances and finally, sectidn 6 for the generalize@rpat(including the
adjacencies and the dashed patterns).

2. PROOF OF THE MAIN LEMMA

2.1. Joint moments. The first step of the proof consists in computing the joint
moments of the family of random variabl(aBg))ISi,sSN.

Note that(B)2 = B™ 'while BN BN = 0if s # s’ and BN BV = 0
if i £ 4. There’fore, we can restrict ourselves to the computatid’he)]‘oi’nt mo-

mentE (Bz(le)1 e BZ(NS) , inthe case where= (iy,...,7,) ands = (s1,...,s;)
are two lists of pairwise distinct indices (some entry inlibei can be equal to an
entry ofs).

We see these two lists agartial permutation

_ iy
Oi,s = )
S1 ... Sp

which sends; to s;. The notion of cycles of a permutation can be naturally ex-
tended to partial permutation§i;, , . . ., i;, ) is a cycle of the partial permutation if
8j; = ijy, 8j, = ij; @and so on untik;, = i;,. Note that a partial permutation does
not necessarily have cycles. The number of cycles; gfis denoted#(c; s).
The computation oE (Bifvs)1 e Bz(,]Vs),) relies on two important properties of
the Ewens measure. First, it is conjugacy-invariant. Sgcarrandom sampling
can be obtained inductively by the following procedure (seg. [1, Example
2.19)).

Suppose that we have a permutatioof size N — 1 taken with this distribution.
Write it as a product of cycles and apply the following tramsfation.

o With probability (1 + 6) /(N + ), addN as a fixed point. More precisely,

o’ is defined by:
o'(i) =0o(i) fori< Nj;
o'(N) = N.

e For eachj, with probability 1/(IN + ), add N just beforej in its cycle.
More preciselyg’ is defined by:

o' (i) = o(i) fori # o= 1(j), N;
o'(N) = j;
o/(o-1(j)) = .

Theno’ is a random permutation ofy distributed with Ewens measure. lterating
this, one obtains a linear time and space algorithm to picgkndem permutation
distributed with Ewens measure.
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Let us come back now to the computation of joint moments.

Lemma 2.1. Leto be a random permutation taken with Ewens distribution. Then
one has

(V) (V) (1+ 9)#(5i,s)
E ( B ... B = .
( 81 ’5> (N+60)...(N+6—r+1)

For example, the parameter of the Bernoulli varial:iﬂég) are given by

’ Nio if i =s.
Proof. As Ewens measure is constant on conjugacy class&g obne can assume
without loss of generality that = N —r+1,io = N —r+2,...,4- = N.
Then permutations ofy with o(i;) = s; are obtained in the previous algorithm
as follows:

e Choose any permutation iy _,.

e Forl < j <r, addi; in the place given by the following rule: i; < i;,
addi; just befores; in its cycle. Otherwise, look ak; s(i;), 574 (i;) and so
on until you find an element smaller thanand place;; before it. If there
is no such element, then is a minimum of a cycle o&; 5. In this case,
put it in a new cycle.

It is easy to check with the description of the constructiba permutation under
Ewens measure that these choices of places happen with abdityb
(1 + 6)#(is)

N10).  (N—r+140) =

2.2. A general criterion for small cumulants. LetAgN),. .. ,AEN) be/ sequences
of random variables. We introduce the following notation jfint moments and
cumulants of subsets of these variablesA i {ji, ..., j, } is a subset of¢], then

MR =E (A0 A) kL = (A, Al

T n
Lemma 2.2. LetAgN), e ,A@N) be a list of sequences of random variables with

normalized expectations, that is, for anyand j, E(A§N)) = 1. Then the follow-
ing statements are equivalent;

l. Quasi-factorization propertyfor any subsef\ C [¢] of size at leas®, one
has

N
(9) I1 (MM) — 1 4 O(N"IAlHTy,
6CA

[Il. Small cumulant propertyfor any subse\ C [/] of size at leas?, one has

(10) KA = O8I,
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Proof. Let us consider the implicatidh=- 1. We denotel + T&N) the left-hand
side of Equation{9) and assume tidf") = O(N~I1A1+1) for any A C [(] of size
at least2. The goal is to prove tha<tf4 &] = O(N~*1). Indeed, this corresponds
to the case\ = [¢] of [T], but the same proof will work for angx C [¢].

Recall the relation between moments and cumulants (Equédiy:

o= > nlm Ay [T M52
meP([€]) Cer
But joint moments can be expressed in term& of

MXVCZ: H(1+T = > .. T,

‘AA‘%CQ Aty Am

where the sum runs over all finite lists of pairwise distinait(not necessarily
disjoint) subsets of” of size at leas® (in particular, the lengthn of the list is
not fixed). When we multiply this over all blocks of a set partitionr, we obtain

the sum ofT(zlv) T(N) over all lists of pairwise distinct subsets [6f of size at
least2 such that eacm is contained in a block ofr. In other terms, for each
i € [m], m must be coarser than the partitibi{A;), which, by definition, hasg\,
and singletons as blocks. Finally,

1) sy = Z NN ' cl I SR TC R (4}

,,,,, TeP([£])
palanse dlstlnct forallé, #>TI(A;)

The condition onr can be rewritten as
m>1(A) V- VII(A,).

Hence, by definition of the Mdbius function, the sum in thegpdinesis is equal to
0, unlesdlI(Ay) Vv --- VII(A,,) = {[¢]}. Onthe one hand, by Equatidd (3), it may
happen only if:

m m

> ok (TI(A)) = (1A = 1) > rk([e]) = £ — 1.

i=1 i=1
On the other hand, one has

™™ 1™ =0 (N— zz?;l(mi\—l)) .
Hence only summands of order of magnitudie‘+! or less survive and one has
N _
KLy = O(N~"+)

which is exactly what we wanted to prove.

Let us now consider the converse statement. We proceed bgtiod on/ and
we assume that, for afl smaller than a gived > 2, the theorem holds.
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Consider some sequences of random variabl&), A@N) such thafl
holds. By induction hypothesis, one gets immediately that

forall A ¢ [7, [] (M%))(—l) — 14 O(N~1AR),
5CA
Note that an immediate induction shows that the joint morhdfills

forall A ¢ [¢], M = 0(1) and(MR)~ = 0(1).
It remains to prove that
[T )™ =1+ o),

9]

AC[]
Thanks to the estimate above for joint moment, this can bettew as
N N)\(=1)-1-lsl _
(12) ME) =TT Ry +O(N~H),
Acl]
Consider?¢ sequences of random variablBs%N),. . BéN) such that the equality
MEY) = MM holds for A ¢ [¢] and such that Equatiofi{1L2) is fulfilled when

A is replaced byB (the reader may wonder whether such a fanfilyexists; let
us temporarily ignore this problem, which will be addresse®emarK2.8). By
definition, the familyB of sequences of random variables fulfills conditibof

the theorem and, hence, using the first part of the proof, lsaspaopertylll. In

particular:

Ky = O(NTHY),

But, by hypothesis,

N —
Ay = O(N~H1),

As A andB have the same joint moment, exceptMQ]\% andMg\%, this implies
that

(N) Ny (N) (N) ¢
Mg = Mpjg = 4 = kg = ON"T).
But the family B fulfills Equation [12) and, hence, so does family 0

Remark2.3. Let ¢ be a fixed integer and a finite subset ofN~)¢. Then, for
any list (m;);c; of numbers, one can find sonsemplex-valuedandom variables
X1,..., X, such that

E(X{l . o Xék) = mih__.ﬂ-[.
Indeed, one can look for a solution wheXg is uniform on afinite sefzy, ..., zp}
andX; = X{Wl, whered is an integer bigger than all coordinates of all vectors in
1. Then the quantities

(T -E(X]...X}"),icI}
correspond to different power sums 4f, ..., zr. Thus we have to find a family
{z1,..., 27} of complex number with specified power sums until degteeThis
exists as soon gk > d’, because is algebraicly closed. In particular, the family
B considered in the proof above exists.
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However, we do not really need that this family exists. Irjekiring the whole
proof, we are doing manipulations on the sequences of manatt cumulants
using only the relations between them (equatidons (6) @Nd Y¥& never consider
the underlying random variables. Therefore, everythingiadbe done even if the
random variables did not exist, as it is often done in umbabdidus [24].

2.3. Case with distinct indices. We consider here the case where all entries in
the sequencesands are distinct. To be in the situation of Leminal2.2, we set, for
h € [¢(]andN > 1:

AN = (N +60),, ] BY)

' R
JETh
wherea; = |7;|. The normalization factor has been chosen sucrﬂhale)) = 1.
Hence, we will be able to apply LemrhaR.1.
Let us prove thalAgN), e ,AéN) fulfills propertylll of this lemma. Of course,
the caseA = [/] is generic. The joint moments of the family have in this case
an explicit expression: faf C [/],

[TV +6)a,
(N) _ _jed
4,0 (N + 9)2j66 aj

Therefore, we have to prove that the quantity

Qal,...,(l( = H (M(SA)(_I)W = H <<N+0)2jeé‘li)

5C 4] 5C[0)
16]>2

write asl + O(N 1),

C

We proceed by induction oves,. If a, = 0, for anyé C [¢ — 1], the factors
corresponding t@ andd LI {¢} cancel each other. Thig,, . o = 1 and the
statement holds.

If a, > 0, the quantityQ,, ... ., can be written as

cAL—1,

(~n)le+
Qal,...,ag = Qalv---,al—l : H (N +6— Z aj) .

5Cle T2
ze[é] je

SettingX = N + 6 — ay, the second factor becomes

(=1l
Ral,---vaéfl(X) = H (X - Zaj) .

5C[0—1] j€6

We will prove below (Lemm&a2]4) thak,, ., ,(X) =1+ O0(X*"!). Besides,
the induction hypothesis implies th@t,, . ,,—1 =1+ O(N‘“l) and hence

Qay,ap = 1+ O(N~HY
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Finally, the faminAgN), e AEN) of sequences of random variables has the quasi-
factorisation property of Lemma 2.2. Thus it also has thellstnanulant property
and in particular
N N _
w(AN) AN = o,

Using the definition of theﬁlgN), this can be rewritten:

(N) (N) | —r—0+1
K H By HBW], = O(N ),
JETL JETY

which is Theorenh 114 in the case of distinct indices. O

Here is the technical lemma that we left behind in the proof:

Lemma 2.4. For any positive integerss, ..., ap_1,
(=1l
IT x> q =1+0(X" ).
6C[e—1] jes

Proof. Define Rey (resp. Rodq) as

[I1x-2 o

1 JjEes

where the product runs over subsets/of 1] of even (resp. odd) size. Expanding
the product, one gets

0—2
Fe=Y Y Y (e X
m2>0 01,...,0m  J1€01,.-,JmEIm

The index set of the second summation symbol is the set efdist: distinct (but
not necessarily disjoint) subsets|[6f- 1] of even size. Of course, a similar formula
with subsets of odd size holds f®qg.

Let us fix an integem < ¢ — 1 and a listjq, ..., j». Denotej, the smallest
integer in[¢—1] different formjy, . .., j,, (@sm < ¢—1, such an integer necessarily
exists). Then one has a bijection:

lists of subsets lists of subsets
01,...,0, Of even size suchy — 41, ..,0, Of 0dd size such
that, forall h < m, j;, € o that, for all h < m, j, € o,

(517"'75m) = (51V{]0},,5mV{]0}),
whereV is the symmetric difference operator. This bijection iraplthat the sum-
mand(—1)"a;, ... aijzzfz_m appears as many times Ry, than in Ryqq. Fi-
nally, all terms corresponding to values wf smaller than/ — 1 cancel in the
differenceRey — Rogq and one has

Rev - Rodd - O(X2[72_£+1) . D
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Remark2.5. We would like to point out the fact that our result is closetyated
to a result of PSniady. Indeed, thanks to our multiplicative criterion v small
cumulants, the computation in this paragraph is equivatehemma 4.8 of paper
[25]. However,Sniady's proof relies on a non trivial theory of cumulantsobf
servables of Young diagrams. Therefore, it seems to usttigtiorth giving an
alternative argument.

2.4. General case LetAgN), ...,AéN) be some sequences of random variables.

We introduce som&uncated cumulantsf wy, 71, 3 and so on, are set partitions

of [¢], we set
K o) = S nim 10y T 152

meP([4]) Ccern
T>70
N N
K moimima, )= S u(m {10y [T M52
TP ([4]) Cern
>0
‘n'f‘n'l,ﬂ'2,.“

In the context of Lemmia 2.2, it is also possible to bound thledated cumulants.

Lemma 2.6. Let AgN),. . ,AéN) be some sequences of random variables as in
Lemma 2., fulfilling property | (or equivalently propefdy. |
o If my is a set partition of¢],
k1(4N) (7T0) _ O(N_#(WO)—H).
e More generally, ifry; 71, 72, ... are set partitions of/],

kELXN) (WOQ T, T2y« ) = O(N_#(WOVW1V7r2,,,)+1)'

Proof. For the first statement, the proof is similar to the onfl ef [l of Lemma
[2.2. One can write an analogue of equationd (11):

N N N
Ky (mo) = > T8 TK) > w4y
Aq,..., Am weP([4])
pairwise distinct 7> (moVr(A)V...)
The same argument as above says that only terms corresgdodiats such that
o V (A1) V- = [¢] survives. Such lists fulfills

D 1Al = 1> rk([]) — rk(mo) = #(m0) — 1.
=1

The first item of the Lemma follows because, by hypothesis,

T 1) = o(v- Tiai-n)

m

For the second statement, we use an inclusion/exclusion:

kaXN)(WO;m, ceyTR) = Z (-1) kA (770 \Y (\/ 7TZ>> .

IC[R] i€l
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Then the second item follows from the first. O

Let us come back to the proof of Theorem]1.4. We fix two lisieds of length
r, as well as a set partitionof . We want to find a bound for

K HB(JN)JH WJ = ¥ HE(H wj).

JET JETe 7r€7’( f]) Cen ieC

We split the sum according to the values of the partitions= 7 A CC(G1 (i, s))
andmy, = m A CC(Ga(i,s)). More precisely,

s TTB.. . TIBN | = Y v,

JET1 JETe w1 <SCC(Gy(i)s))
mp<CC(Ga(iss))

where

N) _
Y7r(1,722 - Z H E (H zJ,sJ>
m>T Cen eC
TACC(Gq(i,s))=m1
TACC(Go(i,8))=mg
We call the summation index the slice determinedrbyand .

Let us fix some partitions, andw,. For each bloclC' of 71, we consider some
sequence of random variableé(CN))Nzl such that: for each list of distinct blocks
Ci,...,Ch

1
(N+O)(N+6—-1)...(N+0—h+1)
For readers which wonder whether such variables exist, fee te Remark 2.3,
which remains valid here. Consider the family

(13) ((N n H)A(CN))

A a0) =

Cem '

Its joint moment are the same than the ones o’erg in the previous paragraph.
It has been proven that such a family has the quasi-factmizgroperty and,
hence, its cumulants and truncated cumulants are smallrizt2).

But, if 7 is in the slice determined by; andns, one can check easily (see the
description of joint moments in paragraph]2.1) that theaesponding product of
moment is given by:

HE<H zj,sj> = Omyymo HE H Ag\/[) ,

Cen ieC Cen Cleny
c'cc

wherea,, -, depends only om; andr, and is given by:

e 0if w3 contains in the same block two indicgandh such that; = i;, but
Sj 75 Sp Or's; = sp, butij % ip;
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e (14 6)7 otherwise, where is the number of cycles of the partial permu-
tation (i, s), whose indices are all contained in the same block-of

As a consequence,

Ny _ _ Omm '

14 v = N+ ) > [[E| II ™+0)4c
T>T Cern Clemy
TACC(G1 (i,8))=71 c'cc

TACC(Ga(i,s))=m

But the conditiont A CC(G(i,s)) = w1 can be rewritten as followsr > m;
andr # 7’ foranym < 7’ < CC(Gi(i,s)). A similar rewriting can be per-
formed for the conditionr A CC(Ga(i,s)) = m. Finally, the sum in equation
(14) above is a truncated cumulant of the familyl(13) and isnded from above
by O(N~ICC(G20s)VTI+1)  This implies

Y,T(fV722 — O(N-#{m)=ICC(Gal)Vrl+1y
which ends the proof of Theorem 1.4 becauséhas necessarily at least as many
parts as”’C'(G1(i, s)). O

Remark2.7. So far, we have considered the listands as fixed. Therefore, the
constant hidden in the Landau symidolmay depend of these lists. However, the
quantity for which we establish an upper bound depends anthe partitionr and

on which entries of the listsands coincide. For a fixed, the number of partitions
and of possible equalities is finite. Therefore, we can ch@osonstant depending
only onr, as it is done in the statement of Theorlem 1.4.

3. GRAPH-THEORETICAL LEMMAS

In this section, we present two quite easy lemmas on the nuailm®nnected
components on contractions of graphs. These lemmas wilsb&lin the next
sections for applications of Theorém11.4.

3.1. Notations. Let us consider a grapfy with vertex setl” and edge sek. By
definition, if V' is a subset oV, the graph[V'] inducedby G on V' has vertex set
V'’ and edge seE'[V'], whereE[V'] is the subset oF consisting of edges having
both their extremities iv’.

Let us consider a surjective mgpfrom V' to another setl’. Then thecontrac-
tion of G by f is the graphGG/ f with vertex sef?” and which has an edge between
w andw’ if, in G, there is at least one edge between a vertex of(w) and a
vertex of f ~1(w’).

Example. Consider the grapld: of figure[1. Its vertex set is the 10-element
setV = {1,2,3,4,5,1,2,3,4,5}. Consider the applicatiofi from V' to the set
W ={1,2,3,4,5}, consisting in forgetting the bar (if any). The contractedpin
G/ f is drawn on the bottom left picture of Figure 1.
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o
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*———0 *———0

3 3
G/f G//f

—e

FIGURE 1. An example of a graph, its contraction and surcontraction

3.2. Connected components of contractions.

Lemma3.1. LetG be a graph with vertex séf and f a surjective map front” to
another set?. Then

#(CC(Q)) < #(CC(G/ ) + Y (#(CCGIf (w)]) — 1)

weW

Proof. For each edgéw,w’) in G/f, we choose arbitrarily an edde, ') in G
such thatf (v) = w and f(v") = w’ (by definition of G/ f, such an edge exists but
is not necessarily unique). Thereby, to each edgg /of or of G[f ~*(w)] (for any
w in W) corresponds canonically an edgedn

Take covering forest$;,; and (F,,)wew Of graphsG/f and G[f~!(w)] for
w € W. With the remark above, to each covering forest corresparsés of edges
in G. Consider the unio’ of these sets. Itis an acyclic set of edges;ofindeed,
if it contained a cycle, it must be contained in one of the &hfer! (w), otherwise
it would induce a cycle it/ . But, in this case, all edges of the cycles belong to
F,,, which is impossible, sincg, is a forest.

Finally, F' is an acyclic set of edges & and

#(CC(G)) < [V| = [Fl = W| = |Faypl + Y (f (W) = 1= |Fyl)
weW

< H(CC(G/f) + > FH(CCGFHw)) —1). O

weWw

Continuing the exampleAll fibers f~1(i) (for i = 1,2,3,4,5) are of size2.
Three of them contains one edge (fo= 3,4, 5) and hence are connected, while
the other two have two connected components. Finally, theisuhe lemma is
equal to2, which is equal to the difference

#(CC(G)) — #(CC(G/f) =4 -2 =2.
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3.3. Fibers of size 2. In this paragraph, we consider the particular case where
V = W u W and f is the canonical applicatioll” U W — W consisting in
forgetting to which copy ofl” the element belongs. Throughout the paper, for
simplicity of notations, we will use overlined letters fdements of the second
copy of W.

In this context, in addition to the contractid@i/f, one can consider another
graph with vertex seii’. By definition,G// f has an edge betweenandw/’ if, in
G, there is an edge betweanandw’ andan edge betweem andw’. We call this
graph thesurcontractionof G.

Continuing the examplélhe graphG and the functiory in the example above
fitin the context described in this paragraph. The surctotray// f is drawn on
Figure[1 (bottom right picture).

Lemma3.2. LetG and f be as above. Then

#(CC(G)) < #(CC(G/[)) + #(CC(G// f))-

Proof. SetG, = G/f, Gy = G//f andGs = G.

By definition, an edge irix; between;j andk corresponds to two edges @rg.
In contrast, an edgg, j) in G, corresponds to at least one edgé&in

Consider a spanning foregt in G;. As the set of edges ©f; is smaller than the
one ofG,, F; can be completed into a spanning foréstof Go. We consider the
subsetF; of edges of73 obtained as follows: for each edge i6f, we take the two
corresponding edges @3 and for each edge dfy\ F}, we take the corresponding
edge inGj (if there is several corresponding edges, choose oneailyijr

We will prove by contradiction thak3 is acyclic. Suppose thdt; contains a
cycleCs. Each edge of’s projects on an edge iA; and thus the projection af
isalistS = (eq,...,e,) of consecutiveedges inF» (consecutivameans that we
can orient the edges such that, for edch [h], the end point ot is the starting
point of ;1 1, with the conventiore;, 1 = e1). This list is not necessarily a cycle
because it can contain twice the same edges (either in the damction or in
different directions). Indeed;s contains some pairs of edges of the form

({w, w'}, {w, W})

which project on the same edged. But as edges from these pairs have no ex-
tremities in common, they can not appear consecutivelydrcieleCs. Therefore,
the same edge can not appear twice in a row in th&listhis implies that the list
S contains a cycl€’; as a factor. We have reached a contradiction as the edges in
Cs are edges of the fore$h. ThusFj is acyclic.

The number of edges iR is clearly2|Fy| + |F» \ Fy| = |Fi| + |F»|. Therefore

#(CC(Gy)) <2(W| = |F3| = (W] = [F1]) + (W] — [ F2)
= #(CC(G1)) + #(CC(Gy)). T
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4. TOY EXAMPLE: NUMBER OF CYCLES OF A GIVEN LENGTHp

In this section, we are interested in the numﬁg}') of cycles of lengthp in a
random Ewens permutation of si2& The asymptotic behavior cEféN Vis easy to
determine (see Theordm11.1), as its generating series lisieand quite simple.
We will give another proof which relies on Theorém]1.4 andsdoat use an explicit
expression for the generating seriesl“&?f ),

The main steps of the proof are the same in the other exangolést, us empha-
size them here.

Step 1: expand the cumulants of the considered statistic.
In this step, one has to express the statistic we are inger@stin terms of the

vzatrbablesBi(fsV ): here,

(N) — c,N
Pp - Z B(ilwnvip)’
1<i1 <i2,i3,..,0p <N
cN — W) (V) gWN) i i
Wher;zB(ih__’ip) =B, i, ---B; . B; ;i is defined by equatio (2). Therefore,
one has
N N N N

) ()= 3 w(BL B BB,

z{<zgzg ,,,,, i

Step 2: Give an upper bound for the elementary cumulants.

Now, we would like to apply our main lemma to every summand afagion
(d5). For this, one has to understand what is the exponeNtiafthe upper bound
given by Theorerh 114.

For a matrix

(i7)1<i<p,
1<r<¢

we denote:
o M(i) = [{(i},ij41);1 < j < p,1 <r < {}is the number of different
entries in the matrix of couple(sf;"., i7.1) (by conventionjy ., = i7);
e (i) the number of connected components of the gr@pi) on [¢] where
r1 is linked withry if
{iih1<j<prn{ii*1<j<p}#0.
In the case where has/ blocks of sizep and where the lis is obtained by a
cyclic rotation of the list in each block, Theorei 1.4 writes as:
(16)
(B Bl By

. . . 1 ,17 Z
1,05 Ipyiy 7,05

(V) —M@E)-Q()+1 —M(i)
o Bi;;,i{” < CpN < CpeN .
Step 3: give an upper bound for the number of lists.
As the number of summands in Equation](15) depend&Vomve can not use
directly inequality [[16). We need a bound on the number oficegi with a given

value of M ().
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This bound comes from the following simple lemma:

Lemma4.1. For eachL > 1, there exists a constadt; with the following prop-
erty. ForanyN > 1 andt € [L], the number of list$ of length L with entries in
[N] such that

{i1,... i} =t
is bounded from above ky; N*.

Proof. If we specify which indices correspond to entries with theeaalues (that
is a set partition of the set of indices), the number of cquesling lists |s(]27) and
hence is bounded from above By. This implies the lemma, witty’; being equal
to the number of set partitions Qf]. O

Step 4: conclude.

For a matrix(i}), we denotet (i) the number of distinct entries. Clearly/ (i)
is always at least equal tdi). Therefore, using inequality (16) and Lemmal4.1,
for eacht € [p - /], the contribution of list¢i’) taking exactlyt different values is
bounded from above by,C,, and hence

forall ¢ > 1, k,(TM)) = O(1).

To compute the component of ordierlet us make the following remark: by the
argument above, the total contribution of ligt$) with M/ (i) > #(i) or Q(i) > 1
isO(N™1).

But M (i) = t(i) implies that, as soon as

(i1 <j<pyn{ii;1<j<p}#0,

the cyclic words(i}', ..., i;t) and (i}?,...,i;?) are equals. Agj is always the

minimum of thez';?, the two words are in fact always equal in this case. In pagic

G(i) is a disjoint union of cliques. If we further assurggi) = 1, i.e. G(i) is

connected(=(i) is the complete graph and we get tifatloes not depend an
Finally

(17) re@M) = N k(BN BN o,

11,12 ° T ip,i1
11 <12,13,...,1p

But eachBZ.(fV,i)2 . Bi(]ivi)l is a Bernouilli variable of parametét + 6)/(N + 6),.
Therefore their moments are all equal(to+ ¢)/(N + 6), and by formula[{[7),
their cumulants arél + 6)/(N + 6), + O(N—2F). Finally, as there aréN),,/p
terms in equatior (17),

1+46
) = 124

+O(NTY),
which implies thaﬂ“ﬁ,N) converges in distribution towards a Poisson law of param-
eterl£f,
p
Moreover, a simple adaptation of the proof of Equatlod (b)lies that

k(W) Ty = o(N Y

p1 ’ T Pe
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as soon as two of the.’s are different. Indeed, no matricé% 1<r<¢ With rows
1<j<p

of different sizes fulfill simultaneously/ (i) = t(i) andQ(i) = T Flnally for

anyp > 1, the vector(FgN) .,FéN)) tends in distribution towards a vector
(P, ..., P,) where theP; are independent Poisson-distributed random variables
with respective paramete(s + 6)/i. O

Remark. After equation [(1l7), one could have finished the proof withoam-
putation by the following argumenE]E,N ) has asymptotically the same cumulants
as a virtual variableX y;, which writes as a sum ohdependentandom variables

with the same distribution as th@E’N )" As eachBE’N“ ) is a Bernouilli vari-

able of expectatiofil + 6)/(N +6), and as there ar(d\/)p/p such variablesX y
converges in distribution towards a Poisson law of paraméte- 6)/p. And so

doesF(N )
As promlsed in the introduction, this argument follows tdea thaeverything

happens as if the variabIeB?Z?fVm ;) Were independent

5. NUMBER OF EXCEDANCES

In this section, we look at our second motivating problene, tilamber of ex-
cedances in random permutations. The first two paragrapke ménk between
a physical statistics model and this problem, justifying awrk. The last two
paragraphs are devoted to the proof of Thedrerm 1.2 and deleselts.

5.1. Symmetric simple exclusion process. The symmetric simple exclusion pro-
cess §SEPfor short) is a model of statistical physics: we considetipkas on a
discrete line withV sites. No two particles can be in the same site at the same
moment. The system evolves as follows:

e if its neighboring site is empty, a particle can jump to it & its right
with probability 52

o if the left-most site is empty (resp. occupied), a particé enter (resp.
leave) by the left with probability~ (resp.NLH);

o if the right-most site is empty (resp. occupied), a partcde enter (resp.
leave) by the right with probabilit)NLH (resp.NiH);

e otherwise (we suppose, 3,,d < 1 such that, in a given state, the sum of
the probabilities of the events which may occur is smallantt), nothing
happens.

Mathematically, this defines an irreducible aperiodic Markhain on the finite set

{0; 1}V (a state of theSSEPcan be encoded as a word(rand 1 of length IV,

where the entries with valukecorrespond to the positions of the occupied sites).
This model is quite popular among physicists because, we#pisimplicity,

it exhibits interesting phenomenons like the existenceifférént phases. For a

comprehensive introduction on the subject and a surveysoltse see [11].
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— 101001

FIGURE 2. From permutation tableaux to words{ie; 1}V—1,

A good way to describe a stateof the SSEPis the functionFT(N ) defined as
follows: whenNz is an integer,

1 Nzx
FM(@) =5 327
i=1

and, for each € [N], the functionF\"" is affine betweeri —1)/N andi/N. One
should seeFT(N) as the integral of the density of particles in the system.

We are interested in the steady state of #8ER that is the unique probability
measurg.y on {0; 1}V, which is invariant by the dynamics. More precisely, we
want to study asymptotically the properties of the randontfion FT(N ), wherer

is distributed withu and N tends to infinity.

5.2. Link with permutation tableaux and Ewens measure. From now on, we
restrict to the case,vy,d = 1. In this case, thanks to a result of S. Corteel and
L. Williams [10], the measure y is related to some combinatorial objects, called
permutation tableaux.

The latter are fillings of Young diagrams (which can have gmmptvs, but no
empty columns) witl) and1 respecting some rules, the details of which will not be
important here. The Young diagram is called the shape of¢hmptation tableau.
The size of a permutation tableau is its number of rows, péustiimber of columns
(and not the number of boxes!).

In addition with their link with statistical physics, pertation tableaux also ap-
pear in algebraic geometry: they index the cells of somemianbdecomposition
of the totally positive part of the Grassmannianl![23] 29].e¥lnave also been
widely studied from a purely combinatorial point of view [Z[2].

To a permutation tablea’ of size N + 1, one can associate a word’ in
{0; 1} as follows: we label the steps of the border of the tableatirsgafrom the
North-East corner to the South-West corner. The first stgpways a South step.
For the other steps, we sef = 1 if and only if thei + 1-th step is a south step.
Clearly, the wordw” depends only on the shape of the tabl@auThis procedure
is illustrated on figur&l2.

With this definition, the border of a tableduof size NV + 1 is the parametric
broken line

{(m@™) = NFP (), -N(@ — F\Y () - 1) 1z € [0 1]},
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wheren (w) is the number ofl in w” anngp the function associated to the

word w” as defined in the previous paragraph. Heri@l%,{}f) is a good way to
encode the shape of the permutation tabl&au

S. Corteel and L. Williams also introduced a statistics omygation tableaux
callednumber of unrestricted ronend denoted.(T). If § is a positive real param-
eter, this statistics induces a meas,mf,e(ﬁ) on permutation tableaux of siZ€, for
which the probability to pick a tabledli is proportional to3~“?). This measure
is related to theSSEPby the following result (which is in fact a particular case
of [10, Theorem 3.1] but we do not know how to deal with the &xytarameters
there).

Theorem 5.1. [10] The steady state of tHeSEPuy is the push-forward by the
applicationT — wr of the probability measurpﬁﬂ(ﬁ).

It turns out that this measure can also been described uaimpm permuta-
tions. Indeed, S. Corteel and P. Nad€eau [9, Theorem 1 anibB&jthave exhib-
ited a simple bijectiorP between permutations af + 1 and permutation tableaux
of size N + 1, which satisfies:

e If a permutatiorns is mapped to a tabledl = ® (o), then:

w' = (82(0),83(0), ..., on11(0)),
whered; = 1if ¢ is an ascent, that is #(i) < o(i + 1) (by convention
50'(N+1) (J) = 1)

e The number of unrestricted rows of a tabléBu= ®(o) is the number of
right-to-left minima ofo: recall thati is a right-to-left minimum ofo if
oy > i foranyl > o=1(3).

We are rather interested in the number of cycles of pernwnstiather than their
number of right-to-left minima. The following bijection,hich is a variant of the
first fundamental transformations on permutationl [20, 8]1Gends one of this
statistics to the other. Take a permutatigrwritten in its cycle notation such that:

e its cycles ends with their minimum;
e the minima of the cycles are in increasing order.

For exampleg = (3 5 1)(7 4 2)(6). Now, erase the parenthesis: we obtain the
word notation of a permutatiowr (o).

The applicationV¥ is a bijection fromSy to Sy. Besides, the minima of the
cycles ofo are the right-to-left minima o (o), while the ascents i (o) are the
weak excedances i, that is the integerssuch thatr (i) > ¢ (a similar statement
is given in [20, Theorem 10.2.3]).

From now on, we assuni® (1+6) = 1. The properties above imply thaf; (3)
is the push-forward of the Ewens measure of parantebgrthe applicationd o .
Combining this with Theorern 5.1, the steady state of SIBEPuy is the push-
forward of Ewens measure by the applicatior> w®(¥(?)) | But this application
admits an easy direct description

Snyr — {0;13Y
0 = (05(2)>2500(3)>3> - - - » Oo(N+1)>N+1)-
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Recall that, as explained above, we are interested in thmmrliunctionFT(N ),
wherer is distributed according to the measug_;. The results above imply that
this random function has the same distribution tmé%Y +1), whereo is a random
permutation of sizéV distributed with Ewens measure of parameé?tendFéN +1)
is the function defined in paragraphll.2.

5.3. Boundsfor cumulants. Let us fix some real numbers, ..., z,in [0;1]. In
this paragraph, we will give some bounds on the joint cuntslaf the random
variables(F\") (z1), ..., FN) (20)).

Let us begin by the following bound (step 2 of the proof, adew to the divi-
sion done in sectioln 4).

Proposition 5.2. Forany? > 1,any N > 1 and any listsiy, ... i, andsy, ..., sy
of integers in[NV],

(B(N) B( ))<CN ‘{Zl, 51058150 758}‘4‘1

21,5177 T 1y,Sp

where(y is the constant defined by Theoreml 1.4.
Proof. Using Theoreri 1J4 for = {{1},...,{¢}}, we only have to prove that
—#(CC(Gl(l, S))) — #( CC(GQ(I,S))) > —‘{il, e ,ig, S1yeny Sg}‘.

The last quantity{iy, ..., s1,..., s¢}| can be seen as the number of connected
component of the graph@s(i, s) defined as follows:
o its vertex setis/] L [(] = {1,1,...,¢,0};
e there is an edge betwegnandk (resp. j andk, j andk) if and only if
ij = i, (resp.i; = sg, s; = Sg).
The inequality above is simply Lemrha B.2 applied to the gr@phi, s) (G1(i, s)
andG,(i, s) are respectively its surcontraction and contraction). O

We can now prove the following bound:

Proposition 5.3. There exists a constadt, such that, for any integeN > 1 and
real numbersey, ...,xy, One has

(R(ES (21), ..., FY (@) < CYNTH

Proof. To simplify the notations, we suppose thdt;, ..., Nz, are integers, so

that
Nx;

(N—1)- F™)(z) ZB‘*’%N

But the Bernoulli variableB™" can be written aB™" = 3> ., B, Finally,
by multilinearity, one has (step 1): -
(18)

(N = D R(FEM (21),... . FM @) = > 3 #( 2181,...,3%).

2<i)<Nz1 s72>1q

2<ip<Nay sp>ip
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We apply Lemma& 4]1 to the list, ..., i, s1,...,s, and get that the number of
couples of list{i, s) such that{iy, ..., i, s1,...,s¢}| IS equal to a given number
t is bounded from above by}, N* (step 3).

Combining this with Propositidn 5.2, we get that the totaltcibution of couples
of lists (i,s) with |{i1,...,ip,51,...,5¢}| = t to the right-hand side of (18) is
smaller tharC’,,CyN , which ends the proof of Proposition 5.3 (step 4). O

lllustration of the proof.Set¢ = 5 and consider the lists= (5,2,2,7,7) and
s = (8,8,2,7,7). The graphGs(i, s) associated to this couple of sequences is the
graphG drawn of Figurd L. It follows immediately that, (i,s) = G//f has 4
connected components whilé(i,s) = G/ f has 2. Therefore, by Theorém11.4,

N) n(N) p(N) o(N) (N _
H(Bé,g),3578)73572)73%7)73%7)) < CsN~°.

The same bound is valid for all sequendemds such thatGs(i,s) = G. There
are fewer tharV* such sequences: to construct such a sequence, one hasse choo
distinct values for the four connected component& p$uch that they fulfill some
inequalities. Finally, their total contribution to (18)smaller tharCs N 1.

Comparison with a result of B. Derrida, J.L. Lebowitz and EJReer.In [12,
Appendix A], it is proven dong range correlation phenomendor the SSEP
Rewritten in terms of Ewens random permutatioresthe material of the previous
paragraph, it asserts that, fgr< - - - < iy,

R(BEY, . BEY) = O(N T,

In fact, their result is more general because it correspandbe SSEPwith all
parameters. This bound on cumulants can be obtained easily our Propo-
sition[5.2 and LemmpA_4.1. A slight generalization of it (fakinto account the
case where somgs can be equal) implies directly Propositionl5.3. Therefaur
method does not give some new results onSIB&EP Nevertheless, it was natural
to try to understand the long range correlation phenomenm@ctty in terms of
random permutations and it is what our approach does.

5.4. Convergence results. In this paragraph, we explain how one can deduce
from the bound on cumulants, some results on the convergentee random
function FéN), in particular Theorern 11.2.

In addition to the bounds above, we need equivalents for teednd second

joint cumulants of thd*}(N) (). An easy computation gives:

exNy N—i+1+6
BB = —F1g
i—1)(N —i+1+6)
(N +6)? ’
(n—j+140)(i—1)
(N+03)(N+0-1)

Var(B&N) = (

Cov(B®N, BNy = —

p J fori < j,
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from which we get the limits:

im E(FM(x)) = /Ox(l —t)dt + o(1) = #;

1
N—oo

(19)
min(z,y)
(20) lim N Cov(FN)(z), EN) (y)) = / t(1 —t)dt
—00 0

~ Jocres min (¢, u)(1 — max(t, w))dtdu.
0<u<y
We call K (z,y) the right-hand side of the second equation. We begin by & proo
of Theorem_I.R, which describes the asymptotic behavioFa%\f) (x), for fixed

value(s) ofz.

Proof. Consider the first statement. The convergence in prob,abifitFéN ) (x)
towards1/2 - (1 — (1 — z)?) follows immediately from equation§ (119) arld(20).
For the almost-sure convergence, we have to study the foarttered moment.

From moment-cumulant formulBl(7) and using the fact thatwathulant but the
first are invariant by a shift of the variable,

E ((FN) (@) — B(FN @)*) = ka(FN) (2)) + 3(ra (FE ()2

By proposition 5.8, this quantity is bounded from above(yV —2) and, in par-
ticular,

> E((FN(2) - BE(FN(@)*) < oo.

N>1
The end of the proof is classical. First, we inverse the sutiomand expectation
symbols (all quantities are nonnegative). As its expemtais finite, the random

variable

Y (F (z) —B(FN ()"

N>1
is almost surely finite and hence its general té(rﬁéN) (z) — E(FN) (z))Y)
tends almost surely t0.

Let us consider the second statement. Propoditidn 5.3émfiat, for any list
Ji,- - - ge Of integers inr], one has

K28 ). 280 (@) = ON /24,

N2>1

In particular, forr > 2 the left-hand side tends ta As the variableszt™) (z;)

are centered, this implies th@ZéN)(:nl),...,Zf,N)(a:T)) tends towards a cen-
tered Gaussian vector. The covariance matrix is the limihefcovariance of the
ZN) (z;), that is(K (z;, ;). 0

It is also possible to obtain some results concerning theeseg of random
function (FéN))Nzl. In the following statement, we consider convergence in the
functional spacdC([0;1)),]| - ||), that is uniform convergence of continuous
functions.
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Theorem 5.4. Almost surely, the functioﬂN ) converges towards the function
T 1/2-(1—(1—2)2).

Moreover, the sequence of random functi¢ns— ZMN) (x))n>1 converges in
distribution towards the Gaussian process+ G(z), whose finite dimension laws
are Gaussian vectors with covariance matrices givei®yz;, z;))i<i j<r-

Proof. As, for any N > 1 and anyo € Sy, the functionz — F§N) (x) is non-
decreasing, the first statement follows easily from the eayence at any fixed.
The argument can be found for example in a paper of J.F. Marf&Xg first page],
but it is so short and simple that we copy it here. By monoioniuf F§N) andF,
forany list0 = zg < z1 < --- <z, = 1, one has

sup |F{N)(2) — F(x)|
x€(0;1]

< fax max (FM (@j11) = Flap)] [ FS () = Fxin)])

=% max |F(z;) = F(wje)l,
which may be chosen as small as wanted.

Consider the second statement. If the sequence of randatidan — zN) (x)
has a limit, its finite-dimensional laws are necessarily lthets of the ones of
ZC(,N ), that is, by Theoremn 1.2, Gaussian vectors with covariaratices given by
(K (i, 5))1<ij<r- As a probability measure afi([0; 1]) is entirely determined
by its finite dimensional laws [5, Example 1.2], one just lmgpiove that the se-
quencer — Z5)(x) has indeed a limit. To do this, it is enough to prove that it is
tight [5, Section 5, Theorems 5.1 and 7.1], that is, for each0 there exists some
constantM such that:

for all N' > 0, one hasProb (||ZM)]|o > M) < e.

Once again, this follows from a careful analysis of the fourtoment.

Let N > 1 ands # s in [0;1] such thatNs and Ns' are integers. Using

equation[(¥) and the fact cht(,N)(s) andZC(,N)(s’) are centered, one has:

E (28 (s) - 28 (s)")
= ka(Z0)(5) = ZN) (1)) + 32 (28 (5) — 2N (51))?

o o

= N2 (ra(FN (s) = FSN () + Bra (B3N (5) = FSV (1))
A simple adaptation of the proof of Propositionl5.3 shows tha

ke(FINV) (5) — FN)(s)) < N~ s — ).
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Indeed, in Lemmfa4l1, if we ask that at least one entry of gté is betweenVs
andN s then the number of lists is bounded from abovejyN*|s — &'|. Finally,

E ((Z(s) = 28(s)) < (NA(CaN2|s — | + BCEN2s = &']%))
< (Cy+303)]s — &2

The last inequality has been deduced frem- s'| > N1

We can now apply Th. 10.2 of Billingsley’s bodk [5] wilsy = Z$ (i /N) (for
0<i<N),a=p=1andu, = (Cy + 3C3)'/?/N (see equation (10.11) of the
same book). We get that there exists some congtasitich that

Prob ( max |S9;| > M) < KM,
0<i<N

which proves that the sequenZéN) is tight. a

6. GENERALIZED PATTERNS

This section is devoted to the applications of our methoddjacencies (para-
graph6.2) and dashed patterns (paragtaph 6.3). Thesedtigtiss belong in fact
to the same general framework and we discuss in para@rajtheésgbssibility of
unifying our results.

The proofs in this paragraph are a little bit more technibahtthe ones before
and in particular we need a new lemma for step 3, given in papd6.1.

6.1. Preliminaries. Let L > 1 be an integer. For each pdjy, k} C [L], we
choose dinite set of integerdDy;; ;.

Consider a listiy, ... ,i; of integers. For each pair = {j,k} C [L] (with
J < k), we denote. (i) the differencei;, — ;. Then we associate fca graph of
vertex sef L] and edge sefe : 0.(i) € D,}.

The following lemma is a slight generalization of Lemimd 4.1

Lemma6.1. For eachL and families of set(iD{M})lSKkSL, there exists a con-
stantCﬂD with the following property. For anyv > 1 andt < L, the number of
sequencesy, . .., iz, with entries in[N], whose corresponding graph has exactly
connected components is bounded from abov&by, N*.

Proof. If we fix a graphG with vertex setl, andt¢ connected components and
if we fix also, for each edge of the graph, the actual value éf(i), then the
corresponding number of lisisis smaller thanV’. Indeed, the sequence will be
determined by the choice of one value per connected compoféh(with some
constraints, such that no extra edges appear). But the nuphlggaphs and of
values on edges are finite (the sets;, are finite) and depend only dnand on the
family D. a
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6.2. Adjacencies. Inthis paragraph, we prove the following extension of Tleeor

13

Theorem 6.2. Leto be a sequence of random permutations, such dhathas
sizeN and is distributed with respect to Ewens measure of parantet€hen the
number AY) of adjacencies inry converges in distribution towards a Poisson
variable of parameteg.

Proof. As before, we writeA™) in terms of theBi(,]sV ) (we use the convention
Bi(,]sv) = 0if ¢ or s is not in[N]):

N) (N (N)
A( Z B Bz—l—ls—i—e
1<i,s<N
e=*+1

Hence, forf > 1, its /-th cumulant writes as (step 1):

N)y _ (N) p(N) (N) p(N)
(21) ’{Z(A( )) - Z <Bz1 81le+1 s1ter?” Bug 8gB2g+1 Sz+5£>

1<i1,87,--8p,8p <N
€1,--,6p=%1

Given two listsi ands of positive integers, we consider the three following graph
e [ has vertex seff] and has an edge betwegandk if |i; — i,| < 2 and
|sj — skl < 2;
e H, has vertex se’] and has an edge betwegandk if
{ij i; £ 1,585,585 £ 1} 0 {ig,ip £ 1, sg, 5 = 1} # 0.
e Hj3 has vertex sg] U [¢] and has an edge betwegandk (resp. j andk,
gandk)if |i; — x| < 2 (resp.|ij — sg| < 2,]s; — si| < 2)
We will use Theorerh 114 to give a bound for

w(BY) B BB

11,81 t1+1,51+€1? 1g,8¢" tpt+1,50+€p
Clearly, the numbef/ (i, s) of different couples in the set
{(ij,55);1 < <pU{(i; + 1,8 +¢€);1<j <L}
is at least equal t@#(CC(H,)) > #(CC(H;)) + 1. Besides, in this case, the
graph G} introduced in paragraph~1.5 has the same vertex séf,aand fewer
edges. Hence it has more connected components. Theref@ereni 1.4 implies
(step 2):

(N) (V) (N) p(N) —#(CC(H1))—#(CC(H:
(le sle1+1 e ’Biz,Se Z,HLS”E[) < CoyN #(CC(H1))—#(CC(Hz))
But, using the terminology of paragraph]3.3, the grafihsand H, are the surcon-

traction and contraction aff3. Therefore, by Lemma_3.2, one has:

(22) #(CC(H3)) < #(CC(H1)) + #(CC(Hy))-

Besides, Lemma 6.1 implies the number of listgds with entries in[/V] such
that 3 has exactlyt connected components is bounded from abov€fjy,, N*
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for D well-chosen (step 3). In particular the consté]j‘;’D does not depend on
N. Therefore, the total contribution of these lists to equra{P1) is bounded from
above byCo,N~" - Oy, p,N' = Cy - Cy) .
Finally,
k(AN = 0(1).
Moreover, only lists such that/(i,s) = 2 and#(CC(H;)) = 1 contribute to the
term of orderl. But this implies that the list$, s ande are constant. In other
words,
Re(AM) = 3" k(BB )+ O(NTY).
The2(N —1)2 variablesBZ.(f! )Bfivl),s +. are Bernoulli variables, whose parameters
are given by:

e if s =4 € [N — 1] ande = 1, then the parameterm (N-1
cases);

oif s =id;e = —1(here2 <i < N-—-1)ors =i+ 1;¢e = —1 (here
1<i<N-1ors=1i+2;¢e=—1(herel <i< N —2), then the

parameter L}W (3N — 5 cases);

. 1
» otherwise, the parameter jg—yrvro=1-

Recall that the cumulants of a sequence of Bernouilli véemh (V) of parameters
(pN)n>1 With py — 0 are asymptotically given by, (X)) = py + O(p)).
Hence,

1
N+ON+0-1)

ko(AN) = 2(N — 1)? +O(N ) =2+0(N").
Finally, the cumulants oA"Y converges towards those of a Poisson variable of
paramete®, which implies the convergence df¥ in distribution. O

6.3. Dashed patterns. Let us recall the definition of dashed patterns in a permu-
tation, as introduced by E. Babson and E. Steingrimsson [3].

Definition 6.3. A dashed pattern of sizeis the data of a permutation < S, and
a subsetX of [p — 1]. An occurrence of the dashed patt¢m.X ) in a permutation
o € Syisalisti; < --- <y, such that:

e foranyzr € X, one has,.1 = i,.
e o(i1),...,0(ip) isin the same relative order thail), ..., 7(p).

The number of occurrences of the pattérnX) will be denoteoD(fV)(a).

T

Example6.4. Oglvg) is the number of inversion, whilé)éﬁu is the number of

descents. Many classical statistics on permutations camitien as the number of
occurrences of a given dashed patten or as a linear continattisuch statistics,
see|[3, section 2].
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In this paragraph, we prove Theorém]1.6, which gives, for gimgn dashed

pattern(r, X), the asymptotic behavior of the sequer(ééﬁf\)fg)]vzl of random
variables.

Proof. As in the previous examples, we write the quantity we wantttolys in
terms of the variabIeBi(];’ ). Here,

o = 3 3 BN .. ngp.

21< <1p S15ees Sp
forallz€ X igp 1 =izg+1 S 71(1)< <s =1(p)

Expanding its cumulants by multilinearity, we get (step 1)

23) k(O =3« (B(N Bl(le)l, . BZ(NS)1 . BZ(ZV;)
(i) (s7)
The first (resp. second) summation index is the set of mat(ige (resp. (s}))
with (j,7) € [p] x [£] such that:
o forallr, iy < .- <ij (resp.s:,l(l) << s:,l(p));
o forallr,forallz € X, i, ; = i}, +1 (resp. no extra condition on ths).
Given such listd ands, we consider the four following graphs:

e H; has vertex sefp] x [¢] and has an edge betweéjyr) and (k,t) if
|i% —ii| < 1ands} = si;
e H, has vertex sdp] x [¢] and has an edge betweginr) and(k, ¢) if

(i, 45 + 1,85} 0 (i, ik + 1,6} # 0.
e Hj has vertex sef[p] x [¢]) U ([p] x [¢]) and has an edge betweéfr)
and (k,t) (resp. (j,7) and (k,t); (j,7) and(k,t)) if |¢ — i} < 1 (resp.
si—i;- =0orl; s’ = st).
e H/ has vertex sdf] and has an edge betweeandt if

( U {zj,zj—i—l 37" ) N ( U {1'2,1'2—1—1,32}) # (.

1<5<p 1<k<p
The graphsH; and H> are respectively the surcontraction and contractiof gf
as defined in Sectidd 3. Therefore, one has, by Lemnia 3.2:
#(CC(Hs)) < #(CC(H,)) + #(CC(Hy)).
But one can further contraéf, by the mapf : [p] x [¢] — [¢] defined byf(j,r) =
r and we obtain},. With the notation of Sectidnl 3, it implies:
¢

#(CC(Hy)) < #(CC(HS)) + Y [#(CC (Ha[[p] x {r}])) —1].

r=1

But each induced grapH»[[p] x {r}] (for 1 < r < /) contains at least an edge
between(z,r) and(xz + 1,r) for eachz € X (because we assumed thiat, =
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ir. + 1). Thus it has at mosgt — ¢ connected components. Finally,
(24) #(CC(H3)) < #(CC(Hy)) + #(CC(H3)) + (p — g — L.
Let us apply the main lemma (Theorém]1.4) to obtain a bound for

. <B;gg% BB .B;;Vgl)

P 51 p>5p

In this case, the number of different couples in the indideth® Bernouilli vari-
ables is at least the number of connected componeni$, ofBesides, the graph
G, introduced in paragragh 1.5 has the same vertex set, but &siges tharf).
Hence, it has more connected components and we obtain:

H<B?fv)l...BFfV>l,...,B(N) B(N)>
11551 tpsSp i,y ps
Using inequality above, this can be rewritten as (step 2)

(B0 88,8 )
1°°1

< szN—#(CC(Hl))—#(CC(HQ))‘H

< CpgN_#(CC(HS))+(:D—q—1)£+1'

1y
if,s1 15,Sp

As in the previous paragraph, Lemmal6.1 asserts that theemwhbouples of lists
((4%), (s%)) such that# (CC(H3)) = t is smaller tharC , , N* for a well chosen
D (step 3). Hence their total contribution to EquaUﬁ (23 asinded from above
by the quantityC;,,C?, , NP9~V Finally, one has:

(25) HZ(OE)]\([,)T)) — O(N(P—Q—l)ﬂ-l—l)’

or equivalentlyng(Zg,)T)) = O(N~Y/2+1). As in paragrapli 54, the theorem
follows from this bound and from the limits of the normalize”pectation and
variance.

For the expectation, we have to consider the dasel. In this case, one has
#(CC(Hy)) = p and#(CC(H))) = 1. Therefore, if we want an equality in
Equation[(24), we neeg(CC(H3)) = 2p — ¢, which implies that all entries in the
listsi ands are distinct. For these lists, one has (Lenima 2.1)

(N) (N) (N) (N) 1
R(Bjy oo By ) =E(Bjy )i .. Bl}ﬂsl)_i(NJr 7

But the number of lists with distinct entries in the index séequation [(2B) is

asymptotlcally],\g " q) Finally,
- vy y_ 1
]\;E)noo NP—qE(O(XvT)) ~pl(p—q)”

It remains to prove that the renormalized varianée?(»—)+ ) has a
limit V. x > 0, whenN tends to infinity. But this follows from the boun&dZS) and

the fact that anyag(OEX)T)) is a rational function inV. Let us explain the latter
fact.

Recall thak,g(ng) )) is given by equatiori (23). We can split the sum depending
on the graphH; associated to the matricésnds and on the actual valug (i, s)
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of i% — i, (or s}, — i andsj, — s} respectively) for each edgeof H3. Then the fact

that/sg(Og)T)) is a rational function is an immediate consequence of theviaig
points:
e the number of graph#/s and possible values for the differenc&si, s)
(V) (N) (N)

(for e € Eg,) are finite;
o the cumulanm(BZ_(lN) ey By oo By ,) is a rational func-
121 pTp 1°°1 P p

... B
tion in N which depends only on the graghs and values ob. (i, s) (for
ec EHs);

e the number of matricessands corresponding to a given graghand given
valuesd, (i, s) is a polynomial inV. O

Remark6.5. Fix a dashed patterfr, X') and consider aniformrandom permuta-
tiono. Letus denoted;, . ;, the event iy, ..., i, is an occurrence dfr, X) in 0.
Then the eventsl;, . ;, andA;, . ;, are independent as soon as the listfd j
are disjoint. This allows to build a simpler proof of the riésiove, still using the
moment method (see [[16] for a proof of a similar result in tbatext of random
words). However, it does not hold in the case of Ewens randemmptations with
a general parametér

6.4. Generalized patternsand local statistics. The notion of dashed patterns has
been recently generalized by several authorslin [7, Se2liohhe idea is roughly
that, in an occurrence of a generalized pattern, one canhaslsbme values are
consecutive (and not only some places as in dashed patteiingjould be in-
teresting to give a general theorem on the asymptotic beha¥ithe number of
occurrences of a given generalized pattern. This seems &ohaed problem as
many different behavior can occur:

e The number of adjacencies is the sum of the number of ocaresenf two
different generalized patterns and converge towards a@oidistribution.

e The dashed patterns are special cases of generalizedhpatter we have
seen in the previous paragraph, their number of occurrecoegerges,
after normalization, towards a Gaussian law. Other gezedlpatterns
exhibit the same behavior, for example the one considerff] (the proof
is the same as for dashed patterns; note that Rémark 6.5 dbkeld for
occurrences of this pattern).

e Other behaviors can occur: for example, it is easy to seetlieatumber
of occurrences of the patte(m23, {1}, {1}) (we use the notations d¢fl[7]),
has an expectation of order but a probability of beind with a positive
lower bound.

Even if we have not been able to give a general statementppuoach unifies the
first two cases.

The notion of generalized patterns can be further extendekdet one ofiocal
statistic Fix a integerp > 1 and a sefS of constraints: a constraint is an equality
or inequality (large or strict) whose members are of the foymd or s; 4 d where
j belongs tdp| andd is some integer. Then, for a permutatiemf Sy, we define
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O]%) (o) as the number of lists, ..., i, ands, ..., s, satisfying the constraints
in S and such that (i;) = s; for all j in [p].

We call any linear combination of statistiésgvs) a local statistic. The number
of occurrences of a generalized patterns, but also the nuoflexcedances or of
cycles of a given lengtlp, are examples of local statistics. The method presented
in this article is suitable for the asymptotic study of joieictors of local statistics.
We have failed to find a general statement, but we are corwitizg our approach
can be adapted to many more examples than the ones studresl amticle.

However, the method does not seem appropriate to glob#tatst such as the
total number of cycles of the permutation or the length ofitimgest cycle.
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