
HAL Id: hal-00658212
https://hal.science/hal-00658212

Preprint submitted on 10 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A benchmark of kriging-based infill criteria for noisy
optimization

Victor Picheny, Tobias Wagner, David Ginsbourger

To cite this version:
Victor Picheny, Tobias Wagner, David Ginsbourger. A benchmark of kriging-based infill criteria for
noisy optimization. 2012. �hal-00658212�

https://hal.science/hal-00658212
https://hal.archives-ouvertes.fr


Structural and Multidisciplinary Optimization manuscript No.
(will be inserted by the editor)

A benchmark of kriging-based infill criteria for noisy
optimization

Victor Picheny · Tobias Wagner · David Ginsbourger

October 2011

Abstract Responses of many real-world problems can

only be evaluated perturbed by noise. In order to make

an efficient optimization of these problems possible, in-
telligent optimization strategies successfully coping with

noisy evaluations are required. In this article, a com-

prehensive comparison of existing kriging-based meth-

ods for the optimization of noisy functions is provided.
Ten methods are described using a unified formalism,

and compared on analytical benchmark problems with

different configurations (noise level, maximum number

of observations, initial number of observations). It is

found that the optimal method depends on the opti-
mization problem, even though some criteria are con-

sistently more efficient than others.

1 Introduction

The use of kriging for modeling and optimizing deter-
ministic computer simulations has a long and successful

tradition [23,14,29,15]. In recent years, there has been

an increasing interest in the study of ”stochastic” simu-

lators or processes, whose outputs can only be observed

in the presence of noise. Examples of such simulators
can be found in a wide area of applications, includ-

ing nuclear safety assessment [6], discrete event simula-

tion [1], acoustic wave propagation in turbulent fluids

[11], robust airfoil optimization [17], design of compos-
ite materials [25,24] and experimental measurements in

mechanical engineering [3].
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The large variety of applications has resulted in many

different approaches for Noisy Kriging-based Optimiza-

tion (NKO) over the last years [7,10,30,19]. Most of
these NKO algorithms use the same formulation of the

kriging model. Consequently, their differences are only

based on different formulations of the criterion for se-

lecting the next evaluation point(s) – the so-called infill
criterion. The ideas behind these criteria range from

a pure exploration of the design space to an inten-

sive reevaluation of the currently best solution(s). Since

these approaches have been developed within different

disciplines, they have only been compared to state-of-
the-art approaches in the respective fields. Based on im-

plementation issues with respect to the multi-dimensional

optimization of the criteria, often only one-dimensional

examples are used. An interdisciplinary benchmark has
not been performed until now.

In this paper, a comprehensive benchmark of the

different NKO algorithms on test functions of varying
dimension is thus conduced. The benchmark focuses

on the class of problems shared by all these NKO ap-

proaches: a box-constrained, real-valued search space

which is mapped to a single objective function y : x ∈
D ⊂ R

d → y(x) ∈ R, where experiments can only pro-

vide noisy observations ỹi = y(xi) + ǫi (1 ≤ i ≤ n) of

the true response y(xi). In order to stick to the assump-

tions made in most of the approaches, the observation

noises ǫi are considered as being Gaussian, centered and
i. i. d. This results in a performance analysis of the ap-

proaches under ideal conditions. Based on a set of test

functions covering important problem properties, such

as uni- and multi-modality, low and moderate search
space dimensions, and different noise levels (variances),

the relative strengths and drawbacks of the different

NKO approaches are revealed.
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Since all NKO approaches are based on a kriging

model which is sequentially refined by new observa-

tions, they share important parameters, such as the size

of the initial design of experiments and the choice of the

covariance kernel. A systematic analysis of these param-
eters within the benchmark can thus assist in finding

suitable settings and in identifying interactions between

them and the corresponding NKO approach. This is the

basis for a fair comparison of the NKO algorithms.

Before the design and the results of the benchmark

are presented, the kriging model is described. Based on
this background, the different infill criteria of the NKO

algorithms are presented and formally compared. The

implementation of the benchmark and solutions to some

subproblems are explained in section 4.3. Finally, the
experiments are described and the results are discussed.

The paper is concluded with a summary of the results

and an outlook on further research topics in NKO.

2 The Kriging model

Kriging is a functional approximation method originally

coming from geosciences [16], and having been popu-

larized in the computer experiments [23] and machine

learning [21] communities. The basic idea behind krig-
ing is the assumption that the response of interest y

can be considered as one realization of a Gaussian pro-

cess Y . In this work, we particularly focus on Ordinary

Kriging (OK) which is described in the following.

2.1 Ordinary kriging

In the OK framework [18], Y (x) is assumed to be of the

form:

Y (x) = µ+ Z(x) (1)

where µ ∈ R is an unknown constant trend, and Z

is a Gaussian process with zero mean and stationary

(translation-invariant) covariance kernel of the form k :

(x,x′) ∈ D2 → k(x,x′) = σ2r(x − x′;ψ) for an admis-

sible correlation function r with parameters ψ.

Under such hypotheses 1, the kriging model can be
simply defined as the expectation and variance of Y

conditionally on the observations:

m(x) = E[Y (x)|Y (xi) = yi, 1 ≤ i ≤ n] (2)

s2(x) = Var[Y (x)|Y (xi) = yi, 1 ≤ i ≤ n] (3)

where | means ”conditional on”.

m(x) is called the kriging mean. It provides an in-

terpolator for each observation xi by enhancing the

1 Assuming further that µ is independent of Z and follows
an improper uniform distribution over R.

constant trend based on the correlation to the exist-

ing observations. s2(x) denotes the kriging variance (or

prediction variance), which can be seen as a point-wise

estimator of the model uncertainty. m(x) and s2(x) ,

after conditioning on n observations, are given by the
following equations:

mn(x) = µ̂n + kn(x)T K−1
n (yn − µ̂n1n), (4)

s2n(x) = σ2 −kn(x)T K−1
n kn(x)+

(
1 − 1T

nK−1
n kn(x)

)2

1T
nK−1

n 1n

,

(5)

with:

– yn = (y1, . . . , yn)T ,

– Kn =
(
k(xi,xj)

)
1≤i,j≤n

,

– kn(x) = (k(x,x1), . . . , k(x,xn))T ,
– 1n is a n× 1 vector of ones, and

– µ̂n = 1T
nK−1

n yn/1T
nK−1

n 1n is the best linear unbi-

ased estimate of µ.

The kriging mean can be written as an (adaptively)

weighted sum of the observations:

mn(x) = λ
n(x)yn, (6)

with λ
n(x) =

(
kn(x)T +

(1−kn(x)T
K
−1
n

1n)

1T
n
K
−1
n 1n

1T
n

)
K−1

n . Krig-

ing is thus often referred to as best linear predictor.

2.2 Kriging with noisy observations

In the framework of noisy observations, the ỹi can be
considered as realizations of the random variables Ỹi :=

Y (xi) + εi, so that Kriging amounts to conditioning Y

on the noisy observations Ỹi (1 ≤ i ≤ n). As shown ear-

lier in [8], provided that the process Y and the Gaus-

sian measurement errors εi are stochastically indepen-
dent, the process Y is still Gaussian conditionally on

the noisy observations Ỹi (1 ≤ i ≤ n). Its conditional

mean and variance functions are given by similar OK

equations, with the only difference that Kn is replaced
by K̃n = Kn + τ2In at every occurrence in the mn, s2n
and µ̂n equations, where τ2 is the known or estimated

variance of the noise variables εi.

In geostatistics, as well as in computer experiments,

an alternative, but equivalent, formulation R̃n =
eKn

σ2+τ2

is often used in order to write the kriging equations in

terms of correlations. In this case, R̃ij = 1 if i = j,

and (1−ν)r(xi,xj) otherwise, where τ2 is called nugget

and ν = τ2

σ2+τ2 scaling factor [27]. Another equivalent

formulation, using variograms, can be found under the

name of ns-kriging [24].
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Note also that the model presented here resembles

but slightly differs from the so-called kriging with nugget

effect of the geostatistics literature [18], where the error

variance τ2 appears also in the covariance vector kn(x),

which makes it a discontinuous, interpolating model.

In the case of heterogeneous noise variances, i.e.

when var(ỹ1) = τ2
1 6= . . . 6= var(ỹn) = τ2

n, τ2In is

replaced by diag(
[
τ2
1 . . . τ

2
n

]
). In our framework, the ob-

servation noise is homoskedastic, but a generalized model

is used for the EQI criterion computation (see 3.5).

Contrarily to the noiseless case, mn(.) is not inter-
polating noisy measurements and s2n(.) does not vanish

at that points. Figure 1 shows an example of kriging

based on noisy observations.
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Fig. 1 Actual function (bold gray), Kriging mean (bold
black) and 90% confidence intervals (mixed line); the circles
are the observation values eyi, the bars show the noise ampli-
tude (±2τ).

2.3 Covariance functions

A large variety of covariance kernels are available in

the literature (see , e. g., [26] or [21] for a detailed sum-
mary). The choice of the kernel and the value of its pa-

rameters determine the shape (smoothness, amplitude

of the prediction variance, ...) of the kriging model. In

this work, two kernels are considered:

– the Gaussian anisotropic kernel:

k(x,x′) = σ2 exp



−
d∑

j=1

(
xj − x′j
θj

)2


 (7)

– the Matérn anisotropic kernel with ν = 3/2:

k(x,x′) = σ2


1 +

√
3

d∑

j=1

∣∣xj − x′j
∣∣

θj




× exp



−
d∑

j=1

∣∣xj − x′j
∣∣

θj



 (8)

Both kernels depend on a set of parameters, σ2 and

{θ1, . . . , θd}, which are often referred to respectively as
process variance and ranges.

2.4 Covariance parameter estimation

Covariance parameters are usually not known before-

hand by the user and are estimated based on the ob-
servation vector ỹn. To accomplish this, several meth-

ods are available, e. g., maximum-likelihood-based ap-

proaches, (semi-)variograms, or cross-validation. Here,

we focus on maximum-likelihood estimation (MLE).

σ2 and the θi’s are estimated by maximizing the

probability density function of Ỹn under the assump-
tion of a multivariate Gaussian distribution:

L = (2π)−
n

2 det
[
K̄n

]− 1
2

exp

(
−1

2
(ỹn − µ̂n1n)

T
K̄−1

n (ỹn − µ̂n1n)

)
(9)

or equivalently by minimizing the log-likelihood (omit-
ting constants):

l = log
(
det
[
K̄n

])
+ (ỹn − µ̂n1n)

T
K̄−1

n (ỹn − µ̂n1n)

(10)

In the noiseless case, there exists an explicit expres-

sion for the optimal σ2 as a function of the θi, which

allows the problem to be simplified to the optimization
of the θi (concentrated log-likelihood). Unfortunately,

the superposed noise variance τ2 prevents us from do-

ing so here, so the optimization of equation 10 needs

to be performed with respect to the whole vector of
parameters:

[σ̂2, θ̂1, . . . , θ̂n] = argmin l(σ2, θ1, . . . , θn) (11)

where the dependency of l on the parameters appears

through K̄n and µ̂n. If τ2 is an unknown quantity, it can

also be considered as a parameter of the log-likelihood

optimization.

3 Infill criteria

In the sequential procedure of most kriging-based opti-

mizers, the design to be evaluated next is determined
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based on the optimization of a so-called infill crite-

rion. This infill criterion uses information of the cur-

rent model in order to assess the utility of evaluating

this design on the actual problem. In this section, we

present definitions and ideas behind the infill criteria
analyzed in our benchmark.

3.1 The classical Expected Improvement

The Expected Improvement (EI) has probably become

the most popular infill sampling criterion for kriging-

based global optimization of expensive-to-evaluate de-

terministic functions following the seminal paper of Jones
et al. [14]. Let

In(x) :=

(
min

1≤i≤n
(Y (xi)) − Y (x)

)+

(12)

denote the improvement obtained by evaluating Y at

x after the nth iteration, where (.)+ := max(0, .). EIn
is defined as the expectation of I conditionally on the
observations:

EIn(x) = E [In(x)|Y (Xn) = yn]

= E[(ymin − Y (x))+|Y (Xn) = yn] (13)

where ymin := min(y(Xn)) denotes the currently known

minimum at the nth iteration.

As shown in [14], the EI is fortunately analytically
tractable

EIn(x) = (ymin −mn(x))Φ

(
ymin −mn(x)

sn(x)

)

+ sn(x)φ

(
ymin −mn(x)

sn(x)

)
,

(14)

where Φ and φ denote the Gaussian cumulative distri-

bution function and density function, respectively.

In the sequential procedure, the next measurement
is performed where EI is maximum:

xn+1 = arg max
x∈D

EIn(x). (15)

By construction, EIn is always non-negative, strictly

increasing with sn and decreasing with mn
2. Further-

more, it can be shown that for an interpolating kriging

model, ∀x ∈ Xn, EIn(x) = 0 holds. Hence, maximizing
EIn never leads to re-evaluating y at already sampled

points.

In the framework of noisy observations, EI will de-
part from this property since sn is not necessarily 0 at

x ∈ Xn. Moreover, the true minimum min(y(Xn)) at

time n is not exactly known due to the noise on the

observations.

2 We consider minimization problems in this paper.

3.2 Expected improvement with “plug-in”

One possibility to deal with the fact that min1≤i≤n(y(xi))

is not exactly known at time n is to replace it by some
arbitrary target T , meant to be an efficient surrogate of

ymin. This leads to the so-called Expected Improvement

with plugin, denoted here by EIT,n:

EIT,n(x) = E[(T − Y (x))+] (16)

The choice of T is an important issue, since too high

or too low values may have a significant influence on the
shape of EIT,n and thus change its behavior relatively

to EI with known ymin. A first “naive” approach con-

sists in choosing T = min
(
ỹi
)
, but this plugin lacks ro-

bustness since it suffices to have one noisy observation

with a coincidentally low value to severely underesti-
mate ymin for the rest of the optimization. Following

the approach mentioned in [30], T = min (mn(Xn))

seems a sensible option. A generalization considered

here is to take the minimum of Kriging β-quantiles at
Xn, for a level β ∈]0, 1[ tuned by the user.

Whatever the chosen value for T , a nice fact about
EIT,n is that it can be analytically calculated, as well

as its gradient, just as the classical EI:

EIT,n(x) = (T −mn(x))Φ

(
T −mn(x)

sn(x)

)

+ sn(x)φ

(
T −mn(x)

sn(x)

)
.

(17)

However, one drawback of EIT,n for noisy optimiza-
tion is that it does not take into account the noise of

the future observation: everything is calculated as if the

next evaluation would be deterministic. The AEI crite-

rion presented in the next section addresses this issue

by adding a multiplicative term to EIT,n, penalizing
the points whose kriging variance s2 is small compared

to the noise level τ .

3.3 Augmented Expected Improvement (AEI)

The AEI criterion was proposed by Huang et al. ([10] for

the noisy framework and [9] for multi-fidelity). The idea

of surrogating the unknown ymin by the value of the

Kriging mean at some point is also used. But this time,

instead of considering T = min (mn(Xn)), T is taken as
mn(x∗∗), where the so-called effective best solution x∗∗

is obtained by minimizing mn + αsn over the already

observed points in order to have a more robust estimate

of the plugin. In other words, T is the Kriging mean
value at the design point with lower β-quantile, where

Φ(β) = α. The value α = 1 is recommended by the

authors.
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Additionally, a multiplicative penalty is introduced

in order to account for the noise variance of the next

evaluation:

AEIn(x) = EIT,n(x) ×
(

1 − τ√
s2n(x) + τ2

)
, (18)

The penalty term is one if τ = 0, and decreases

towards zero when τ increases. It thus reduces to the

original EI function whenever τ = 0. Huang et al. jus-

tify the penalty to “account for the diminishing return
of additional replicates as the predictions become more

accurate”. In fact, it penalizes designs with small pre-

diction variance s2n(x) and therefore enhances explo-

ration.

3.4 The reinterpolation procedure

The reinterpolation method was proposed by Forrester
et al. [7]. Instead of modifying the EI criterion for the

noisy case, the authors propose to use simultaneously a

kriging with noisy observations (as defined in equations

4 and 5) -called the regressing model- and an interpo-

lating kriging, which is built as follows: The covariance
structure and its parameters, as well as the DOE, of the

regressing model are inherited, but the kriging mean

predictions of the regressing kriging at the DOE points

are used as observation vector. Since this latter model
is noise-free, the classical EI can be used as an infill

criterion. Summarizing, the reinterpolation procedure

consists of four steps:

1. Build a kriging based on the noisy observations ỹn

2. Compute the kriging predictor at the DOE points

mn(x1), . . . ,mn(xn)
3. Build an interpolating kriging model using Xn and

yn = [mn(x1), . . . ,mn(xn)]T

4. Solve x∗ = argmaxEIn(x) using the interpolating

model.

Note that this procedure was initially designed for

“deterministic” noise, due to numerical instabilities and

ill-posedness of the simulated system. In that case, two
very close designs would return different results, but

repeating the same experiment would return the same

output. Hence, the reinterpolating procedure does not

allow repetitions – EI is zero at already observed de-
signs.

3.5 Expected Quantile Improvement (EQI)

The main concept of the EQI criterion, as detailed in

[19], is that in a noisy situation, improvement may

be measured in the model rather than on the noisy

data, the measure of reference being the kriging quan-

tile qn(x) = mn(x) + Φ(β)sn(x) (with β ∈ [0.5, 1[)

rather than the noisy observations. Similarly to the

noiseless case, an improvement between steps n and

n+ 1 is defined as:

In(x) :=

(
min

1≤i≤n
(qn(xi)) −Qn+1(x)

)+

(19)

where Qn+1 is the quantile of the kriging updated with

xn+1 = x. EQI is defined as E[In(x)]. It has been
shown that the distribution of Qn+1(x) conditionally

on the observations is Gaussian and analytically deriv-

able, which leads to the following formula for the EQI:

EQIn(x) = (qmin −mQ(x))Φ

(
qmin −mQ(x)

sQ(x)

)

+ sQ(x)φ

(
qmin −mQ(x)

sQ(x)

)
,

(20)

where qmin := min1≤i≤n(qn(xi)) is the current best

quantile and mQ and sQ denote the mean and standard
deviation of the future quantile Qn+1(x), respectively.

In practice, this method requires to build, for each

candidate x, a kriging augmented with the observation

xn+1 = x, ỹn+1 = mn(x) and τ2
n+1 = τ2

new (the noise

of the future observation). The quantile mean and vari-
ance can then be simply extracted using:

mQ(x) = mn+1(x) + φ−1(β)sn+1(x) (21)

s2Q(x) =
(
λn+1

n+1(x)
)2 (

s2n(x) + τ2
new

)
(22)

with λn+1
n+1 being the (n+1)th term of the weight vector:

λ
n+1(x) =(
kn+1(x)T +

(1−kn+1(x)T
K
−1

n+1
1n+1)

1T

n+1
K
−1

n+1
1n+1

1T
n+1

)
K−1

n+1

The future noise τ2
new accounts for the limited op-

timization budget, and is set to τ2/(N − n), where N

is the maximum number of observations. It is thus as-
sumed that the remaining budget is completely spent

for this solution, which is actually not desired. The

above-defined rule can be seen as a heuristic in order

to slightly shift the focus of the optimization from ex-

ploration to exploitation.

3.6 Alternatives to EI-based criteria

The last method considered in this benchmark is per-

haps the most natural of the metamodel-based proce-

dures and acts as a baseline for the other criteria. It

consists of performing the next measurement where the
current kriging mean or quantile is minimum:

xn+1 = argmaxx∈Dmn(x) + α× sn(x) (23)

Although recognized as less efficient compared to the

EI in the case of deterministic experiments [13], this



6 Victor Picheny et al.

method seems worth studying in this benchmark be-

cause it is the only method whose behavior is indepen-

dent of the presence of noise. It also has shown success-

ful applications in kriging-based multi-objective opti-

mization [5,20].

4 Design of the benchmark

4.1 Analytical test functions

As test problems, we employed six widely used analyti-
cal benchmark problems [4]. Their definitions are given

in table 1. The original functions have been rescaled to

map their search space to [0, 1]d, their mean to zero, and

their variance to one. For the separable sphere function,

the input vectors are shifted and rotated before evalu-
ation. These functions being deterministic, the obser-

vation noise is added artificially using i. i. d. Gaussian

random variables. The noise variance is chosen as ex-

plained in section 4.2.

The test functions are chosen to cover a large vari-

ety of problem properties. Rosenbrock4 and Sphere6 are

unimodal functions. The valley of the global minimum

is easy to find, however fine convergence to the global
minimum is difficult. Since Rosenbrock4 and Sphere6

have a very low activity, the range covariance bounds

are chosen as [0.5, 5], which allows to have a very ”flat”

kriging model. Branin-Hoo, Goldstein-Price, Hartman4

and Hartman6 are multimodal functions. Here, the range

bounds are set to [0.1, 1], which allows to model high

activity responses.

4.2 Algorithmic factors

A large number of factors can influence the quality

of the different kriging-based procedures, whereby two

types of factors can be distinguished:

– The factors related to the parameterization of the
problem or optimization task.

– The factors for setting up the approach (usually

tuned by the user).

In this benchmark, we consider the problem fac-

tors which we expect to have a significant influence on

the performance of the different criteria. These factors
are the modality of the problem, the dimension of the

search space d, the noise level, and the allowed bud-

get of evaluations (a similar classification can be found

in [12]). For the tuning factors, we selected the ones
which have been changed within different studies [2,3],

i. e., the proportion of observations for the initial DOE

and the choice of the covariance kernel.

Table 2 Summary of the benchmark factors and levels.

Factor Values

Modality uni- (Rosenbrock4, Sphere6) and
multimodal (Branin, GoldsteinPrice,
Hartman4, Hartman6)

Search space 2 (Branin, GoldsteinPrice),
dimension d 4 (Hartman4, Rosenbrock4) and

6 (Hartman6, Sphere6)
Noise SD 5%, 20%, 50%

(of the objective function SD)
Maximum number 20 × d, 40 × d

of evaluations
Number of 4 × d, 10 × d

initial evaluations
Covariance kernel matern3/2, Gauss

For each factor to be considered, we have chosen

two to three different values, as listed in Table 4.2. The

noise level is expressed in terms of the proportion of

the function standard deviation (SD) (which is one for

all functions). The noise levels vary between moderate
(5%) to extremely noisy (50%). In addition, for a given

setup (including the infill criterion), result can depend

on the initial DOE and on the noise realizations. To ac-

count for this variability, for each configuration 40 runs
are performed with different initial DOEs and random

seeds.

The total number of optimization runs performed

for the benchmark is nfct × nnoises × ncriteria × ncovariances

× nbudgets × nDOEsizes × nruns=30, 000.

The choice of the design type of the initial DOE

is also probably a significant factor; however, here we

fix it to be an LHS design optimized with respect to

the maximin criterion, which is common practice in the
kriging community. Other factors of minor importance,

not considered here, may include the use of replications

on the initial design [2], the choice of the method for

covariance parameters estimation, the re-estimation or

not of the covariance parameters during optimization,
or the choice of the kriging trend (for a Universal Krig-

ing model).

The reinterpolation procedure does not depend on

any parameter; the AEI criterion depends on the pe-
nalization level α for the choice of the effective best

solution, and is set to 1, as recommended by Huang

et al. The EI with plugin of a quantile, EQI, and the

quantile minimization depend on the quantile level β.

For those methods, two levels (β = 0.5 and β = 0.9)
are tested. A random search is performed as a baseline

for the optimization performance. Table 3 summarizes

the criteria and parameters tested in the benchmark.

In order to minimize the external variance in the
comparison of the problem and tuning factors, the ini-

tial DOEs and observations have been re-used as much

as possible. For instance, the same LHS is used for all
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Table 1 Test functions.

Branin-Hoo (2D) y(x) = 1

51.95

h “

x̄2 −
5.1x̄2

1

4π2 + 5x̄1

π
− 6

”2

+
`

10 −
10

8π

´

cos(x̄1) − 44.81
i

with: x̄1 = 15 × x1 − 5, x̄2 = 15 × x2

Goldstein-Price (2D) y(x) = 1

2.427

"

log
h“

1 + (x̄1 + x̄2 + 1)2(19 − 14x̄1 + 3x̄2
1 − 14x̄2 + 6x̄1x̄2 + 3x̄2

2)
”

“

30 + (2x̄1 − 3x̄2)2 (18 − 32x̄1 + 12x̄2
1 + 48x̄2 − 36x̄1x̄2 + 27x̄2

2)
”i

− 8.693

#

with: x̄ = 4 × x − 2

Rosenbrock4 (4D) y(x) = 1

3.755×105

"

P

3
j=1

“

100(x̄j+1 − x̄2
j )2 + (1 − x̄i)2

”

− 3.827 × 105

#

with: x̄ = 15 × x − 5

Hartman4 (4D) y(x) = 1

0.839

h

1.1 −
P

4
i=1

Ci exp
“

−
P

4
j=1

aji (xj − pji)
2

”i

with:

C = [1.0, 1.2, 3.0, 3.2] a =

2

6

6

6

6

6

6

4

10.00 0.05 3.00 17.00
3.00 10.00 3.50 8.00
17.00 17.00 1.70 0.05
3.50 0.10 10.00 10.00
1.70 8.00 17.00 0.10
8.00 14.00 8.00 14.00

3

7

7

7

7

7

7

5

, p =

2

6

6

6

6

6

6

4

0.1312 0.2329 0.2348 0.4047
0.1696 0.4135 0.1451 0.8828
0.5569 0.8307 0.3522 0.8732
0.0124 0.3736 0.2883 0.5743
0.8283 0.1004 0.3047 0.1091
0.5886 0.9991 0.6650 0.0381

3

7

7

7

7

7

7

5

Hartman6 (6D) y(x) = −1

1.94

h

2.58 +
P

4
i=1

Ci exp
“

−
P

6
j=1

aji (xj − pji)
2

”i

Sphere6 (6D) y(x) = 1

899

h

P6
j=1 x2

j × 2j − 1745
i

Table 3 Summary of the infill criteria.

Criterion Parameter Abbreviation
Random search - RS
Reinterpolation - RI
AEI - AEI
EQI β = 0.5 EQ50

β = 0.9 EQ90
EI with T = min

`

ỹi
´

PIy
plugin T = min (mn(Xn)) PI50

T = min (qn(Xn)) PI90
with β = 0.9

Quantile β = 0.5 MQ50
minimization β = 0.1 MQ10

the test functions of the same dimension. The same LHS

is used to generate the initial observations for the four

different noise levels. The same set of initial observa-
tions is used for all the infill criteria. By these means,

the LHSs can be used for grouping in nonparametric

tests on the significance of the factor effects.

4.3 Implementation issues and solutions

4.3.1 Optimization of the kriging parameters

In all kriging-based procedures, providing accurate co-

variance parameters is a crucial point. In particular, the

range parameters (θj in eqs. 7 and 8) reflect the pre-
dicted activity (or smoothness) of the objective func-

tion, which have a great effect on the shape of the infill

criteria.

The parameter estimation is here done by maximum

likelihood, as defined in section 2.4, using the R package

DiceKriging [22]. Since the likelihood is known to often

have local maxima for values corresponding to either
very small range (white noise) or very large range (con-

stant response), the covariance parameters are bounded

to sensible intervals (see section 4.1). These intervals

have been found by performing pre-experiments on the
chosen test functions and are wide enough to cover the

requirements of the different criteria.

In our setup, the parameters are estimated first us-

ing the initial DOE, and re-estimated after each addi-

tional measurement. The old parameters are included as

potential candidates for the likelihood optimization, so
the new parameters cannot be worse (in terms of likeli-

hood) than the old ones. Nevertheless, it has been found

that for some criteria, the parameter re-estimation some-

times fails due to numerical instability in the inversion

of the covariance matrix. When this occurs, the model
is updated based the old covariance parameters.

The reinterpolation technique is particularly sensi-

tive to these problems since it uses an interpolating

kriging on smoothed data. In case of failure, a small

nugget is added to the interpolating model (in order
to ease the covariance matrix inversion). If the model

computation is still not possible, the run is terminated

and the results for the last iteration are used.
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4.3.2 Optimization of the infill criteria

At each optimization step, the infill criterion is max-

imized over D in order to choose the next measure-
ment. This task can often become challenging, since

the Expected Improvement and its “noisy” variants are

known to be highly multimodal with some large “flat”

regions (where the criterion takes values below the ma-
chine accuracy). Figure 2 shows an example of contour

lines of the AEI criterion that illustrates these proper-

ties. Although the criteria are relatively inexpensive to

compute (about 5 milliseconds for the EQI based on

a kriging model with 50 points on a 2.9 GHz proces-
sor), an exhaustive search on a grid is not possible in

dimensions higher than two because this optimization

is performed in each iteration.

0.0000

0.0005

0.0010

0.0015

0.0020

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2 Contour lines of the AEI during a typical optimization
run (Goldsteinprice function, 29 points (triangles), noise level
20%).

Here, we chose to optimize the infill criteria us-

ing the genoud algorithm (GENetic Optimization Using

Derivatives, [28]), which implements a hybrid of evo-

lutionary algorithms and gradient descent. This algo-

rithm allows the local optima to be accurately found
thanks to the gradient descent while still having a good

exploration of the search space due to the evolutionary

algorithm. The analytical gradients of all the criteria

for the ordinary kriging model have been calculated and
implemented into DiceKriging [22].

To account for the increase of the complexity of

the optimization with increasing search space dimen-

sion while ensuring a reasonable computational effort,

the genoud parameters have been set to the following

values:

– The population size is 6 × 2d.

– The number of population generations is 20.

– The maximum number of evaluations within a gra-
dient descent is 6 × 2d.

With that setup, the global optima of the criteria are

found in the vast majority of the cases for all considered

configurations.

4.4 Research questions

The research questions addressed in the benchmark are
directly related to the effects and interactions of the ex-

perimental and algorithmic factors varied in the bench-

mark. With respect to the algorithmic factors, it is of

practical interest to know whether there is a specific
best over all considered test instances. If this is not the

case, the interactions between the factors of the prob-

lem instance and the algorithmic factor become impor-

tant in order to assist in choosing the right NKO ap-

proach for a specific problem instance.
Based on the algorithmic factors considered in the

benchmark, the main questions are: Is it possible to

choose an optimal

1. covariance kernel,

2. size of the initial design, and
3. infill criterion

with respect to all considered

1. maximum budgets of evaluations,

2. noise levels of the test functions,

3. modalities of the test functions, and

4. decision space dimensions of the test functions

or are there specific choices depending on the level of

the latter.

The above-mentioned research questions are partic-

ularly interesting for a practical user. For the research

on NKO, also the effect of using specific information in
the infill criteria is of interest. In this paper, we partic-

ularly focus on the effects of

1. the consideration of the current accuracy of an ob-

servation (e. g., by using a Kriging quantile rather

than the Kriging mean)
2. the use of replications (Forrester’s approach does

not perform any replications while other infill crite-

ria may do),

3. the complex computation of the EQI in comparison
to simpler approximations, and

4. the consideration of the remaining evaluations (as

in EQI),
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For the first two questions, particularly the interaction

with respect to the noise level of the test function is of

interest. The last two questions are worth consideration

in order justify or possibly decrease the complexity of

the EQI approach.

5 Results

5.1 Observations

We start by analyzing the results quantitatively using

the true objective value of the design which is iden-

tified as the current best by the corresponding infill

criterion. In more detail, for RS and PIy we take the

design point with the best noisy observation, for RI,
PI50, EQ50, and MQ50, we take the design point with

the best kriging mean, and for AEI, PI90 and EQ90 we

take the one with the best kriging quantile.

5.1.1 A first sensitivity analysis

The first step of the analysis is to state whereas all
the parameters considered in this benchmark had a sig-

nificant influence on the algorithms performances. The

structure of the benchmark makes it possible to ana-

lyze the effect of an isolated factor: for instance, for
a fixed test function, noise level, budget, infill criterion

and initial DOE size, the same LHS and initial set of ob-

servations are used with the Gaussian and the Matérn

covariances, which allows a fair comparison between the

two kernels (even though their respective performances
depend on the noise measurements values during op-

timization). Since 40 LHS are used, we can compute

and visualize for each configuration the proportion of

runs for which one parameter value is better than the
other. With n = 40 data, the 95% confidence interval

for the proportion 0.5 is [30%, 70%]. The runs are com-

pared based on the actual value of the function at the

returned best solution.

According to the research questions, we first com-
pare the results for the two covariance functions (Fig-

ure 3). The total number of configurations is nfct ×
nnoises × ncriteria × nDOEsizes × nbudgets = 576. We

found 48 critical configurations (8%) outside the con-

fidence interval of the proportion, 25 showing a bet-
ter performance of the Gauss kernel over Matern and

23 the inverse. 10 configurations with the Rosenbrock

function and 5% noise and 10 configurations with the

Goldsteinprice function and the reinterpolation crite-
rion that showed a better performance of the Gaussian

kernel. No clear pattern appears for the other 28 critical

configurations.

We can therefore conclude that the choice of the

kernel is not a critical one. In some scenarios, however,

the Gaussian kernel seems to be beneficial. We hence

consider only the Gaussian kernel in the following anal-

ysis.
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Fig. 3 Proportion of better performance of Gauss kernel
against Matern kernel for all configurations. Proportions sig-
nificantly higher than 50% are represented by red diamonds.

Then, we look at the influence of the DOE size.

The total number of configurations is nfct × nnoises ×
ncriteria × ncovariances × nbudgets = 576. All the experi-

mental proportions are represented in Figure 4. Only 21

configurations (less that 3%) showed a significant differ-

ence, eight of them being for the Rosenbrock function
with 5% noise and showed a better performance of the

large DOE size. We can conclude that, for our bench-

mark, the DOE size has little influence on the optimiza-

tion results. In the rest of the analysis, the large DOE

size only is considered in order to reduce the number of
configurations.

5.1.2 Comparison of criteria of the same family

Before we start the complete analysis of the infill crite-

ria, we want to reduce the number of considered criteria

in order avoid comparing with failed parameterizations
and to improve the readability of the plots. To accom-

plish this, criteria of the same family are compared first.

In particular, we compare MQ50 with MQ10, PI50 with

PIy and PI90, and EQ50 and EQ90. The number of dif-

ferent configurations is here nfct × nnoises × nbudgets =
36.

When comparing MQ10 and MQ50 (figure 5), 15

configurations showed no significant difference. For the

other 21, MQ10 outperformed MQ50. So we can con-
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Fig. 4 Proportion of better performance of large DOE size
against small DOE size for all configurations.

clude here that minimizing a low quantile is clearly a
better option than minimizing the best predictor.
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Fig. 5 Proportion of better performance of MQ10 against
MQ50 for all configurations.

The results for PI50 and PI90 are shown in Figure
6. Here, 8 configurations (22%) were critical and all

showed a better performance of PI50. Besides, although

it is not individually statistically significant, most of

the proportions are above 50%, which seems to indicate
that PI50 is tendencially equal or better than PI90. We

can then conclude that the plugin of the kriging mean

outperforms the plugin of a high kriging quantile.

The other tests performed with criteria of the same

family (PI50 and PI90 versus PIy, EQ50 versus EQ90,
not shown here) did not show a clear outperformance of

one method against another. The performance of PIy

may lay between the ones of PI50 and PI90 since it is

not significantly different from either of them.

5.1.3 Global rank analysis

Based on the previous observations, we limit now our

analysis to the following criteria: RI, AEI, EQ50, EQ90,
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Fig. 6 Proportion of better performance of PI50 against PI90
for all configurations.

PI50, PIy and MQ10, and consider only the Gaussian

kernel and the large DOE size. The random search (RS)
results are given as reference value. For each configu-

ration, we compute the average ranks of the criteria

over the 40 LHS for all test functions, noise levels and

budgets (36 configurations total).

We can see first that no method outperforms the
others for all the configurations. However, we can ob-

serve that:

– AEI works best on Hartman4 for both budgets, and

on Goldstein-Price and Hartman6 for the high bud-

get
– RI works best on Branin and Sphere for the low

budget and moderate noise levels

– MQ10 is best on Hartman6 with low budget

– EQ90 is best on Rosenbrock for the high noise level

Inversely, some methods are significantly less effi-
cient on some configurations:

– EQ90 works poorly on Goldstein-Price with high

noise and Hartman4

– PIy works poorly on Branin with high noise, Rosen-

brock and Hartman6

Almost all the methods are significantly better than
random search; however, on Branin with 50% noise,

no method outperforms random search, and on Rosen-

brock with low budget and for all noises, only PI50 and

EQ90 are significantly better.

5.1.4 Detailed analysis using boxplots

In this section, we propose a detailed comparison of

the methods. We represent the results in the form of

boxplots of actual function values at best design for

each method (figure 8). To limit the amount of figures,
we show the results for the low budget only.

With 5% noise, all the criteria return almost similar

results: accurate identification of the minimum for all
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Fig. 7 Average ranks over the 40 LHS of the criteria for all test functions, noise levels and budgets. Upper figure: low budget;
lower figure: large budget. For each box, the three columns correspond (from left to right) to the noise levels 5%, 20% and
50%.

runs for Branin (A), Hartman6 (E) and Sphere (F), ac-
curate identification for most of the runs but a few out-

liers (runs trapped in local optima) for Goldstein-Price

(B) and Hartman4 (C), approximate identification only

for Rosenbrock (D).

PIy appears as very efficient on Goldstein-Price and

Hartman4 with 20% noise, but also the worst method
on Rosenbrock, Hartman6, Sphere. With 5% noise, EQ90

sometimes show large tails (Goldstein-Price, Hartman4,

Sphere). AEI outperforms the other methods on Hart-

man4, both in terms of median and 95th percentile.

For the other configurations, the results in terms of

either median of 95th percentile are less contrasted.

5.2 Discussion

The first conclusion of this benchmark analysis is the
limited influence of sample size on the optimization

results compared to other parameters. Using smaller

initial DOEs results in more optimization steps, which

seems intuitively more efficient. However, using larger
initial DOEs ensures a good initial exploration, which

reduces the risk of converging to a local optimum, and

tends to produce more accurate models. These effects

seem to balance each other regarding the optimization

efficiency.

Another parameter of limited influence is the choice
of the covariance kernel, which is surprising since the

two kernels considered here imply very different as-

sumptions on the shape of the objective function (C1

for matern 3/2, C∞ for gauss). Here it seems to be
dominated by other factors, such as the ability of krig-

ing to fit non-stationary functions or the robustness of

the covariance parameter estimation.

Out of the 10 criteria tested here, three can be con-

sidered as poor alternatives: PI90, PIy and MQ50.

The criterion MQ50 was proposed essentially because
it is relatively common practice in surrogate modeling

to sequentially sampling at the minimum of the best

predictor. Although known as a bad solution for de-

terministic functions [13], the question was left open in

the noisy case. It is found that the MQ50 performances
are also poor in noise so this solution is not competitive

with other criteria, which is logical since it does not of-

fer any trade-off between exploration and exploitation.

The low quantile criterion MQ10, however, proved in
our context to be competitive.

The poor performances of PI90 and PIy can be ex-

plained by looking at the EI equation 17. For PI90,

by plugin a high quantile for T , the quantity T −mn is

likely to be positive and large: we indeed replace ymin

by a (very) positively biased estimate, which make the
existing points look more interesting that they actually

are and hinders exploration. With PIy, we also use a

biased estimate (min(ỹ)) of ymin. With high noise in

particular, ymin is likely to be strongly underestimated,
which results in increased exploration. Forcing explo-

ration seems beneficial in some cases (on the Goldstein-

Price function, for which the minimum is indeed in a



12 Victor Picheny et al.
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Fig. 8 Boxplots of actual function value at best design for each method.

small valley), but overall the criterion PI50 appears a

better alternative.

The RI and EQ90 criteria show contrasted perfor-
mances depending on the configurations. By construc-

tion, the RI criterion is quite exploratory (in particu-

lar, it does not allow replications), which can be benefi-

cial for optimization and eases the covariance parameter

estimation step, which explains the very good perfor-
mances in some cases. However, one can observe that

the RI performances decrease with higher budget and

higher noise. This can be imputed to the reinterpolation

step, which may lack robustness in those cases.

The relatively disappointing performances of EQ90
(with regard to its complexity) can be explained by

two reasons. Firstly, it is, by construction, very depen-

dent on the model uncertainty structure and hence on

the parameters estimation [19], which in our setup is
most of the time not accurate. Secondly, it is designed

to return a solution with small error, which may fa-

vor repetitions or clustering instead of exploration, and

this benefit is not apparent in an analysis based on the

actual response values only.

On average, the AEI criterion seems a good op-

tion for our benchmark, since it is several times the

best method, and is rarely very bad. As discussed, the

plugin of the kriging mean, also used in AEI, is a sen-

sitive option, and the exploration enhancement due to

the penalization function (see equation 18) seems also
beneficial.

However, another choice can be made based on the

user preference, in order to:

– avoid replications: RI

– enhance uncertainty reduction: EQ90

– ease implementation: MQ10, PI50

For all methods, it seems that the results mainly

depend on the capacity of kriging to fit the function

based on a very small amount of information (small,

noisy DOE). When it is the case (Hartman4, Hartman6,
Sphere), all the criteria lead to satisfying results, which

means here, considering the difficulty of the optimiza-

tion setup, an approximate identification of the opti-

mum region. Stronger differences in performances be-
tween criteria might appear with different setups, for

instance using very large budgets and/or very small

noise.

6 Conclusion

The objective of this paper was fourfold: first, make a

comprehensive review of the kriging-based methods for
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the optimization of noisy functions in a unified frame-

work. Second, compare the different methods based on a

benchmark with a large variety of test functions, noises

amplitude and computational budget. Finally, identify

critical and non-critical factors common to all NKO
procedures and state on the overall ability of NKO to

solve noisy problems. The results presented here are,

of course, not universal, and our conclusions might not

apply for very different problems or setups.
Out of the criteria (and variants) detailed in this pa-

per, we found that the two most “natural” alternatives

for non kriging experts (sequential minimization of the

kriging mean and direct plugin of the minimum of the

noisy observations in the EGO algorithm), are poor al-
ternatives in all cases, while the relative performances

of the other methods depend on the problem. On aver-

age, the augmented expected improvement (AEI) was

found as a good alternative, although the choice of the
criterion might be different based on user preference (to

avoid replications, enhance uncertainty reduction, etc.).

We found here that apart from a small number of

exceptions, the choice of the covariance function and

the size of the initial DOE were not significant factors
regarding the optimization performance. The most sig-

nificant factor seems here the quality of the covariance

parameters estimation, which is a well-known challenge

in all kriging-based procedures.
Overall, kriging methods were found as efficient al-

ternatives for optimization in very challenging context:

very high noise and very limited number of function

evaluations in moderately high dimension, which is, in

the authors’ opinion, where most benefits can be ob-
tained compared to other classical optimization tech-

niques.
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