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ASYMPTOTIC BEHAVIOR OF SOME STATISTICS IN EWENS
RANDOM PERMUTATIONS

VALENTIN FÉRAY

ABSTRACT. The purpose of this article is to present a general method tofind
limiting laws for some renormalized statistics on random permutations. The
model of random permutations considered here is Ewens sampling model, which
generalizes uniform random permutations. Under this model, we describe the
asymptotic behavior of some statistics, including the number of occurrences of
any dashed patterns. Our approach is based on the method of moments and relies
on the following intuition: two events involving the imagesof different integers
arealmostindependent.

1. INTRODUCTION

1.1. Background. Permutations are one of the most classical objects in enumer-
ative combinatorics. A lot of statistics on permutations have been widely studied:
total number of cycles, number of cycles of a given length, ofdescents, inversions,
excedances or more recently, of occurrences of a given (generalized) pattern... A
classical question in enumerative combinatorics consistsin computing the (multi-
variate) generating series of permutations with respect tosome of these statistics.
It would be impossible to do an exhaustive list of the different statistics which have
been considered and the results which have been obtained.

A probabilistic point of view on the topic raises other questions. Let us consider,
for eachN , a probability measureµN of permutations of sizeN . Then any statistic
above can be interpreted as a sequence of random variables(XN )N≥1. The natural
question is now: what is the asymptotic behavior (possibly after normalization) of
(XN )N≥1?

The simplest model of random permutations is of course the uniform random
permutations (for eachN , µN is the uniform distribution on the symmetric group
SN ). A generalization of this model has been introduced by W.J.Ewens in the
context of population dynamics [13]. It is defined by

(1) µN ({σ}) = (1 + θ)#(σ)

(θ + 1)(θ + 2) · · · (θ +N)
,

whereθ > −1 is a fixed real parameter and#(σ) stands for the number of cycles
of the permutationσ. Of course, whenθ = 0, we recover the uniform distribu-
tion. From now on, we will allow ourselves a small abuse of language and use the
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2 V. FÉRAY

expressionEwens random permutationfor a random permutation distributed with
Ewens measure.

Random permutations, either with uniform or Ewens distribution, are well-
studied objects. A lot of examples in the seminal book of P. Flajolet and R.
Sedgewick deal with the asymptotic behavior of some statistics on uniform ran-
dom permutations [15, Examples IX.3, IX.4, IX.5, IX.9]. A survey of important
techniques and results in the area can be found in the book [1]. Most of them in-
volve explicit formulae for generating series or algorithms to generate a random
permutation.

The purpose of this article is to introduce a new general approach to this family
of problems, based on the method of moments.

1.2. Motivating examples. Let us begin by describing a few examples of results,
which suggest that a more uniform and intuitive approach could be found.

Number of cycles of a given lengthp. LetΓ(N)
p be the random variable given by

the number of cycles of lengthp in an Ewens random permutationσ in SN . The
asymptotic distribution ofΓ(N)

p has been studied by V.L. Goncharov [17] and V.F.
Kolchin [19] in the case of uniform measure and by G.A. Watterson [28, Theorem
5] for the framework of a general Ewens distribution (see also [1, Theorem 5.1]).

Theorem 1.1 ([28]). Let p be a positive integer. WhenN tends to infinity,Γ(N)
p

converges in distribution towards a Poisson law of parameter (1 + θ)/p. More-

over, the sequences of random variables(Γ
(N)
p′ )N≥1 for p′ ≤ p are asymptotically

independent.

Let us give an intuitive (but false) explanation of the first part of the result,
assuming that some non-independent variables are independent.

If i1, . . . , ip is a list of pairwise distinct integers between1 andN such that its
minimum isi1 (there are(N)p/p such lists, where(N)p is the usual notation for
the falling factorial(N)p = N(N − 1) . . . (N − p+ 1)), we define

(2) Bc,N
(i1,...,ip)

(σ) =

{
1 if (i1 . . . ip) is a cycle ofσ;

0 otherwise.

EachBc,N
(i1,...,ip)

is distributed according to a Bernoulli law of parameter(1+θ)/(N)p

(see Lemma 2.1). These variables arenot independent. Nevertheless the sumΓ(N)
p

of these(N)p/p Bernoulli variables of parameter(1 + θ)/(N)p converges in dis-
tribution towards a Poisson variable of parameter(1 + θ)/p.

Excedances.A (weak) excedance of a permutationσ in SN is an integeri such
thatσ(i) ≥ i. LetBex,N

i be the random variable defined by:

Bex,N
i (σ) =

{
0 if σ(i) < i;

1 if σ(i) ≥ i.
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Whenσ is a Ewens random permutation, this random variable is distributed ac-
cording to a Bernoulli law of parameteri+1+θ

N+θ (see Lemma 2.1).
Let x be a fixed real number in[0; 1] andσ a permutation of sizeN . WhenNx

is an integer, we define

F (N)
σ (x) :=

∑Nx
i=1 B

ex,N
i (σ)

N

and we extend the functionF (N)
σ by linearity between the pointsi/N and(i+1)/N

(for 1 ≤ i ≤ N − 1). In paragraphs 5.1 and 5.2, we explain why we are interested
in this quantity: it is related to a statistical physics model, the symmetric simple
exclusion process(SSEP), and to permutation tableaux, some combinatorial objects
which have been intensively studied in the last few years.

We show the following.

Theorem 1.2. Letx be a real number between0 and1. Then, almost surely,

lim
N→∞

F (N)
σ (x) =

1− (1− x)2

2
.

Moreover, if we define the rescaled fluctuations

Z(N)
σ (x) :=

√
N
(
F (N)
σ (x)− E(F (N)

σ (x))
)
,

then, for anyx1, . . . , xr, the vector(Z(N)
σ (x1), . . . , Z

(N)
σ (xr)) converge towards a

Gaussian vector(G(x1), . . . , G(xr)) of covariance matrix(K(xi, xj))1≤i,j≤r, for
some explicit functionK (see paragraph 5.4).

If i 6= j, the variablesBex,N
i andBex,N

j arenot independent (their covariance
is computed explicitly in paragraph 5.4). Nevertheless, the limit and the Gaussian
fluctuations correspond to what would happen with independent variables (only the
actual value of the covariance matrixK(xi, xj) is different).

With this formulation, Theorem 1.2 is new, but the first part is quite easy while
the second is a consequence of [12, Appendix A] (see section 5).

Adjacencies.We consider here only uniform random permutations, that is the
caseθ = 0. An adjacency of a permutationσ in SN is an integeri such that
σ(i+1) = σ(i)±1. As above, we introduce the random variableBad,N

i which takes
value1 if i is an adjacency and0 otherwise. ThenBad,N

i is distributed according
to a Bernoulli law of parameter2N . An easy computation shows that they arenot
independent.

We are interested in the total number of adjacencies inσ, that is the random
variable onSN defined byA(N) =

∑N−1
i=1 Bad,N

i .

Theorem 1.3 ([30]). A(N) converges in distribution towards a Poisson variable of
parameter2.

This result first appeared in papers of J. Wolfowitz and I. Kaplansky [30, 18]
and was rediscovered recently in the context of genomics (see [31] and also [8,
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Theorem 10]). Note that it corresponds exactly to what wouldhave been obtained
if the variablesBad,N

i were independent.

Of course, as the Bernoulli random variable considered in each of these exam-
ples arenot independent, the explanations given for these results are not rigorous
proofs. Nevertheless, the considered events involve (mostof the time) the images
of different integers by the permutationσ. Therefore, speaking informally, they are
almostindependent. The main lemma of this paper is a precise statement of this
almostindependence, that is an upper bound on joint cumulants. This result allows
us to give new proofs and generalizations of the three results presented above.

1.3. Set partitions. The combinatorics of set partitions is central in the theoryof
cumulants (as explained below) and will be important in thisarticle.

A set partitionof a setS is a (non-ordered) family of non-empty disjoint subsets
of S (called parts of the partition), whose union isS.

DenoteP(S) the set of set partitions of a given setS. ThenP(S) may be
endowed with a natural partial order: therefinementorder. We say thatπ is finer
thanπ′ or π′ coarserthanπ (and denoteπ ≤ π′) if every part ofπ is included in a
part ofπ′.

Endowed with this order,P(S) is a complete lattice, which means that each
family F of set partitions admits a join (the finest set partition which is coarser
than all set partitions inF , denoted with∨) and a meet (the coarsest set partition
which is finer than all set partitions inF , denoted with∧). In particular, there
is a maximal element{S} (the partition in only one part) and a minimal element
{{x}, x ∈ S} (the partition in singletons).

Moreover, this lattice is ranked: the rankrk(π) of a set partitionπ is |S|−#(π),
where#(π) denotes the number of parts ofπ. The rank is compatible with the
lattice structure in the following sense: for all set partitionsπ andπ′,

(3) rk(π ∨ π′) ≤ rk(π) + rk(π′).

Lastly, denoteµ the Möbius function of the partition latticeP(S). In this paper,
we only use evaluations ofµ at pairs(π, {S}) (that is the second argument is the
maximum element ofP(S)). In this case, the value of the Möbius function is given
by:

(4) µ(π, {S}) = (−1)#(π)−1(#(π)− 1)!.

1.4. Cumulants. Joint cumulants of random variables form a classical tool to
quantify correlation. They generalize the notion of covariance. We present in this
paragraph their definition and basic properties.

Definition.
They are defined as follows: ifX1, . . . ,Xℓ are random variables on the same

probability space (denoteE the expectation on this space), then

(5) κ(X1, . . . ,Xℓ) = [t1 . . . tℓ] ln

(
E
(
exp(t1X1 + · · · + tℓXℓ)

))
.
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As usual,[t1 . . . tℓ]F stands for the coefficient oft1 . . . tℓ in the series expansion
of F in positive powers oft1, . . . , tℓ. Note that joint cumulants are multilinear
functions. In the case where all theXi are equal, we recover theℓ-th cumulant
κℓ(X) of a single variable [14].

Joint cumulants can be expressed in terms of joint moments, andvice-versa[26].
Denote[ℓ] the set{1, . . . , ℓ}.

E
(
X1 · · ·Xℓ

)
=

∑

π∈P([ℓ])

∏

C∈π

κ(Xi; i ∈ C);(6)

κ(X1, . . . ,Xℓ) =
∑

π∈P([ℓ])

µ(π, {[ℓ]})
∏

C∈π

E

(
∏

i∈C

Xi

)
.(7)

Recall thatµ(π, {[ℓ]}) has an explicit expression given by Equation (4). For ex-
ample the joint cumulants of one or two variables are simply the mean of a single
random variable (κ(X1) = E(X1)) and the covariance of a couple of random vari-
ables (κ(X1,X2) = E(X1X2)− E(X1)E(X2)). For three variables, one has

κ(X1,X2,X3) = E(X1X2X3)− E(X1X2)E(X3)− E(X1X3)E(X2)

− E(X2X3)E(X1) + 2E(X1)E(X2)E(X3).

Cumulants of independent random variables.
An interesting property of cumulants is the following: if the set of variables

{Xi, 1 ≤ i ≤ ℓ} can be split into two sets{Xi, i ∈ A} and{Xi, i ∈ B} (with
A ⊔ B = [ℓ]) such that the variables from the first set are independent from the
variables from the second, then

κ(X1, . . . ,Xℓ) = [t1 . . . tℓ] ln

(
E
(
exp(

∑

i∈A

tiXi)
))

+ [t1 . . . tℓ] ln

(
E
(
exp(

∑

i∈B

tiXi)
))

= 0.

Informally speaking, this means that joint cumulants of independent random vari-
ables vanish. Therefore, joint cumulants can be seen as a quantification of the
dependence of random variables.

Convergence in distribution using cumulants.
Consider nowm sequences of random variables:(X(i)

n )n≥1 for i ∈ [m]. A
consequence of Equations (6) and (7) is that the convergenceof all joint cumulants

κ
(
X(i1)

n , . . . ,X(iℓ)
n

)
; ℓ ≥ 1, 1 ≤ i1, . . . , iℓ ≤ m

is equivalent to the convergence of all joint moments

E
(
X(i1)

n · · ·X(iℓ)
n

)
; ℓ ≥ 1, 1 ≤ i1, . . . , iℓ ≤ m.

In particular, ifY (1), . . . , Y (m) are random variables such that the law of them-
tuple (Y (1), . . . , Y (m)) is entirely determined by its joint moments, then the two
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following statements are equivalent (see [4, Theorem 30.2]for the same property
in terms of moments).

• For anyℓ and any listi1, . . . , iℓ in [m],

lim
n→∞

κ
(
X(i1)

n , . . . ,X(iℓ)
n

)
= κ

(
Y (i1), . . . , Y (iℓ)

)
.

• The sequence ofm-tuples(X(1)
n , . . . ,X

(m)
n ) converges in distribution to-

wards(Y (1), . . . , Y (m)).

Recall that Gaussian and Poisson variables are determined by their moments, see
e.g. the criterion [4, Theorem 30.1]. Hence, cumulants can be used to prove con-
vergence in distribution towards Gaussian or Poisson variables, such as the results
of the previous paragraph.

1.5. The main lemma. From now on,N is a positive integer andσ a random
Ewens permutation inSN .

If i ands are two integers in[N ], we consider the Bernoulli variableB(N)
i,s which

takes value1 if and only if σ(i) = s. It is the characteristic function of one of the
simplest event we can think of in the symmetric group.

Our main lemma is a bound on joint cumulants of products of such variables.
To state it, we introduce the following notations. Considertwo lists of positive
integers of the same lengthi = (i1, . . . , ir) ands = (s1, . . . , sr) and define the
graphsG1(i, s) andG2(i, s) as follows:

• the vertex set ofG1(i, s) is [r] andj andh are linked inG1(i, s) if and
only if ij = ih andsj = sh.

• the vertex set ofG2(i, s) is also[r] andj andh are linked inG2(i, s) if and
only if {ij , sj} ∩ {ih, sh} 6= ∅.

The connected components of a graphG form a set partition of its vertex set that we
denoteCC(G). In particular,#(CC(G)) is the number of connected components
of G.

Theorem 1.4 (main lemma). Fix a positive integerr. There exists a constantCr,
depending onr, such that for any set partitionτ = (τ1, . . . , τℓ) of [r], anyN ≥ 1
and listsi = (i1, . . . , ir) ands = (s1, . . . , sr) of integers in[N ], one has:
(8)∣∣∣∣∣∣
κ



∏

j∈τ1

B
(N)
ij ,sj

, . . . ,
∏

j∈τℓ

B
(N)
ij ,sj




∣∣∣∣∣∣
≤ CrN

−#
(
CC(G1(i,s))

)
−#
(
CC(G2(i,s))∨τ

)
+1.

Note that the integer#
(
CC(G1(i, s))

)
is the number ofdifferentcouples(ij , sj).

The second quantity involved in the theorem#
(
CC(G2(i, s)) ∨ τ

)
does not have

a similar interpretation. However, it admits an equivalentdescription. Consider the
graphG′

2, whose vertex set is indexed by the parts ofτ and in whichτh is linked
with τh′ if

(
{ij ; j ∈ τh} ∪ {sj; j ∈ τh}

)
∩
(
{ij ; j ∈ τh′} ∪ {sj; j ∈ τh′}

)
6= ∅.
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Then#
(
CC(G2(i, s)) ∨ τ

)
is the number of connected components ofG′

2.
As an example, let us consider the case where the entries in the lists i ands

are pairwise distinct. In this case, the joint moment of products ofB(N)
i,s is simply

1/(N+θ)a, wherea is the number of factors (the caseθ = 0 is obvious, the general
case is explained in Lemma 2.1). Thus, if we denoteaj = |τj|, the left-hand side
is the following explicit rational function

∑

π∈P([ℓ])

µ(π, [ℓ])
∏

πi∈π

1

(N + θ) ∑
j∈πi

aj

.

Note that each summand has degree−∑r
j=1 aj = −ℓ. According to our theorem,

the sum has degree at most−ℓ − r + 1, which means that many simplifications
are happening (they are not at all trivial to explain!). Thisreflects the fact that the
variablesB(N)

ij ,sj
are very weakly correlated.

Remark1.5. It is worth noticing that our proof of the main lemma goes through a
very general criterion for a family of sequences of random variables to have small
cumulants: see Lemma 2.2.

1.6. Applications. Theorem 1.4 can be used to give new proofs of Theorems 1.1,
1.2 and 1.3. Moreover, we get an extension of Theorem 1.3 to any value of the
parameterθ. The result is the same (the limit law is a Poisson law of parameter
2), but the usual approachvia generating series for the uniform case seems hard to
extend to this framework: it would need an explicit form for the bivariate generat-
ing series of permutations with respect to their number of cycles and of excedances
and such a result does not exist to our knowledge.

We must confess that our proofs of these results are quite technical. However,
an important part of the difficulty is contained in the proof of Theorem 1.4 and
hence must not be done again for each application. Moreover,these proofs are
natural in the following sense: they are based on the idea that, whenσ is a uniform
random permutation,σ(i) andσ(j) are almost independent. Besides, although the
problems may seem quite different (in particular the limit law is not always the
same), these proofs all follow roughly the same guidelines.

To give more evidence that our approach is quite general, we study the number
of occurrences ofdashed patterns. This notion has been introduced1 in 2000 by E.
Babson and E. Steingrimsson, because it gives a general setting which includes a
lot of usual statistics of permutations [3].

Thanks to our main lemma, we describe the second order asymptotics of the
number of occurrences of any given dashed pattern in a randomEwens permuta-
tion.

Theorem 1.6. Let (τ,X) be a dashed pattern of sizep (see definition 6.3) and
σN a sequence of random permutations, eachσN being of sizeN distributed with

1In the paper of Babson and Steingrimsson, they are called generalized patterns. But, as some
more generalgeneralized patternshave been introduced since (see next paragraph), we prefer to use
dashed patterns.
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Ewens measure. We denoteq = |X|. Then,
O

(N)
τ,X(σN )

Np−q , that is the renormalized
number of occurrences of(τ,X), tends almost surely towards 1

p!(p−q)! . Besides,
one has the following central limit theorem:

Z
(N)
(X,τ) :=

√
N


O

(N)
τ,X

Np−q
− 1

p!(p− q)!


→ N (0, Vτ,X ),

where the arrow denotes a convergence in distribution andVτ,X is some nonnega-
tive real number.

This theorem is proved in paragraph 6.3 using Theorem 1.4. Note that an ap-
proach with generating series would probably fail as it seems unlikely that there
exists a general formula for the generating series of the number of occurrences of
any given dashed pattern.

Unfortunately, we are not able to show in general that the constantVτ,X is posi-
tive (Vτ,X = 0 would mean that we have not chosen the good normalization). It is
nevertheless possible to writeVτ,X as a signed sum of products of binomial coef-
ficients and we have checked by computer the following conjecture for all patterns
of size8 or less.

Conjecture 1.7. For any dashed pattern(τ,X), one hasVτ,X > 0.

Remark1.8. The asymptotic number of occurrences of some patterns (ormotifs)
have already been studied in the framework of random words, where results sim-
ilar to Theorem 1.6 have been obtained [22, 16, 6]. Note that the methods used
by these authors cana priori not be extended to the framework of permutation
patterns for the following reasons. First, it is not known how to compute the gen-
erating functions of the number of occurrences of a given pattern in permutations.
Second, except in the caseθ = 0 (uniform random permutations), the occurrences
of patterns in disjoint places are not independent events (see remark 6.5 for details).

1.7. Future work. In addition to the conjecture above, we mention three direc-
tions for further research on the topic.

The notion of dashed patterns has been further extended to the notion ofgener-
alized patternsin a recent paper of M. Bousquet-Mélou, A. Claesson, M. Dukes
and S. Kitaev [7, Section 2]. Unfortunately, we have not beenable to obtain a
general result for the asymptotic number of occurrences of generalized patterns.
Finding such a result is, in the author’s opinion, a challenging open problem. One
could even consider a more general framework, see paragraph6.4.

Another direction consists in refining our convergence results (speed of conver-
gence, large deviations, local limit laws) by following thesame guideline.

Finally, it is natural to wonder if the method can be extendedto other measures
and objects. The extension to colored permutations should be straightforward. But
it would be interesting to obtain some result on other objects (for example other
families of rook placements) with the same ideas.
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1.8. Outline of the paper. The paper is organized as follows. In section 2, we
prove our main lemma. Then, in section 3, we give two easy lemmas on connected
components of graphs, which appear in all our applications.The three last sections
are devoted to the different applications: section 4 for thecycles, section 5 for
the excedances and finally, section 6 for the generalized patterns (including the
adjacencies and the dashed patterns).

2. PROOF OF THE MAIN LEMMA

2.1. Joint moments. The first step of the proof consists in computing the joint
moments of the family of random variables(B(N)

i,s )1≤i,s≤N .

Note that(B(N)
i,s )2 = B

(N)
i,s , whileB

(N)
i,s B

(N)
i,s′ = 0 if s 6= s′ andB(N)

i,s B
(N)
i′,s = 0

if i 6= i′. Therefore, we can restrict ourselves to the computation ofthe joint mo-

mentE
(
B

(N)
i1,s1

· · ·B(N)
ir ,sr

)
, in the case wherei = (i1, . . . , ir) ands = (s1, . . . , sr)

are two lists of pairwise distinct indices (some entry in thelist i can be equal to an
entry ofs).

We see these two lists as apartial permutation

σ̃i,s =

(
i1 . . . ir
s1 . . . sr

)
,

which sendsij to sj. The notion of cycles of a permutation can be naturally ex-
tended to partial permutations:(ij1 , . . . , ijγ ) is a cycle of the partial permutation if
sj1 = ij2 , sj2 = ij3 and so on untilsjγ = ij1. Note that a partial permutation does
not necessarily have cycles. The number of cycles ofσ̃i,s is denoted#(σ̃i,s).

The computation ofE
(
B

(N)
i1,s1

· · ·B(N)
ir ,sr

)
relies on two important properties of

the Ewens measure. First, it is conjugacy-invariant. Second, a random sampling
can be obtained inductively by the following procedure (see, e.g. [1, Example
2.19]).

Suppose that we have a permutationσ of sizeN −1 taken with this distribution.
Write it as a product of cycles and apply the following transformation.

• With probability(1+ θ)/(N + θ), addN as a fixed point. More precisely,
σ′ is defined by:

{
σ′(i) = σ(i) for i < N ;

σ′(N) = N.

• For eachj, with probability1/(N + θ), addN just beforej in its cycle.
More precisely,σ′ is defined by:





σ′(i) = σ(i) for i 6= σ−1(j), N ;

σ′(N) = j;

σ′(σ−1(j)) = N.

Thenσ′ is a random permutation ofSN distributed with Ewens measure. Iterating
this, one obtains a linear time and space algorithm to pick a random permutation
distributed with Ewens measure.
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Let us come back now to the computation of joint moments.

Lemma 2.1. Letσ be a random permutation taken with Ewens distribution. Then
one has

E
(
B

(N)
i1,s1

· · ·B(N)
ir ,sr

)
=

(1 + θ)#(σ̃i,s)

(N + θ) . . . (N + θ − r + 1)
.

For example, the parameter of the Bernoulli variablesB
(N)
i,s are given by

E(B(N)
i,s ) =

{
1+θ
N+θ if i = s;
1

N+θ if i = s.

Proof. As Ewens measure is constant on conjugacy classes ofSN , one can assume
without loss of generality thati1 = N − r + 1, i2 = N − r + 2, . . . , ir = N .
Then permutations ofSN with σ(ij) = sj are obtained in the previous algorithm
as follows:

• Choose any permutation inSN−r.
• For 1 ≤ j ≤ r, addij in the place given by the following rule: ifsj < ij ,

addij just beforesj in its cycle. Otherwise, look at̃σi,s(ij), σ̃2
i,s(ij) and so

on until you find an element smaller thanij and placeij before it. If there
is no such element, thenij is a minimum of a cycle of̃σi,s. In this case,
put it in a new cycle.

It is easy to check with the description of the construction of a permutation under
Ewens measure that these choices of places happen with a probability

(1 + θ)#(σ̃i,s)

(N + θ) . . . (N − r + 1 + θ)
. �

2.2. A general criterion for small cumulants. LetA(N)
1 ,. . . ,A(N)

ℓ beℓ sequences
of random variables. We introduce the following notation for joint moments and
cumulants of subsets of these variables: if∆ = {j1, . . . , jh} is a subset of[ℓ], then

M
(N)
A,∆ = E

(
A

(N)
j1

. . . A
(N)
jh

)
, κ

(N)
A,∆ = κ

(
A

(N)
j1

, . . . , A
(N)
jh

)
.

Lemma 2.2. LetA(N)
1 , . . . , A

(N)
ℓ be a list of sequences of random variables with

normalized expectations, that is, for anyN andj, E(A(N)
j ) = 1. Then the follow-

ing statements are equivalent:

I. Quasi-factorization property:for any subset∆ ⊆ [ℓ] of size at least2, one
has

(9)
∏

δ⊂∆

(
M

(N)
A,δ

)(−1)|δ|

= 1 +O(N−|∆|+1);

II. Small cumulant property:for any subset∆ ⊆ [ℓ] of size at least2, one has

(10) κ
(N)
A,∆ = O(N−|∆|+1).
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Proof. Let us consider the implicationI ⇒ II . We denote1 + T
(N)
∆ the left-hand

side of Equation (9) and assume thatT
(N)
∆ = O(N−|∆|+1) for any∆ ⊆ [ℓ] of size

at least2. The goal is to prove thatκ(N)
A,[ℓ] = O(N−ℓ+1). Indeed, this corresponds

to the case∆ = [ℓ] of II , but the same proof will work for any∆ ⊆ [ℓ].
Recall the relation between moments and cumulants (Equation (7)):

κ
(N)
A,[ℓ] =

∑

π∈P([ℓ])

µ(π, {[ℓ]})
∏

C∈π

M
(N)
A,C .

But joint moments can be expressed in terms ofT :

M
(N)
A,C =

∏

∆⊆C
|∆|≥2

(1 + T
(N)
∆ ) =

∑

∆1,...,∆m

T
(N)
∆1

. . . T
(N)
∆m

,

where the sum runs over all finite lists of pairwise distinct (but not necessarily
disjoint) subsets ofC of size at least2 (in particular, the lengthm of the list is
not fixed). When we multiply this over all blocksC of a set partitionπ, we obtain
the sum ofT (N)

∆1
. . . T

(N)
∆m

over all lists of pairwise distinct subsets of[ℓ] of size at
least2 such that each∆i is contained in a block ofπ. In other terms, for each
i ∈ [m], π must be coarser than the partitionΠ(∆i), which, by definition, has∆i

and singletons as blocks. Finally,

(11) κ
(N)
A,[ℓ] =

∑

∆1,...,∆m
pairwise distinct

T
(N)
∆1

. . . T
(N)
∆m




∑

π∈P([ℓ])
for all i, π≥Π(∆i)

µ(π, {[ℓ]})


 .

The condition onπ can be rewritten as

π ≥ Π(∆1) ∨ · · · ∨Π(∆m).

Hence, by definition of the Möbius function, the sum in the parenthesis is equal to
0, unlessΠ(∆1)∨ · · · ∨Π(∆m) = {[ℓ]}. On the one hand, by Equation (3), it may
happen only if:

m∑

i=1

rk
(
Π(∆i)

)
=

m∑

i=1

(|∆i| − 1) ≥ rk([ℓ]) = ℓ− 1.

On the other hand, one has

T
(N)
∆1

. . . T
(N)
∆m

= O
(
N−

∑m
i=1(|∆i|−1)

)
.

Hence only summands of order of magnitudeN−ℓ+1 or less survive and one has

κ
(N)
A,[ℓ] = O(N−ℓ+1)

which is exactly what we wanted to prove.

Let us now consider the converse statement. We proceed by induction onℓ and
we assume that, for allℓ′ smaller than a givenℓ ≥ 2, the theorem holds.
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Consider some sequences of random variablesA
(N)
1 , . . . , A(N)

ℓ such thatII
holds. By induction hypothesis, one gets immediately that

for all ∆ ( [ℓ],
∏

δ⊂∆

(M
(N)
A,δ )

(−1)|δ| = 1 +O(N−|∆|+1).

Note that an immediate induction shows that the joint momentfulfills

for all ∆ ( [ℓ], M
(N)
A,∆ = O(1) and(M (N)

A,∆)
−1 = O(1).

It remains to prove that
∏

∆⊆[ℓ]

(M
(N)
A,∆)

(−1)|∆|
= 1 +O(N−ℓ+1).

Thanks to the estimate above for joint moment, this can be rewritten as

(12) M
(N)
A,[ℓ] =

∏

∆([ℓ]

(M
(N)
A,∆)

(−1)ℓ−1−|δ|
+O(N−ℓ+1).

Considerℓ sequences of random variablesB(N)
1 ,. . . ,B(N)

ℓ such that the equality

M
(N)
B,∆ = M

(N)
A,∆ holds for∆ ( [ℓ] and such that Equation (12) is fulfilled when

A is replaced byB (the reader may wonder whether such a familyB exists; let
us temporarily ignore this problem, which will be addressedin Remark 2.3). By
definition, the familyB of sequences of random variables fulfills conditionI of
the theorem and, hence, using the first part of the proof, has also propertyII . In
particular:

κ
(N)
B,[ℓ]

= O(N−ℓ+1).

But, by hypothesis,

κ
(N)
A,[ℓ] = O(N−ℓ+1).

AsA andB have the same joint moment, except forM
(N)
A,[ℓ] andM (N)

B,[ℓ], this implies
that

M
(N)
A,[ℓ] −M

(N)
B,[ℓ] = κ

(N)
A,[ℓ] − κ

(N)
B,[ℓ] = O(N−ℓ+1).

But the familyB fulfills Equation (12) and, hence, so does familyA. �

Remark2.3. Let ℓ be a fixed integer andI a finite subset of(N>0)
ℓ. Then, for

any list (mi)i∈I of numbers, one can find somecomplex-valuedrandom variables
X1, . . . ,Xℓ such that

E(Xi1
1 . . . Xiℓ

ℓ ) = mi1,...,iℓ .

Indeed, one can look for a solution whereX1 is uniform on a finite set{z1, . . . , zT }
andXj = Xdj−1

1 , whered is an integer bigger than all coordinates of all vectors in
I. Then the quantities

{T · E(Xi1
1 . . . Xiℓ

ℓ ), i ∈ I}
correspond to different power sums ofz1, . . . , zT . Thus we have to find a family
{z1, . . . , zT } of complex number with specified power sums until degreedj. This
exists as soon asT ≥ dj , becauseC is algebraicly closed. In particular, the family
B considered in the proof above exists.
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However, we do not really need that this family exists. Indeed, during the whole
proof, we are doing manipulations on the sequences of moments and cumulants
using only the relations between them (equations (6) and (7)). We never consider
the underlying random variables. Therefore, everything could be done even if the
random variables did not exist, as it is often done in umbral calculus [24].

2.3. Case with distinct indices. We consider here the case where all entries in
the sequencesi ands are distinct. To be in the situation of Lemma 2.2, we set, for
h ∈ [ℓ] andN ≥ 1:

A
(N)
h = (N + θ)aj

∏

j∈τh

B
(N)
ij ,sj

,

whereaj = |τj |. The normalization factor has been chosen such thatE(A(N)
h ) = 1.

Hence, we will be able to apply Lemma 2.1.
Let us prove thatA(N)

1 , . . . , A
(N)
ℓ fulfills property I of this lemma. Of course,

the case∆ = [ℓ] is generic. The joint moments of the familyA have in this case
an explicit expression: forδ ⊆ [ℓ],

M
(N)
A,δ =

∏

j∈δ

(N + θ)aj

(N + θ)∑
j∈δ aj

.

Therefore, we have to prove that the quantity

Qa1,...,aℓ :=
∏

δ⊆[ℓ]
|δ|≥2

(MA
δ )(−1)|δ| =

∏

δ⊆[ℓ]

(
(N + θ)∑

j∈δ aj

)(−1)|δ|+1

write as1 +O(N−ℓ+1).

We proceed by induction overaℓ. If aℓ = 0, for anyδ ⊆ [ℓ − 1], the factors
corresponding toδ andδ ⊔ {ℓ} cancel each other. ThusQa1,...,aℓ−1,0 = 1 and the
statement holds.

If aℓ > 0, the quantityQa1,...,aℓ can be written as

Qa1,...,aℓ = Qa1,...,aℓ−1 ·
∏

δ⊆[ℓ]
ℓ∈δ


N + θ −

∑

j∈δ

aj




(−1)|δ|+1

.

SettingX = N + θ − aℓ, the second factor becomes

Ra1,...,aℓ−1
(X) :=

∏

δ⊆[ℓ−1]


X −

∑

j∈δ

aj




(−1)|δ|

.

We will prove below (Lemma 2.4) thatRa1,...,aℓ−1
(X) = 1+O(X−ℓ+1). Besides,

the induction hypothesis implies thatQa1,...,aℓ−1 = 1 +O(N−ℓ+1) and hence

Qa1,...,aℓ = 1 +O(N−ℓ+1)
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Finally, the familyA(N)
1 , . . . , A

(N)
ℓ of sequences of random variables has the quasi-

factorisation property of Lemma 2.2. Thus it also has the small cumulant property
and in particular

κ(A
(N)
1 , . . . , A

(N)
ℓ ) = O(N−ℓ+1).

Using the definition of theA(N)
h , this can be rewritten:

κ



∏

j∈τ1

B
(N)
ij ,sj

, . . . ,
∏

j∈τℓ

B
(N)
ij ,sj


 = O(N−r−ℓ+1),

which is Theorem 1.4 in the case of distinct indices. �

Here is the technical lemma that we left behind in the proof:

Lemma 2.4. For any positive integersa1, . . . , aℓ−1,

∏

δ⊆[ℓ−1]


X −

∑

j∈δ

aj




(−1)|δ|

= 1 +O(X−ℓ+1).

Proof. DefineRev (resp.Rodd) as

∏

δ


X −

∑

j∈δ

aj


 ,

where the product runs over subsets of[ℓ− 1] of even (resp. odd) size. Expanding
the product, one gets

Rev =
∑

m≥0

∑

δ1,...,δm

∑

j1∈δ1,...,jm∈δm

(−1)maj1 . . . ajmX
2ℓ−2−m.

The index set of the second summation symbol is the set of lists ofm distinct (but
not necessarily disjoint) subsets of[ℓ−1] of even size. Of course, a similar formula
with subsets of odd size holds forRodd.

Let us fix an integerm < ℓ − 1 and a listj1, . . . , jm. Denotej0 the smallest
integer in[ℓ−1] different formj1, . . . , jm (asm < ℓ−1, such an integer necessarily
exists). Then one has a bijection:




lists of subsets
δ1, . . . , δm of even size such
that, for all h ≤ m, jh ∈ δh



 →





lists of subsets
δ1, . . . , δm of odd size such
that, for all h ≤ m, jh ∈ δh





(δ1, . . . , δm) 7→ (δ1∇{j0}, . . . , δm∇{j0}),
where∇ is the symmetric difference operator. This bijection implies that the sum-
mand(−1)maj1 . . . ajmX

2ℓ−2−m appears as many times inRev than inRodd. Fi-
nally, all terms corresponding to values ofm smaller thanℓ − 1 cancel in the
differenceRev −Rodd and one has

Rev −Rodd = O
(
X2ℓ−2−ℓ+1

)
. �
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Remark2.5. We would like to point out the fact that our result is closely related
to a result of P.́Sniady. Indeed, thanks to our multiplicative criterion to have small
cumulants, the computation in this paragraph is equivalentto Lemma 4.8 of paper
[25]. However,Śniady’s proof relies on a non trivial theory of cumulants ofob-
servables of Young diagrams. Therefore, it seems to us that it is worth giving an
alternative argument.

2.4. General case. Let A(N)
1 , . . . ,A(N)

ℓ be some sequences of random variables.
We introduce sometruncated cumulants: if π0, π1, π2 and so on, are set partitions
of [ℓ], we set

k
(N)
A (π0) =

∑

π∈P([ℓ])
π≥π0

µ(π, {[ℓ]})
∏

C∈π

M
(N)
A,C

k
(N)
A (π0;π1, π2, . . . ) =

∑

π∈P([ℓ])
π≥π0

π�π1,π2,...

µ(π, {[ℓ]})
∏

C∈π

M
(N)
A,C

In the context of Lemma 2.2, it is also possible to bound the truncated cumulants.

Lemma 2.6. Let A(N)
1 ,. . . ,A(N)

ℓ be some sequences of random variables as in
Lemma 2.2, fulfilling property I (or equivalently property II).

• If π0 is a set partition of[ℓ],

k
(N)
A (π0) = O(N−#(π0)+1).

• More generally, ifπ0;π1, π2, . . . are set partitions of[ℓ],

k
(N)
A (π0;π1, π2, . . . ) = O(N−#(π0∨π1∨π2... )+1).

Proof. For the first statement, the proof is similar to the one ofI ⇒ II of Lemma
2.2. One can write an analogue of equation (11):

k
(N)
A (π0) =

∑

∆1,...,∆m
pairwise distinct

T
(N)
∆1

. . . T
(N)
∆m




∑

π∈P([ℓ])
π≥(π0∨π(∆1)∨... )

µ(π, {[ℓ]})


 .

The same argument as above says that only terms corresponding to lists such that
π0 ∨ π(∆1) ∨ · · · = [ℓ] survives. Such lists fulfills

m∑

i=1

|∆i| − 1 ≥ rk([ℓ])− rk(π0) = #(π0)− 1.

The first item of the Lemma follows because, by hypothesis,

T
(N)
∆1

. . . T
(N)
∆m

= O(N−
∑

i(|∆i|−1)).

For the second statement, we use an inclusion/exclusion:

k
(N)
A (π0;π1, . . . , πh) =

∑

I⊆[h]

(−1)IkA

(
π0 ∨

(
∨

i∈I

πi

))
.
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Then the second item follows from the first. �

Let us come back to the proof of Theorem 1.4. We fix two listsi ands of length
r, as well as a set partitionτ of r. We want to find a bound for

κ



∏

j∈τ1

B
(N)
ij ,sj

, . . . ,
∏

j∈τℓ

B
(N)
ij ,sj


 =

∑

π∈P([r])
π≥τ

∏

C∈π

E

(
∏

i∈C

B
(N)
ij ,sj

)
.

We split the sum according to the values of the partitionsπ1 = π ∧ CC(G1(i, s))
andπ2 = π ∧ CC(G2(i, s)). More precisely,

κ



∏

j∈τ1

B
(N)
ij ,sj

, . . . ,
∏

j∈τℓ

B
(N)
ij ,sj


 =

∑

π1≤CC(G1(i,s))
π2≤CC(G2(i,s))

Y (N)
π1,π2

,

where

Y (N)
π1,π2

=
∑

π≥τ
π∧CC(G1(i,s))=π1
π∧CC(G2(i,s))=π2

∏

C∈π

E

(
∏

i∈C

B
(N)
ij ,sj

)
.

We call the summation index the slice determined byπ1 andπ2.
Let us fix some partitionsπ1 andπ2. For each blockC of π1, we consider some

sequence of random variables(A(N)
C )N≥1 such that: for each list of distinct blocks

C1, . . . ,Ch

E(A(N)
C1

· · ·A(N)
Ch

) =
1

(N + θ)(N + θ − 1) . . . (N + θ − h+ 1)
.

For readers which wonder whether such variables exist, we refer to Remark 2.3,
which remains valid here. Consider the family

(13)
(
(N + θ)A

(N)
C

)
C∈π1

.

Its joint moment are the same than the ones of theB
(N)
i,s in the previous paragraph.

It has been proven that such a family has the quasi-factorization property and,
hence, its cumulants and truncated cumulants are small (Lemma 2.2).

But, if π is in the slice determined byπ1 andπ2, one can check easily (see the
description of joint moments in paragraph 2.1) that the corresponding product of
moment is given by:

∏

C∈π

E

(
∏

i∈C

B
(N)
ij ,sj

)
= απ1,π2

∏

C∈π

E



∏

C′∈π1
C′⊆C

A
(N)
C′


 ,

whereαπ1,π2 depends only onπ1 andπ2 and is given by:

• 0 if π2 contains in the same block two indicesj andh such thatij = ih but
sj 6= sh or sj = sh but ij 6= ih;
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• (1 + θ)γ otherwise, whereγ is the number of cycles of the partial permu-
tation(i, s), whose indices are all contained in the same block ofπ2.

As a consequence,

(14) Y (N)
π1,π2

=
απ1,π2

(N + θ)#(π1)

∑

π≥τ
π∧CC(G1(i,s))=π1
π∧CC(G2(i,s))=π2

∏

C∈π

E



∏

C′∈π1
C′⊆C

(N + θ)AC′


 .

But the conditionπ ∧ CC(G1(i, s)) = π1 can be rewritten as follows:π ≥ π1
andπ � π′ for any π1 ≤ π′ ≤ CC(G1(i, s)). A similar rewriting can be per-
formed for the conditionπ ∧ CC(G2(i, s)) = π2. Finally, the sum in equation
(14) above is a truncated cumulant of the family (13) and is bounded from above
byO(N−|CC(G2(i,s))∨τ |+1). This implies

Y (N)
π1,π2

= O(N−#(π1)−|CC(G2(i,s))∨τ |+1),

which ends the proof of Theorem 1.4 becauseπ1 has necessarily at least as many
parts asCC(G1(i, s)). �

Remark2.7. So far, we have considered the listsi ands as fixed. Therefore, the
constant hidden in the Landau symbolO may depend of these lists. However, the
quantity for which we establish an upper bound depends only on the partitionτ and
on which entries of the listsi ands coincide. For a fixedr, the number of partitions
and of possible equalities is finite. Therefore, we can choose a constant depending
only onr, as it is done in the statement of Theorem 1.4.

3. GRAPH-THEORETICAL LEMMAS

In this section, we present two quite easy lemmas on the number of connected
components on contractions of graphs. These lemmas will be useful in the next
sections for applications of Theorem 1.4.

3.1. Notations. Let us consider a graphG with vertex setV and edge setE. By
definition, ifV ′ is a subset ofV , the graphG[V ′] inducedbyG onV ′ has vertex set
V ′ and edge setE[V ′], whereE[V ′] is the subset ofE consisting of edges having
both their extremities inV ′.

Let us consider a surjective mapf from V to another setW . Then thecontrac-
tion of G by f is the graphG/f with vertex setW and which has an edge between
w andw′ if, in G, there is at least one edge between a vertex off−1(w) and a
vertex off−1(w′).

Example. Consider the graphG of figure 1. Its vertex set is the 10-element
setV = {1, 2, 3, 4, 5, 1̄, 2̄, 3̄, 4̄, 5̄}. Consider the applicationf from V to the set
W = {1, 2, 3, 4, 5}, consisting in forgetting the bar (if any). The contracted graph
G/f is drawn on the bottom left picture of Figure 1.
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G//f

FIGURE 1. An example of a graph, its contraction and surcontraction.

3.2. Connected components of contractions.

Lemma 3.1. LetG be a graph with vertex setV andf a surjective map fromV to
another setW . Then

#(CC(G)) ≤ #(CC(G/f)) +
∑

w∈W

(#(CC(G[f−1(w)])) − 1).

Proof. For each edge(w,w′) in G/f , we choose arbitrarily an edge(v, v′) in G
such thatf(v) = w andf(v′) = w′ (by definition ofG/f , such an edge exists but
is not necessarily unique). Thereby, to each edge ofG/f or ofG[f−1(w)] (for any
w in W ) corresponds canonically an edge inG.

Take covering forestsFG/f and(Fw)w∈W of graphsG/f andG[f−1(w)] for
w ∈ W . With the remark above, to each covering forest correspondsa set of edges
in G. Consider the unionF of these sets. It is an acyclic set of edges ofG. Indeed,
if it contained a cycle, it must be contained in one of the fibers f−1(w), otherwise
it would induce a cycle inFG/f . But, in this case, all edges of the cycles belong to
Fw, which is impossible, sinceFw is a forest.

Finally,F is an acyclic set of edges inG and

#(CC(G)) ≤ |V | − |F | = |W | − |FG/f |+
∑

w∈W

(|f−1(W )| − 1− |Fw|)

≤ #(CC(G/f)) +
∑

w∈W

(#(CC(G[f−1(w)])) − 1). �

Continuing the example.All fibers f−1(i) (for i = 1, 2, 3, 4, 5) are of size2.
Three of them contains one edge (fori = 3, 4, 5) and hence are connected, while
the other two have two connected components. Finally, the sum in the lemma is
equal to2, which is equal to the difference

#(CC(G)) −#(CC(G/f)) = 4− 2 = 2.
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3.3. Fibers of size 2. In this paragraph, we consider the particular case where
V = W ⊔ W and f is the canonical applicationW ⊔ W → W consisting in
forgetting to which copy ofW the element belongs. Throughout the paper, for
simplicity of notations, we will use overlined letters for elements of the second
copy ofW .

In this context, in addition to the contractionG/f , one can consider another
graph with vertex setW . By definition,G//f has an edge betweenw andw′ if, in
G, there is an edge betweenw andw′ andan edge between̄w andw̄′. We call this
graph thesurcontractionof G.

Continuing the example.The graphG and the functionf in the example above
fit in the context described in this paragraph. The surcontration G//f is drawn on
Figure 1 (bottom right picture).

Lemma 3.2. LetG andf be as above. Then

#(CC(G)) ≤ #(CC(G/f)) + #(CC(G//f)).

Proof. SetG1 = G/f , G2 = G//f andG3 = G.
By definition, an edge inG1 betweenj andk corresponds to two edges inG3.

In contrast, an edge(i, j) in G2 corresponds to at least one edge inG3.
Consider a spanning forestF1 inG1. As the set of edges ofG1 is smaller than the

one ofG2, F1 can be completed into a spanning forestF2 of G2. We consider the
subsetF3 of edges ofG3 obtained as follows: for each edge ofF1, we take the two
corresponding edges inG3 and for each edge ofF2\F1, we take the corresponding
edge inG3 (if there is several corresponding edges, choose one arbitrarily).

We will prove by contradiction thatF3 is acyclic. Suppose thatF3 contains a
cycleC3. Each edge ofC3 projects on an edge inF2 and thus the projection ofC3

is a listS = (e1, . . . , eh) of consecutiveedges inF2 (consecutivemeans that we
can orient the edges such that, for eachℓ ∈ [h], the end point ofeℓ is the starting
point of eℓ+1, with the conventioneh+1 = e1). This list is not necessarily a cycle
because it can contain twice the same edges (either in the same direction or in
different directions). Indeed,F3 contains some pairs of edges of the form

(
{w,w′}, {w,w′}

)

which project on the same edge inG2. But as edges from these pairs have no ex-
tremities in common, they can not appear consecutively in the cycleC3. Therefore,
the same edge can not appear twice in a row in the listS. This implies that the list
S contains a cycleC2 as a factor. We have reached a contradiction as the edges in
C2 are edges of the forestF2. ThusF3 is acyclic.

The number of edges inF3 is clearly2|F1|+ |F2 \F1| = |F1|+ |F2|. Therefore

#(CC(G3)) ≤ 2|W | − |F3| = (|W | − |F1|) + (|W | − |F2|)
= #(CC(G1)) + #(CC(G2)). �
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4. TOY EXAMPLE: NUMBER OF CYCLES OF A GIVEN LENGTHp

In this section, we are interested in the numberΓ
(N)
p of cycles of lengthp in a

random Ewens permutation of sizeN . The asymptotic behavior ofΓ(N)
p is easy to

determine (see Theorem 1.1), as its generating series is explicit and quite simple.
We will give another proof which relies on Theorem 1.4 and does not use an explicit
expression for the generating series ofΓ

(N)
p .

The main steps of the proof are the same in the other examples,so let us empha-
size them here.

Step 1: expand the cumulants of the considered statistic.
In this step, one has to express the statistic we are interested in in terms of the

variablesB(N)
i,s : here,

Γ(N)
p =

∑

1≤i1<i2,i3,...,ip≤N

Bc,N
(i1,...,ip)

,

whereBc,N
(i1,...,ip)

= B
(N)
i1,i2

. . . B
(N)
ip−1,ip

B
(N)
ip,i1

is defined by equation (2). Therefore,
one has

(15) κℓ(Γ
(N)
p ) =

∑

i1
1
<i1

2
,i1
3
,...,i1p

...
iℓ
1
<iℓ

2
,iℓ
3
,...,iℓp

κ
(
B

(N)

i11,i
1
2
. . . B

(N)

i1p,i
1
1
, · · · , B(N)

iℓ1,i
ℓ
2
. . . B

(N)

iℓp,i
ℓ
1

)
.

Step 2: Give an upper bound for the elementary cumulants.
Now, we would like to apply our main lemma to every summand of equation

(15). For this, one has to understand what is the exponent ofN in the upper bound
given by Theorem 1.4.

For a matrix
(irj) 1≤j≤p

1≤r≤ℓ

,

we denote:

• M(i) = |{(irj , irj+1); 1 ≤ j ≤ p, 1 ≤ r ≤ ℓ}| is the number of different
entries in the matrix of couples(irj , i

r
j+1) (by convention,irp+1 = ir1);

• Q(i) the number of connected components of the graphG(i) on [ℓ] where
r1 is linked withr2 if

{ir1j ; 1 ≤ j ≤ p} ∩ {ir2j ; 1 ≤ j ≤ p} 6= ∅.
In the case whereτ hasℓ blocks of sizep and where the lists is obtained by a
cyclic rotation of the listi in each block, Theorem 1.4 writes as:
(16)∣∣κ
(
B

(N)

i11,i
1
2
. . . B

(N)

i1p,i
1
1
, · · · , B(N)

iℓ1,i
ℓ
2
. . . B

(N)

iℓp,i
ℓ
1

)∣∣ ≤ CpℓN
−M(i)−Q(i)+1 ≤ CpℓN

−M(i).

Step 3: give an upper bound for the number of lists.
As the number of summands in Equation (15) depends onN , we can not use

directly inequality (16). We need a bound on the number of matricesi with a given
value ofM(i).
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This bound comes from the following simple lemma:

Lemma 4.1. For eachL ≥ 1, there exists a constantC ′
L with the following prop-

erty. For anyN ≥ 1 and t ∈ [L], the number of listsi of lengthL with entries in
[N ] such that

|{i1, . . . , iL}| = t

is bounded from above byC ′
LN

t.

Proof. If we specify which indices correspond to entries with the same values (that
is a set partition of the set of indices), the number of corresponding lists is

(N
t

)
and

hence is bounded from above byN t. This implies the lemma, withC ′
L being equal

to the number of set partitions of[L]. �

Step 4: conclude.
For a matrix(irj), we denotet(i) the number of distinct entries. Clearly,M(i)

is always at least equal tot(i). Therefore, using inequality (16) and Lemma 4.1,
for eacht ∈ [p · ℓ], the contribution of lists(irj) taking exactlyt different values is
bounded from above byC ′

pℓCpℓ and hence

for all ℓ ≥ 1, κℓ(Γ
(N)
p ) = O(1).

To compute the component of order1, let us make the following remark: by the
argument above, the total contribution of lists(irj) with M(i) > t(i) or Q(i) > 1

isO(N−1).
ButM(i) = t(i) implies that, as soon as

{ir1j ; 1 ≤ j ≤ p} ∩ {ir2j ; 1 ≤ j ≤ p} 6= ∅,
the cyclic words(ir11 , . . . , ir1p ) and (ir21 , . . . , ir2p ) are equals. Asir1 is always the
minimum of theirj , the two words are in fact always equal in this case. In particular
G(i) is a disjoint union of cliques. If we further assumeQ(i) = 1, i.e. G(i) is
connected,G(i) is the complete graph and we get thatirj does not depend onr.

Finally

(17) κℓ(Γ
(N)
p ) =

∑

i1<i2,i3,...,ip

κℓ
(
B

(N)
i1,i2

. . . B
(N)
ip,i1

)
+O(N−1).

But eachB(N)
i1,i2

. . . B
(N)
ip,i1

is a Bernouilli variable of parameter(1 + θ)/(N + θ)p.
Therefore their moments are all equal to(1 + θ)/(N + θ)p and by formula (7),
their cumulants are(1 + θ)/(N + θ)p + O(N−2p). Finally, as there are(N)p/p
terms in equation (17),

κℓ(Γ
(N)
p ) =

1 + θ

p
+O(N−1),

which implies thatΓ(N)
p converges in distribution towards a Poisson law of param-

eter 1+θ
p .

Moreover, a simple adaptation of the proof of Equation (17) implies that

κ(Γ(N)
p1 , . . . ,Γ(N)

pℓ
) = O(N−1)
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as soon as two of thepr ’s are different. Indeed, no matrices(irj) 1≤r≤ℓ
1≤j≤pr

with rows

of different sizes fulfill simultaneouslyM(i) = t(i) andQ(i) = 1. Finally, for

any p ≥ 1, the vector(Γ(N)
1 , . . . ,Γ

(N)
p ) tends in distribution towards a vector

(P1, . . . , Pp) where thePi are independent Poisson-distributed random variables
with respective parameters(1 + θ)/i. �

Remark.After equation (17), one could have finished the proof without com-
putation by the following argument:Γ(N)

p has asymptotically the same cumulants
as a virtual variableXN , which writes as a sum ofindependentrandom variables
with the same distribution as theBc,N

(i1,...,ip)
. As eachBc,N

(i1,...,ip)
is a Bernouilli vari-

able of expectation(1 + θ)/(N + θ)p and as there are(N)p/p such variables,XN

converges in distribution towards a Poisson law of parameter (1 + θ)/p. And so

doesΓ(N)
p .

As promised in the introduction, this argument follows the idea thateverything
happens as if the variablesBc,N

(i1,...,ip)
were independent.

5. NUMBER OF EXCEDANCES

In this section, we look at our second motivating problem, the number of ex-
cedances in random permutations. The first two paragraphs make a link between
a physical statistics model and this problem, justifying our work. The last two
paragraphs are devoted to the proof of Theorem 1.2 and related results.

5.1. Symmetric simple exclusion process. The symmetric simple exclusion pro-
cess (SSEPfor short) is a model of statistical physics: we consider particles on a
discrete line withN sites. No two particles can be in the same site at the same
moment. The system evolves as follows:

• if its neighboring site is empty, a particle can jump to its left or its right
with probability 1

N+1 ;
• if the left-most site is empty (resp. occupied), a particle can enter (resp.

leave) by the left with probability α
N+1 (resp. γ

N+1 );
• if the right-most site is empty (resp. occupied), a particlecan enter (resp.

leave) by the right with probability δ
N+1 (resp. β

N+1 );
• otherwise (we supposeα, β, γ, δ < 1 such that, in a given state, the sum of

the probabilities of the events which may occur is smaller than1), nothing
happens.

Mathematically, this defines an irreducible aperiodic Markov chain on the finite set
{0; 1}N (a state of theSSEPcan be encoded as a word in0 and1 of lengthN ,
where the entries with value1 correspond to the positions of the occupied sites).

This model is quite popular among physicists because, despite its simplicity,
it exhibits interesting phenomenons like the existence of different phases. For a
comprehensive introduction on the subject and a survey of results, see [11].
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7→ 101001

FIGURE 2. From permutation tableaux to words in{0; 1}N−1.

A good way to describe a stateτ of the SSEPis the functionF (N)
τ defined as

follows: whenNx is an integer,

F (N)
τ (x) =

1

N
·
Nx∑

i=1

τi

and, for eachi ∈ [N ], the functionF (N)
τ is affine between(i−1)/N andi/N . One

should seeF (N)
τ as the integral of the density of particles in the system.

We are interested in the steady state of theSSEP, that is the unique probability
measureµN on {0; 1}N , which is invariant by the dynamics. More precisely, we

want to study asymptotically the properties of the random functionF (N)
τ , whereτ

is distributed withµN andN tends to infinity.

5.2. Link with permutation tableaux and Ewens measure. From now on, we
restrict to the caseα, γ, δ = 1. In this case, thanks to a result of S. Corteel and
L. Williams [10], the measureµN is related to some combinatorial objects, called
permutation tableaux.

The latter are fillings of Young diagrams (which can have empty rows, but no
empty columns) with0 and1 respecting some rules, the details of which will not be
important here. The Young diagram is called the shape of the permutation tableau.
The size of a permutation tableau is its number of rows, plus its number of columns
(and not the number of boxes!).

In addition with their link with statistical physics, permutation tableaux also ap-
pear in algebraic geometry: they index the cells of some canonical decomposition
of the totally positive part of the Grassmannian [23, 29]. They have also been
widely studied from a purely combinatorial point of view [27, 9, 2].

To a permutation tableauT of sizeN + 1, one can associate a wordwT in
{0; 1}N as follows: we label the steps of the border of the tableau starting from the
North-East corner to the South-West corner. The first step isalways a South step.
For the other steps, we setwT

i = 1 if and only if thei + 1-th step is a south step.
Clearly, the wordwT depends only on the shape of the tableauT . This procedure
is illustrated on figure 2.

With this definition, the border of a tableauT of sizeN + 1 is the parametric
broken line

{(
n1(w

T )−NF
(N)

wT (x),−N(x− F
(N)

wT (x))− 1
)
: x ∈ [0; 1]

}
,
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wheren1(w
T ) is the number of1 in wT andF (N)

wT the function associated to the

word wT as defined in the previous paragraph. Hence,F
(N)

wT is a good way to
encode the shape of the permutation tableauT .

S. Corteel and L. Williams also introduced a statistics on permutation tableaux
callednumber of unrestricted rowsand denotedu(T ). If β is a positive real param-
eter, this statistics induces a measureµT

N (β) on permutation tableaux of sizeN , for
which the probability to pick a tableauT is proportional toβ−u(T ). This measure
is related to theSSEPby the following result (which is in fact a particular case
of [10, Theorem 3.1] but we do not know how to deal with the extra parameters
there).

Theorem 5.1. [10] The steady state of theSSEPµN is the push-forward by the
applicationT 7→ wT of the probability measureµT

N+1(β).

It turns out that this measure can also been described using random permuta-
tions. Indeed, S. Corteel and P. Nadeau [9, Theorem 1 and Section 3] have exhib-
ited a simple bijectionΦ between permutations ofN +1 and permutation tableaux
of sizeN + 1, which satisfies:

• If a permutationσ is mapped to a tableauT = Φ(σ), then:

wT = (δ2(σ), δ3(σ), . . . , δN+1(σ)),

whereδi = 1 if i is an ascent, that is ifσ(i) < σ(i + 1) (by convention
δσ(N+1)(σ) = 1).

• The number of unrestricted rows of a tableauT = Φ(σ) is the number of
right-to-left minima ofσ: recall thati is a right-to-left minimum ofσ if
σℓ > i for anyℓ > σ−1(i).

We are rather interested in the number of cycles of permutations rather than their
number of right-to-left minima. The following bijection, which is a variant of the
first fundamental transformations on permutation [20, § 10.2], sends one of this
statistics to the other. Take a permutationσ, written in its cycle notation such that:

• its cycles ends with their minimum;
• the minima of the cycles are in increasing order.

For example,σ = (3 5 1)(7 4 2)(6). Now, erase the parenthesis: we obtain the
word notation of a permutationΨ(σ).

The applicationΨ is a bijection fromSN to SN . Besides, the minima of the
cycles ofσ are the right-to-left minima ofΨ(σ), while the ascents inΨ(σ) are the
weak excedances inσ, that is the integersi such thatσ(i) ≥ i (a similar statement
is given in [20, Theorem 10.2.3]).

From now on, we assumeβ ·(1+θ) = 1. The properties above imply thatµT
N (β)

is the push-forward of the Ewens measure of parameterθ by the applicationΦ ◦Ψ.
Combining this with Theorem 5.1, the steady state of theSSEPµN is the push-
forward of Ewens measure by the applicationσ 7→ wΦ(Ψ(σ)). But this application
admits an easy direct description

SN+1 → {0; 1}N
σ 7→ (δσ(2)≥2, δσ(3)≥3, . . . , δσ(N+1)≥N+1).
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Recall that, as explained above, we are interested in the random functionF (N)
τ ,

whereτ is distributed according to the measureµN−1. The results above imply that

this random function has the same distribution thanF
(N+1)
σ , whereσ is a random

permutation of sizeN distributed with Ewens measure of parameterθ andF (N+1)
σ

is the function defined in paragraph 1.2.

5.3. Bounds for cumulants. Let us fix some real numbersx1, . . . , xℓ in [0; 1]. In
this paragraph, we will give some bounds on the joint cumulants of the random
variables(F (N)

σ (x1), . . . , F
(N)
σ (xℓ)).

Let us begin by the following bound (step 2 of the proof, according to the divi-
sion done in section 4).

Proposition 5.2. For anyℓ ≥ 1, anyN ≥ 1 and any listsi1, . . . , iℓ ands1, . . . , sℓ
of integers in[N ],

κ(B
(N)
i1,s1

, . . . , B
(N)
iℓ,sℓ

) ≤ CℓN
−|{i1,...,iℓ,s1,...,sℓ}|+1,

whereCℓ is the constant defined by Theorem 1.4.

Proof. Using Theorem 1.4 forτ =
{
{1}, . . . , {ℓ}

}
, we only have to prove that

−#
(
CC(G1(i, s))

)
−#

(
CC(G2(i, s))

)
≥ −|{i1, . . . , iℓ, s1, . . . , sℓ}|.

The last quantity|{i1, . . . , iℓ, s1, . . . , sℓ}| can be seen as the number of connected
component of the graphsG3(i, s) defined as follows:

• its vertex set is[ℓ] ⊔ [ℓ] = {1, 1̄, . . . , ℓ, ℓ̄};
• there is an edge betweenj andk (resp. j and k̄, j̄ and k̄) if and only if
ij = ik (resp.ij = sk, sj = sk).

The inequality above is simply Lemma 3.2 applied to the graphG3(i, s) (G1(i, s)
andG2(i, s) are respectively its surcontraction and contraction). �

We can now prove the following bound:

Proposition 5.3. There exists a constantC ′′
ℓ such that, for any integerN ≥ 1 and

real numbersx1, . . . ,xℓ, one has

|κ(F (N)
σ (x1), . . . , F

(N)
σ (xℓ))| ≤ C ′′

ℓ N
−ℓ+1.

Proof. To simplify the notations, we suppose thatNx1, . . . , Nxℓ are integers, so
that

(N − 1) · F (N)
σ (xi) =

Nxi∑

i=2

Bex,N
i (σ).

But the Bernoulli variableBex,N
i can be written asBex,N

i =
∑

s≥iB
(N)
i,s . Finally,

by multilinearity, one has (step 1):
(18)
(N − 1)ℓκ(F (N)

σ (x1), . . . , F
(N)
σ (xℓ)) =

∑

2≤i1≤Nx1

...
2≤iℓ≤Nxℓ

∑

s1≥i1

...
sℓ≥iℓ

κ(B
(N)
i1,s1

, . . . , B
(N)
iℓ,sℓ

).
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We apply Lemma 4.1 to the listi1, . . . , iℓ, s1, . . . , sℓ and get that the number of
couples of lists(i, s) such that|{i1, . . . , iℓ, s1, . . . , sℓ}| is equal to a given number
t is bounded from above byC ′

2ℓN
t (step 3).

Combining this with Proposition 5.2, we get that the total contribution of couples
of lists (i, s) with |{i1, . . . , iℓ, s1, . . . , sℓ}| = t to the right-hand side of (18) is
smaller thanC ′

2ℓCℓN , which ends the proof of Proposition 5.3 (step 4). �

Illustration of the proof.Setℓ = 5 and consider the listsi = (5, 2, 2, 7, 7) and
s = (8, 8, 2, 7, 7). The graphG3(i, s) associated to this couple of sequences is the
graphG drawn of Figure 1. It follows immediately thatG1(i, s) = G//f has 4
connected components whileG2(i, s) = G/f has 2. Therefore, by Theorem 1.4,

κ(B
(N)
5,8 , B

(N)
2,8 , B

(N)
2,2 , B

(N)
7,7 , B

(N)
7,7 ) ≤ C5N

−5.

The same bound is valid for all sequencesi ands such thatG3(i, s) = G. There
are fewer thanN4 such sequences: to construct such a sequence, one has to choose
distinct values for the four connected components ofG, such that they fulfill some
inequalities. Finally, their total contribution to (18) issmaller thanC5N

−1.
Comparison with a result of B. Derrida, J.L. Lebowitz and E.R. Speer.In [12,

Appendix A], it is proven along range correlation phenomenonfor the SSEP.
Rewritten in terms of Ewens random permutationsvia the material of the previous
paragraph, it asserts that, fori1 < · · · < iℓ,

κ(Bex,N
i1

, . . . , Bex,N
iℓ

) = O(N−ℓ+1).

In fact, their result is more general because it correspondsto the SSEPwith all
parameters. This bound on cumulants can be obtained easily using our Propo-
sition 5.2 and Lemma 4.1. A slight generalization of it (taking into account the
case where somei’s can be equal) implies directly Proposition 5.3. Therefore, our
method does not give some new results on theSSEP. Nevertheless, it was natural
to try to understand the long range correlation phenomenon directly in terms of
random permutations and it is what our approach does.

5.4. Convergence results. In this paragraph, we explain how one can deduce
from the bound on cumulants, some results on the convergenceof the random
functionF (N)

σ , in particular Theorem 1.2.
In addition to the bounds above, we need equivalents for the first and second

joint cumulants of theF (N)
σ (x). An easy computation gives:

E(Bex,N
i ) =

N − i+ 1 + θ

N + θ
;

Var(Bex,N
i ) =

(i− 1)(N − i+ 1 + θ)

(N + θ)2
;

Cov(Bex,N
i , Bex,N

j ) = −(n− j + 1 + θ)(i− 1)

(N + θ2)(N + θ − 1)
for i < j,
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from which we get the limits:

lim
N→∞

E(F (N)
σ (x)) =

∫ x

0
(1− t)dt+ o(1) =

1− (1− x)2

2
;(19)

lim
N→∞

N Cov(F (N)
σ (x), F (N)

σ (y)) =

∫ min(x,y)

0
t(1− t)dt(20)

−
∫

0≤t≤x
0≤u≤y

min(t, u)(1 −max(t, u))dtdu.

We callK(x, y) the right-hand side of the second equation. We begin by a proof

of Theorem 1.2, which describes the asymptotic behavior ofF
(N)
σ (x), for fixed

value(s) ofx.

Proof. Consider the first statement. The convergence in probability of F (N)
σ (x)

towards1/2 · (1 − (1 − x)2) follows immediately from equations (19) and (20).
For the almost-sure convergence, we have to study the fourthcentered moment.

From moment-cumulant formula (7) and using the fact that allcumulant but the
first are invariant by a shift of the variable,

E
(
(F (N)

σ (x)− E(F (N)
σ (x)))4

)
= κ4(F

(N)
σ (x)) + 3(κ2(F

(N)
σ (x)))2.

By proposition 5.3, this quantity is bounded from above byO(N−2) and, in par-
ticular, ∑

N≥1

E
(
(F (N)

σ (x)− E(F (N)
σ (x)))4

)
< ∞.

The end of the proof is classical. First, we inverse the summation and expectation
symbols (all quantities are nonnegative). As its expectation is finite, the random
variable ∑

N≥1

(F (N)
σ (x)− E(F (N)

σ (x)))4

is almost surely finite and hence its general term
(
(F

(N)
σ (x) − E(F (N)

σ (x))4
)
N≥1

tends almost surely to0.
Let us consider the second statement. Proposition 5.3 implies that, for any list

j1,. . . ,jℓ of integers in[r], one has

κ(Z(N)
σ (xj1), . . . , Z

(N)
σ (xjℓ)) = O(N−r/2+1).

In particular, forr > 2 the left-hand side tends to0. As the variablesZ(N)
σ (xi)

are centered, this implies that(Z(N)
σ (x1), . . . , Z

(N)
σ (xr)) tends towards a cen-

tered Gaussian vector. The covariance matrix is the limit ofthe covariance of the
Z

(N)
σ (xi), that is(K(xi, xj)). �

It is also possible to obtain some results concerning the sequence of random
function (F

(N)
σ )N≥1. In the following statement, we consider convergence in the

functional space(C([0; 1]), || · ||∞), that is uniform convergence of continuous
functions.
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Theorem 5.4. Almost surely, the functionF (N)
σ converges towards the function

x 7→ 1/2 · (1− (1− x)2).

Moreover, the sequence of random functions(x 7→ Z
(N)
σ (x))N≥1 converges in

distribution towards the Gaussian processx 7→ G(x), whose finite dimension laws
are Gaussian vectors with covariance matrices given by(K(xi, xj))1≤i,j≤r.

Proof. As, for anyN ≥ 1 and anyσ ∈ SN , the functionx 7→ F
(N)
σ (x) is non-

decreasing, the first statement follows easily from the convergence at any fixedx.
The argument can be found for example in a paper of J.F. Marckert [21, first page],
but it is so short and simple that we copy it here. By monotonicity of F (N)

σ andF ,
for any list0 = x0 < x1 < · · · < xk = 1, one has

sup
x∈[0;1]

|F (N)
σ (x)− F (x)|

≤ max
0≤j<k

max
(
|F (N)

σ (xj+1)− F (xj)|, |F (N)
σ (xj)− F (xj+1)|

)

a.s.−→ max
0≤j<k

|F (xj)− F (xj+1)|,

which may be chosen as small as wanted.
Consider the second statement. If the sequence of random functionx 7→ Z

(N)
σ (x)

has a limit, its finite-dimensional laws are necessarily thelimits of the ones of
Z

(N)
σ , that is, by Theorem 1.2, Gaussian vectors with covariance matrices given by

(K(xi, xj))1≤i,j≤r. As a probability measure onC([0; 1]) is entirely determined
by its finite dimensional laws [5, Example 1.2], one just has to prove that the se-
quencex 7→ Z

(N)
σ (x) has indeed a limit. To do this, it is enough to prove that it is

tight [5, Section 5, Theorems 5.1 and 7.1], that is, for eachǫ > 0 there exists some
constantM such that:

for all N > 0, one hasProb
(
||Z(N)

σ ||∞ > M
)
≤ ǫ.

Once again, this follows from a careful analysis of the fourth moment.
Let N ≥ 1 and s 6= s′ in [0; 1] such thatNs andNs′ are integers. Using

equation (7) and the fact thatZ(N)
σ (s) andZ(N)

σ (s′) are centered, one has:

E
(
(Z(N)

σ (s)− Z(N)
σ (s′))4

)

= κ4(Z
(N)
σ (s)− Z(N)

σ (s′)) + 3κ2(Z
(N)
σ (s)− Z(N)

σ (s′))2

= N2
(
κ4(F

(N)
σ (s)− F (N)

σ (s′)) + 3κ2(F
(N)
σ (s)− F (N)

σ (s′))2
)
.

A simple adaptation of the proof of Proposition 5.3 shows that

κℓ(F
(N)
σ (s)− F (N)

σ (s′)) ≤ CℓN
−ℓ+1|s− s′|.
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Indeed, in Lemma 4.1, if we ask that at least one entry of the list i is betweenNs
andNs′ then the number of lists is bounded from above byC ′

LN
t|s− s′|. Finally,

E
(
(Z(N)

σ (s)− Z(N)
σ (s′))4

)
≤ (N2(C4N

−3|s− s′|+ 3C2
2N

−2|s− s′|2))
≤ (C4 + 3C2

2 )|s − s′|2.

The last inequality has been deduced from|s− s′| ≥ N−1.

We can now apply Th. 10.2 of Billingsley’s book [5] withSi = Z
(N)
σ (i/N) (for

0 ≤ i ≤ N ), α = β = 1 anduℓ = (C4 + 3C2
2 )

1/2/N (see equation (10.11) of the
same book). We get that there exists some constantK such that

Prob
(
max
0≤i≤N

|Si| ≥ M
)
≤ KM−4,

which proves that the sequenceZ(N)
σ is tight. �

6. GENERALIZED PATTERNS

This section is devoted to the applications of our method to adjacencies (para-
graph 6.2) and dashed patterns (paragraph 6.3). These two statistics belong in fact
to the same general framework and we discuss in paragraph 6.4the possibility of
unifying our results.

The proofs in this paragraph are a little bit more technical than the ones before
and in particular we need a new lemma for step 3, given in paragraph 6.1.

6.1. Preliminaries. Let L ≥ 1 be an integer. For each pair{j, k} ⊂ [L], we
choose afinite set of integersD{j,k}.

Consider a listi1, . . . , iL of integers. For each paire = {j, k} ⊂ [L] (with
j < k), we denoteδe(i) the differenceik − ij . Then we associate toi a graph of
vertex set[L] and edge set{e : δe(i) ∈ De}.

The following lemma is a slight generalization of Lemma 4.1

Lemma 6.1. For eachL and families of sets(D{j,k})1≤j<k≤L, there exists a con-
stantC ′′

L,D with the following property. For anyN ≥ 1 andt ≤ L, the number of
sequencesi1, . . . , iL with entries in[N ], whose corresponding graph has exactlyt
connected components is bounded from above byC ′′

L,DN t.

Proof. If we fix a graphG with vertex setL and t connected components and
if we fix also, for each edgee of the graph, the actual value ofδe(i), then the
corresponding number of listsi is smaller thanN t. Indeed, the sequence will be
determined by the choice of one value per connected component of G (with some
constraints, such that no extra edges appear). But the number of graphs and of
values on edges are finite (the setsDj,k are finite) and depend only onL and on the
family D. �
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6.2. Adjacencies. In this paragraph, we prove the following extension of Theorem
1.3.

Theorem 6.2. Let σN be a sequence of random permutations, such thatσN has
sizeN and is distributed with respect to Ewens measure of parameter θ. Then the
numberA(N) of adjacencies inσN converges in distribution towards a Poisson
variable of parameter2.

Proof. As before, we writeA(N) in terms of theB(N)
i,s (we use the convention

B
(N)
i,s = 0 if i or s is not in[N ]):

A(N) =
∑

1≤i,s≤N
ǫ=±1

B
(N)
i,s B

(N)
i+1,s+ǫ.

Hence, forℓ ≥ 1, its ℓ-th cumulant writes as (step 1):

(21) κℓ(A
(N)) =

∑

1≤i1,s1,...,iℓ,sℓ≤N

ǫ1,...,ǫℓ=±1

κ

(
B

(N)
i1,s1

B
(N)
i1+1,s1+ǫ1

, · · · , B(N)
iℓ,sℓ

B
(N)
iℓ+1,sℓ+ǫℓ

)
.

Given two listsi ands of positive integers, we consider the three following graph:

• H1 has vertex set[ℓ] and has an edge betweenj andk if |ij − ik| ≤ 2 and
|sj − sk| ≤ 2;

• H2 has vertex set[ℓ] and has an edge betweenj andk if

{ij , ij ± 1, sj , sj ± 1} ∩ {ik, ik ± 1, sk, sk ± 1} 6= ∅.
• H3 has vertex set[ℓ] ⊔ [ℓ] and has an edge betweenj andk (resp.j andk̄,
j̄ andk̄) if |ij − ik| ≤ 2 (resp.|ij − sk| ≤ 2, |sj − sk| ≤ 2)

We will use Theorem 1.4 to give a bound for
∣∣∣∣κ
(
B

(N)
i1,s1

B
(N)
i1+1,s1+ǫ1

, · · · , B(N)
iℓ,sℓ

B
(N)
iℓ+1,sℓ+ǫℓ

)∣∣∣∣

Clearly, the numberM(i, s) of different couples in the set

{(ij , sj); 1 ≤ j ≤ ℓ} ∪ {(ij + 1, sj + ǫj); 1 ≤ j ≤ ℓ}
is at least equal to2#(CC(H1)) ≥ #(CC(H1)) + 1. Besides, in this case, the
graphG′

2 introduced in paragraph 1.5 has the same vertex set asH2 and fewer
edges. Hence it has more connected components. Therefore, Theorem 1.4 implies
(step 2):
∣∣∣∣κ
(
B

(N)
i1,s1

B
(N)
i1+1,s1+ǫ1

, · · · , B(N)
iℓ,sℓ

B
(N)
iℓ+1,sℓ+ǫℓ

)∣∣∣∣ ≤ C2ℓN
−#(CC(H1))−#(CC(H2)).

But, using the terminology of paragraph 3.3, the graphsH1 andH2 are the surcon-
traction and contraction ofH3. Therefore, by Lemma 3.2, one has:

(22) #(CC(H3)) ≤ #(CC(H1)) + #(CC(H2)).

Besides, Lemma 6.1 implies the number of listsi ands with entries in[N ] such
thatH3 has exactlyt connected components is bounded from above byC ′′

2ℓ,DN t
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for D well-chosen (step 3). In particular the constantC ′′
2ℓ,D does not depend on

N . Therefore, the total contribution of these lists to equation (21) is bounded from
above byC2ℓN

−t · C ′′
2ℓ,DN t = C2ℓ · C ′′

2ℓ,D.
Finally,

κℓ(A
(N)) = O(1).

Moreover, only lists such thatM(i, s) = 2 and#(CC(H1)) = 1 contribute to the
term of order1. But this implies that the listsi, s andε are constant. In other
words,

κℓ(A
(N)) =

∑

i,s≥1
ǫ=±1

κℓ(B
(N)
i,s B

(N)
i+1,s+ǫ) +O(N−1).

The2(N − 1)2 variablesB(N)
i,s B

(N)
i+1,s+ǫ are Bernoulli variables, whose parameters

are given by:

• if s = i ∈ [N − 1] andǫ = 1, then the parameter is θ2

(N+θ)(N+θ−1) (N − 1

cases);
• if s = i; ǫ = −1 (here2 ≤ i ≤ N − 1) or s = i + 1; ǫ = −1 (here
1 ≤ i ≤ N − 1) or s = i + 2; ǫ = −1 (here1 ≤ i ≤ N − 2), then the
parameter is θ

(N+θ)(N+θ−1) (3N − 5 cases);

• otherwise, the parameter is 1
(N+θ)(N+θ−1) .

Recall that the cumulants of a sequence of Bernouilli variablesX(N) of parameters
(pN )N≥1 with pN → 0 are asymptotically given bykℓ(X(N)) = pN + O(p2N ).
Hence,

kℓ(A
N ) = 2(N − 1)2

1

(N + θ)(N + θ − 1)
+O

(
N−1

)
= 2 +O

(
N−1

)
.

Finally, the cumulants ofAN converges towards those of a Poisson variable of
parameter2, which implies the convergence ofAN in distribution. �

6.3. Dashed patterns. Let us recall the definition of dashed patterns in a permu-
tation, as introduced by E. Babson and E. Steingrimsson [3].

Definition6.3. A dashed pattern of sizep is the data of a permutationτ ∈ Sp and
a subsetX of [p− 1]. An occurrence of the dashed pattern(τ,X) in a permutation
σ ∈ SN is a listi1 < · · · < ip such that:

• for anyx ∈ X, one hasix+1 = ix.
• σ(i1), . . . , σ(ip) is in the same relative order thanτ(1), . . . , τ(p).

The number of occurrences of the pattern(τ,X) will be denotedO(N)
τ,X (σ).

Example6.4. O
(N)
21,∅ is the number of inversion, whileO(N)

21,{1} is the number of
descents. Many classical statistics on permutations can bewritten as the number of
occurrences of a given dashed patten or as a linear combination of such statistics,
see [3, section 2].
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In this paragraph, we prove Theorem 1.6, which gives, for anygiven dashed
pattern(τ,X), the asymptotic behavior of the sequence(O

(N)
τ,X )N≥1 of random

variables.

Proof. As in the previous examples, we write the quantity we want to study in
terms of the variablesB(N)

i,s . Here,

O
(N)
τ,X =

∑

i1<···<ip
for all x∈X,ix+1=ix+1

∑

s1,...,sp
s
τ−1(1)

<···<s
τ−1(p)

B
(N)
i1,s1

. . . B
(N)
ip,sp

.

Expanding its cumulants by multilinearity, we get (step 1)

(23) kℓ(O
(N)
τ,X ) =

∑

(irj )

∑

(srj )

κ

(
B

(N)

i11,s
1
1
. . . B

(N)
i1p,s

1
p
, . . . , B

(N)

iℓ1,s
ℓ
1
. . . B

(N)

iℓp,s
ℓ
p

)
.

The first (resp. second) summation index is the set of matrices (irj) (resp. (srj))
with (j, r) ∈ [p]× [ℓ] such that:

• for all r, ir1 < · · · < irp (resp.srτ−1(1) < · · · < srτ−1(p));
• for all r, for all x ∈ X, irx+1 = irx+1 (resp. no extra condition on thes’s).

Given such listsi ands, we consider the four following graphs:

• H1 has vertex set[p] × [ℓ] and has an edge between(j, r) and (k, t) if
|irj − itk| ≤ 1 andsrj = stk;

• H2 has vertex set[p]× [ℓ] and has an edge between(j, r) and(k, t) if

{irj , irj + 1, srj} ∩ {itk, itk + 1, stk} 6= ∅.
• H3 has vertex set([p] × [ℓ]) ⊔ ([p] × [ℓ]) and has an edge between(j, r)

and(k, t) (resp. (j, r) and(k, t); (j, r) and(k, t)) if |irj − itk| ≤ 1 (resp.
stk − irj = 0 or 1; srj = stk).

• H ′
2 has vertex set[ℓ] and has an edge betweenr andt if


⋃

1≤j≤p

{irj , irj + 1, srj}


 ∩



⋃

1≤k≤p

{itk, itk + 1, stk}


 6= ∅.

The graphsH1 andH2 are respectively the surcontraction and contraction ofH3,
as defined in Section 3. Therefore, one has, by Lemma 3.2:

#(CC(H3)) ≤ #(CC(H1)) + #(CC(H2)).

But one can further contractH2 by the mapf : [p]× [ℓ] → [ℓ] defined byf(j, r) =
r and we obtainH ′

2. With the notation of Section 3, it implies:

#(CC(H2)) ≤ #(CC(H ′
2)) +

ℓ∑

r=1

[
#
(
CC

(
H2

[
[p]× {r}

]))
− 1
]
.

But each induced graphH2[[p] × {r}] (for 1 ≤ r ≤ ℓ) contains at least an edge
between(x, r) and(x + 1, r) for eachx ∈ X (because we assumed thatirx+1 =
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irx + 1). Thus it has at mostp− q connected components. Finally,

(24) #(CC(H3)) ≤ #(CC(H1)) + #(CC(H ′
2)) + (p − q − 1)ℓ.

Let us apply the main lemma (Theorem 1.4) to obtain a bound for
∣∣∣∣κ
(
B

(N)

i11,s
1
1
. . . B

(N)
i1p,s

1
p
, . . . , B

(N)

iℓ1,s
ℓ
1
. . . B

(N)

iℓp,s
ℓ
p

)∣∣∣∣.

In this case, the number of different couples in the indices of the Bernouilli vari-
ables is at least the number of connected components ofH1. Besides, the graph
G′

2 introduced in paragraph 1.5 has the same vertex set, but fewer edges thanH ′
2.

Hence, it has more connected components and we obtain:
∣∣∣∣κ
(
B

(N)

i11,s
1
1
. . . B

(N)
i1p,s

1
p
, . . . , B

(N)

iℓ1,s
ℓ
1
. . . B

(N)

iℓp,s
ℓ
p

)∣∣∣∣ ≤ CpℓN
−#(CC(H1))−#(CC(H′

2))+1.

Using inequality above, this can be rewritten as (step 2)
∣∣∣∣κ
(
B

(N)

i11,s
1
1
. . . B

(N)
i1p,s

1
p
, . . . , B

(N)

iℓ1,s
ℓ
1
. . . B

(N)

iℓp,s
ℓ
p

)∣∣∣∣ ≤ CpℓN
−#(CC(H3))+(p−q−1)ℓ+1.

As in the previous paragraph, Lemma 6.1 asserts that the number of couples of lists
((irj), (s

r
j)) such that#(CC(H3)) = t is smaller thanC ′′

2pℓ,DN t for a well chosen
D (step 3). Hence their total contribution to Equation (23) isbounded from above
by the quantityCpℓC

′′
pℓ,DN (p−q−1)ℓ+1. Finally, one has:

(25) κℓ(O
(N)
(X,τ)) = O(N (p−q−1)ℓ+1),

or equivalentlyκℓ(Z
(N)
(X,τ)) = O(N−ℓ/2+1). As in paragraph 5.4, the theorem

follows from this bound and from the limits of the normalizedexpectation and
variance.

For the expectation, we have to consider the caseℓ = 1. In this case, one has
#(CC(H1)) = p and#(CC(H ′

2)) = 1. Therefore, if we want an equality in
Equation (24), we need#(CC(H3)) = 2p− q, which implies that all entries in the
lists i ands are distinct. For these lists, one has (Lemma 2.1)

κ(B
(N)

i11,s
1
1
. . . B

(N)
i1p,s

1
p
) = E(B(N)

i11,s
1
1
. . . B

(N)
i1p,s

1
p
) =

1

(N + θ)p
.

But the number of lists with distinct entries in the index setof equation (23) is
asymptotically N2p−q

p!(p−q)! . Finally,

lim
N→∞

1

Np−q
E(O(N)

(X,τ)) =
1

p!(p − q)!
.

It remains to prove that the renormalized varianceN−2(p−q)+1κ2(O
(N)
(X,τ)) has a

limit Vτ,X ≥ 0, whenN tends to infinity. But this follows from the bound (25) and

the fact that anyκℓ(O
(N)
(X,τ)) is a rational function inN . Let us explain the latter

fact.
Recall thatκℓ(O

(N)
(X,τ)) is given by equation (23). We can split the sum depending

on the graphH3 associated to the matricesi ands and on the actual valueδe(i, s)



34 V. FÉRAY

of irj − itk (or stk− irj andstk− srj respectively) for each edgee of H3. Then the fact

thatκℓ(O
(N)
(X,τ)) is a rational function is an immediate consequence of the following

points:

• the number of graphsH3 and possible values for the differencesδe(i, s)
(for e ∈ EH3) are finite;

• the cumulantκ
(
B

(N)

i11,s
1
1
. . . B

(N)
i1p,s

1
p
, . . . , B

(N)

iℓ1,s
ℓ
1
. . . B

(N)

iℓp,s
ℓ
p

)
is a rational func-

tion in N which depends only on the graphH3 and values ofδe(i, s) (for
e ∈ EH3);

• the number of matricesi ands corresponding to a given graphG and given
valuesδe(i, s) is a polynomial inN . �

Remark6.5. Fix a dashed pattern(τ,X) and consider auniform random permuta-
tion σ. Let us denoteAi1,...,ip the event :i1, . . . , ip is an occurrence of(τ,X) in σ.
Then the eventsAi1,...,ip andAj1,...,jp are independent as soon as the listsi andj
are disjoint. This allows to build a simpler proof of the result above, still using the
moment method (see [16] for a proof of a similar result in the context of random
words). However, it does not hold in the case of Ewens random permutations with
a general parameterθ.

6.4. Generalized patterns and local statistics. The notion of dashed patterns has
been recently generalized by several authors in [7, Section2]. The idea is roughly
that, in an occurrence of a generalized pattern, one can ask that some values are
consecutive (and not only some places as in dashed patterns). It would be in-
teresting to give a general theorem on the asymptotic behavior of the number of
occurrences of a given generalized pattern. This seems to bea hard problem as
many different behavior can occur:

• The number of adjacencies is the sum of the number of occurrences of two
different generalized patterns and converge towards a Poisson distribution.

• The dashed patterns are special cases of generalized patterns. As we have
seen in the previous paragraph, their number of occurrencesconverges,
after normalization, towards a Gaussian law. Other generalized patterns
exhibit the same behavior, for example the one considered in[7] (the proof
is the same as for dashed patterns; note that Remark 6.5 does not hold for
occurrences of this pattern).

• Other behaviors can occur: for example, it is easy to see thatthe number
of occurrences of the pattern(123, {1}, {1}) (we use the notations of [7]),
has an expectation of ordern, but a probability of being0 with a positive
lower bound.

Even if we have not been able to give a general statement, our approach unifies the
first two cases.

The notion of generalized patterns can be further extended to the one oflocal
statistic. Fix a integerp ≥ 1 and a setS of constraints: a constraint is an equality
or inequality (large or strict) whose members are of the formij+d or sj+d where
j belongs to[p] andd is some integer. Then, for a permutationσ of SN , we define



STATISTICS IN RANDOM PERMUTATIONS 35

O
(N)
p,S (σ) as the number of listsi1, . . . , ip ands1, . . . , sp satisfying the constraints

in S and such thatσ(ij) = sj for all j in [p].

We call any linear combination of statisticsO(N)
p,S a local statistic. The number

of occurrences of a generalized patterns, but also the number of excedances or of
cycles of a given lengthp, are examples of local statistics. The method presented
in this article is suitable for the asymptotic study of jointvectors of local statistics.
We have failed to find a general statement, but we are convinced that our approach
can be adapted to many more examples than the ones studied in this article.

However, the method does not seem appropriate to global statistics, such as the
total number of cycles of the permutation or the length of thelongest cycle.
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