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Comparison of Different Definitions of Traces for a Class of

Ramified Domains with Self-Similar Fractal Boundaries

Yves Achdou ∗, Thibaut Deheuvels †, Nicoletta Tchou ‡.

November 23, 2011

Abstract

We consider a class of ramified bidimensional domains Ω with a self-similar fractal bound-
ary Γ∞, which is supplied with a probability measure µ called the self-similar measure. Em-
phasis is put on the case when the domain is not a ε− δ domain as defined by Jones and the
fractal set is not totally disconnected. We compare two notions of trace on Γ∞ for functions
in W 1,q(Ω): the classical one, see for instance the book by Jonnson and Wallin, 1984, page
206, using the strict definition of a function at a point of Ω, and another one proposed in
2007 and heavily relying on self-similarity. We prove that the two traces coincide µ-almost
everywhere on Γ∞. As a corollary, we characterize the critical number q̄ for which for all
q < q̄ (resp. q > q̄ ) there is a (resp. no) continuous extension operator from W 1,q(Ω) to
W 1,q(R2).

1 Introduction

In the present work, we consider a class of self-similar sets noted Γ∞ below, see for example
Figure 1. The set Γ∞ is the unique compact subset of R

2 such that

Γ∞ = f1(Γ
∞) ∪ f2(Γ

∞),

where f1 and f2 are two similitudes with rotation angles ±θ and contraction factor a, 0 < a ≤
a∗(θ). As we shall see, Γ∞ can be seen as a part of the boundary of a ramified domain Ω in
R

2, see Figure 1, and the restriction a ≤ a∗(θ) allows for the construction of Ω as a union of
non-overlapping sub-domains, see (12). In § 2.5, we will recall the notion of self-similar measure
µ defined in the triplet (Γ∞, f1, f2), see [16]. With the Borel regular probability measure µ, Γ∞

is a d-set where d ≡ − log 2/ log a is the Hausdorff dimension of Γ∞, i.e. there exist two positive
constants c1 and c2 with

c1r
d ≤ µ(B(x, r) ∩ Γ∞) ≤ c2r

d,
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for all x ∈ Γ∞ and r < 1 (here B(x, r) is the ball with center x and radius r);
Such a geometry can be seen as a bidimensional idealization of the bronchial tree, for example.
Indeed, the present work is a continuation of [2] and of [3], which were part of a wider project
aimed at simulating the diffusion of medical sprays in lungs. Since the exchanges between
the lungs and the circulatory system take place only in the last generations of the bronchial
tree (the smallest structures), reasonable models for the diffusion of, e.g., oxygen may involve
a non-homogeneous Neumann or Robin condition on the boundary Γ∞. Similarly, the lungs
are mechanically coupled to the diaphragm, which also implies non-homogeneous boundary
conditions on Γ∞, if one is interested in a coupled fluid-structure model. It is therefore necessary
to study traces of functions on Γ∞.
There are several possible ways of defining the trace of a function v ∈ W 1,q(Ω) on Γ∞. The first
one, refered to as the classical or strictly defined trace below, relies on the notion of the strict

definition of a function at a point x ∈ Ω̄, see for instance [14] page 206. It is recalled in § 4
below.
For 1/2 ≤ a ≤ a∗, a different notion of trace was intoduced in [2]. Its construction is recalled in
§ 3.3 below. This trace operator noted `∞ below, is obtained by exploiting the self-similarity, as
the limit of a sequence of operators (`n)n: the operator `n maps W 1,q(Ω) to piecewise constant
functions on a partition of Γ∞ into 2n sets whose µ-measure is 2−n. Obtained by passing to the
limit, `∞ is linear and continuous from W 1,q(Ω) to Lq(Γ∞, dµ). The self-similar construction of
the trace operator `∞ has permitted to obtain several results:

• The space `∞
(
W 1,q(Ω)

)
was characterized in [3] as a JLip space, see §3.3 below for the

precise statement. The JLip spaces were presented in [12]: Haar wavelets of arbitrary
order on Γ∞ were used for constructing a family of Lipschitz function spaces allowing
jumps at the multiple points in Γ∞. These function spaces were named JLip(t, p, q;m; Γ∞),
where t is a positive real number, p, q are two real numbers not smaller than 1 and m is
an integer (m is the order of the Haar wavelets used for constructing the space). Here
J stands for jumps, since the considered functions may jump at the multiple points of
Γ∞. Note that if a self-similar set S is totally disconnected, then the JLip spaces on S
coincide with Lipschitz or Besov spaces, more precisely that the spaces JLip(t, p, q;m;S)
coincide with the Lipschitz spaces Lip(t, p, q;m;S) also introduced in [12]. The latter
are a generalization of the more classical spaces Lip(t, p, q;S) introduced in [14] since
Lip(t, p, q; [t];S) = Lip(t, p, q;S). Note that Lip(t, p, q;S) coincides with the Besov space
Bp,q

t (S), see[15]. Remember that if p = q and s ∈ (0, 1)

Bp,p
s (Γ∞) =

{
f ∈ Lp

µ(Γ∞);

∫∫

x,y∈Γ∞,|x−y|<1

|f(x) − f(y)|p
|x − y|d+sp

dµ(x)dµ(y) < ∞
}

. (1)

• As a consequence, if 1/2 ≤ a < a∗, i.e. if Γ∞ is totally disconnected, then the trace space
`∞
(
W 1,q(Ω)

)
is exactly Bq,q

1− 2−d
q

(Γ∞). Note that Bq,q

1− 2−d
q

(Γ∞) is precisely the image of

W 1,q(R2) by the classical trace operator, see [14].

• In the case when a = a∗, i.e. when the set Γ∞ self-intersects, relations between JLip and
classical Besov spaces on Γ∞ were studied in [1]. As a consequence, it was also shown in
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[1] that there exits a critical exponent q̄θ ∈ (1, 2), depending on the Hausdorff dimension
of the self intersection of Γ∞ such that for all q such that 1 < q < q̄θ, the identity
`∞
(
W 1,q(Ω)

)
= Bq,q

1− 2−d
q

(Γ∞) holds, and is false for q > q̄θ.

The question of extensions is closely related to that of traces.

• Jones [11] (and Vodopjanov et al. [22] in the case n = 2, see also [18, 14]) have studied
the open bounded subsets Ω of R

n such that there exists a continuous extension operator
from W `,p(Ω) in W `,p(Rn), for all nonnegative integers ` and real numbers p, 1 ≤ p ≤ ∞.
Such domains are sometimes called Sobolev extension domains. Jones has proved that if
Ω is an ε − δ domain for some parameters ε, δ > 0, see [11, 14] for the definition, then it
is a Sobolev extension domain. Moreover, in dimension two, if Ω is finitely connected and
a Sobolev extension domain, then Ω is an ε − δ domain for some parameters ε, δ > 0. In
dimension two, the definition of such domains is equivalent to that of quasi-disks, see [18].

• It can be seen that if 1/2 ≤ a < a∗, the domain Ω is an ε − δ domain, hence a Sobolev
extension domain.

• If on the contrary a = a∗ then the domain Ω is not a Sobolev extension domain (it is easily
seen that for p > 2, the extension property from W 1,p(Ω) to W 1,p(R2) is not satisfied; in
this case, it was proved in [8] that Ω has the Sobolev extension property (from W 1,q(Ω)
to W 1,q(R2)) for 1 < q < q̄θ, where q̄θ is the critical exponent mentioned above; the proof
of this result consisted in the construction of an extension operator which was compatible
with that of `∞; it used the above-mentioned characterization of `∞(W 1,p(Ω)), and a
strenghtened Poincaré inequality proved in [4]. The results obtained in [8] are recalled in
§ 3.5 below.

A question that was not tackled in the previously mentioned works is the relation between the
classically defined trace operator and the operator `∞ constructed using the self-similarity. Is it
true that for a given function v ∈ W 1,p(Ω), the two definitions of the trace of v on Γ∞ coincide
µ-almost everywhere on Γ∞? The goal of the present work is to give a positive answer to this
question, using the extension operators constructed in [8]. As a consequence, we shall see in
§ 4.3 that for q > q̄θ, the domain Ω does not have the W 1,q extension property.

2 The Geometry

2.1 The similitudes f1 and f2 and the self-similar set Γ∞

Consider four real numbers a, α, β, θ such that 0 < a < 1/
√

2, α > 0, β > 0 and 0 < θ < π/2.
Let fi, i = 1, 2 be the two similitudes in R

2 given by

f1

(
x1

x2

)
=

(
−α
β

)
+ a

(
x1 cos θ − x2 sin θ
x1 sin θ + x2 cos θ

)
,

f2

(
x1

x2

)
=

(
α
β

)
+ a

(
x1 cos θ + x2 sin θ
−x1 sin θ + x2 cos θ

)
.

(2)
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The two similitudes have the same dilation ratio a and opposite angles ±θ. One can obtain f2

by composing f1 with the symmetry with respect to the axis {x1 = 0}.
We denote by Γ∞ the self-similar set associated to the similitudes f1 and f2, i.e. the unique
compact subset of R

2 such that

Γ∞ = f1(Γ
∞) ∪ f2(Γ

∞).

For n ≥ 1, we denote by

• An the set containing all the 2n mappings from {1, . . . , n} to {1, 2}

• A the set defined by A = ∪n≥1An

• A∞ = {1, 2}N\{0} the set of the sequences σ = (σ(i) )i=1,...,∞ with values σ(i) ∈ {1, 2}.
Consider 1 ≤ m < n ≤ ∞ and σ ∈ An: we say that σm ∈ Am defined by σm(i) = σ(i),
i = 1, . . . ,m is a prefix of σ.
For a positive integer n and σ ∈ An, we define the similitude fσ by

fσ = fσ(1) ◦ . . . ◦ fσ(n). (3)

Similarly, if σ ∈ A∞,
fσ = lim

n→∞
fσ(1) ◦ . . . ◦ fσ(n) = lim

n→∞
fσn (4)

Let the subset Γ∞,σ of Γ∞ be defined by

Γ∞,σ = fσ(Γ∞). (5)

The definition of Γ∞ implies that for all n > 0, Γ∞ =
⋃

σ∈An
Γ∞,σ. We also define the set Ξ:

Ξ = f1(Γ
∞) ∩ f2(Γ

∞). (6)

The following theorem was stated by Mandelbrot et al., [17] (a complete proof is given in [7]):

Theorem 1 For any θ, 0 < θ < π/2, there exists a unique positive number a∗(θ) < 1/
√

2,
(which does not depend of (α, β) see [4]) such that

0 < a < a∗(θ) ⇒ Ξ = ∅ ⇒ Γ∞ is totally disconnected,
a = a∗(θ) ⇒ Ξ 6= ∅ ⇒ Γ∞ is connected, (from Th. 1.6.2 in [16]).

(7)

The critical parameter a∗(θ) is the unique positive root of the polynomial equation:

m−1∑

i=0

Xi+2 cos iθ =
1

2
, (8)

where
m is the smallest integer such that mθ ≥ π/2. (9)

Remark 1 From (8), it can be seen that θ 7→ a∗(θ) is a continuous and increasing function
from (0, π/2) onto (1/2, 1/

√
2) and that limθ→0 a∗(θ) = 1/2.

Hereafter, for a given θ, 0 < θ < π/2, we will write for brevity a∗ instead of a∗(θ) and we will
only consider a such that 0 < a ≤ a∗.
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2.2 Ramified domains

2.2.1 The construction

Call P1 = (−1, 0) and P2 = (1, 0) and Γ0 the line segment Γ0 = [P1, P2]. We impose that f2(P1),
and f2(P2) have positive coordinates, i.e. that

a cos θ < α and a sin θ < β. (10)

We also impose that the open domain Y 0 inside the closed polygonal line joining the points P1,
P2, f2(P2), f2(P1), f1(P2), f1(P1), P1 in this order is convex. With (10), this is true if and only
if

(α − 1) sin θ + β cos θ ≥ 0. (11)

Under assumptions (10) and (11), the domain Y 0 is either hexagonal or trapezoidal in degenerate
cases, contained in the half-plane x2 > 0 and symmetric w.r.t. the vertical axis x1 = 0.
We introduce K0 = Y 0. It is possible to glue together K0, f1(K

0) and f2(K
0) and obtain a new

polygonal domain, also symmetric with respect to the axis {x1 = 0}. The assumptions (10) and
(11) imply that Y 0 ∩ f1(Y

0) = ∅ and Y 0 ∩ f2(Y
0) = ∅. We also define the ramified open domain

Ω, see Figure 1:

Ω = Interior

(
K0 ∪

(
∪

σ∈A
fσ(K0)

))
. (12)

Note that Ω is symmetric with respect to the axis x1 = 0, and that for a < 1/
√

2, the measure
of Ω is finite.

For a given θ, with a∗ defined as above, we shall make the following assumption on (α, β):
Assumption 1 For 0 < θ < π/2, the parameters α and β satisfy (11) and (10) for a = a∗,
and are such that





i) for all a, 0 < a ≤ a∗, the sets Y 0, fσ(Y 0), σ ∈ An, n > 0, are disjoint

ii) for all a, 0 < a < a∗, f1(Ω) ∩ f2(Ω) = ∅
iii) for a = a∗, f1(Ω) ∩ f2(Ω) 6= ∅.

Remark 2 As proved in [4], Assumption 1 implies that if a = a∗, then f1(Ω) ∩ f2(Ω) = ∅.

The following theorem asserts that ∀θ, 0 < θ < π/2, there exists (α, β) satisfying Assumption 1.

Theorem 2 see [4]. If θ ∈ (0, π/2), then for all α > a∗ cos θ, there exists β̄ > 0 such that
β̄ > a∗ sin θ and (α − 1) sin θ + β̄ cos θ ≥ 0 and for all β ≥ β̄, (α, β) satisfies Assumption 1.

It has been proved in [3] that if a < a∗, then there exists ε > 0 and δ > 0 such that Ω is an ε− δ
domain as defined by Jones [11], see also [14] or in an equivalent manner a quasi-disk, see [18].
On the contrary, if a = a∗, then Ω is not an ε− δ domain because it is possible to construct two

sequences (x
(1)
n )n and (x

(2)
n )n, x

(1)
n ∈ f1(Ω) and x

(2)
n ∈ f2(Ω) such that limn→∞ |x(1)

n − x
(2)
n | = 0;

then, any arc contained in Ω and joining x
(1)
n to x

(2)
n has a length bounded from below by a

positive constant.
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2.2.2 The Moran condition

The Moran condition, (or open set condition), see [20, 16], is that there exists a nonempty
bounded open subset ω of R

2 such that f1(ω) ∩ f2(ω) = ∅ and f1(ω) ∪ f2(ω) ⊂ ω. For a given
θ ∈ (0, π/2), let (α, β) satisfy Assumption 1; for 0 < a ≤ a∗, the Moran condition is satisfied
with ω = Ω because

• f1(Ω) ∩ f2(Ω) = ∅, which stems from point ii) in Assumption 1 if a < a∗, and from
Remark 2 if a = a∗;

• by construction of Ω, we also have f1(Ω) ∪ f2(Ω) ⊂ Ω.

The Moran condition implies that the Hausdorff dimension of Γ∞ is

dimH(Γ∞) = d ≡ − log 2

log a
, (13)

see [20, 16]. If 0 < θ < π/2, we have 0 < a ≤ a∗ < 1/
√

2 and thus d < 2.

2.2.3 Ω is a two-set

The definition of a d-set is given in [14], chapter 8:

Definition 1 Let E ⊂ R
2 be an arbitrary Borel set. Let md be the d-dimensional Hausdorff

measure. The set E is a d-set if there exist three positive constants r0, c1 and c2 such that for
any closed ball B(P, r), P ∈ E, 0 < r ≤ r0,

c1r
d ≤ md(B(P, r) ∩ E) ≤ c2r

d. (14)

Lemma 1 There exist two positive constants c̃1 and c̃2 such that for any P ∈ Γ∞ and for any
r, 0 < r ≤ diam(Ω),

c̃1r
2 ≤ m(B(P, r) ∩ Ω) ≤ c̃2r

2, (15)

where m = m2 is the standard Lebesgue measure un R
2.

Proof. The right side of (15) is clearly true with c̃2 = π.
For the other inequality, take P ∈ Γ∞ and r ∈ (0,diam Ω]. There exists σ ∈ A∞ such that P =
fσ(P ). Take n ∈ N such that andiam Ω < r ≤ an−1diam Ω, which implies that diam fσn(Ω) =
andiam Ω < r. Since P ∈ fσn(Γ∞), one has P ∈ fσn(Ω), and we deduce that fσn(Ω) ⊂ B(P, r).
Therefore, since fσn(Ω) ⊂ Ω,

m(B(P, r) ∩ Ω) ≥ m(fσn(Ω)) = a2nm(Ω) ≥ a2m(Ω)

diam2 Ω
r2,

and we obtain the desired result.

Proposition 1 Ω is a two-set.

Proof. Call r0 = diam(Ω).
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Step 1 We are going to prove first that there exist two positive constants c3 and c4 such that
for all P ∈ Ω, for all n ∈ N,

c3a
2n ≤ m(B(P, anr0) ∩ Ω) ≤ c4a

2n. (16)

Obviously, one can take c4 = πr2
0. Let us proceed by induction on n:

n = 0: from the self-similarity, at least one of the following assertion is true: P ∈ Y 0 or
minQ∈Γ∞ |P − Q| ≤ ar0. Indeed, if P /∈ Y 0, then one can suppose without restriction that
P ∈ f1(Ω). In this case, minQ∈Γ∞ |P − Q| = minQ∈f1(Γ∞) |P − Q|, because for all Q′ ∈ f2(Γ

∞),
the symmetric Q of Q′ with respect to the vertical axis belongs to f1(Γ

∞) and is such that
|P − Q| ≤ |P − Q′|. Therefore, minQ∈Γ∞ |P − Q| ≤ ar0.

• Since Y 0 is a polygonal domain of R
2 there exists a positive constant c such that for

all r ≤ r0, and Q ∈ Y 0, m(B(Q, r) ∩ Y 0) ≥ cr2. Therefore, if P ∈ Y 0, then for all r,
0 < r ≤ r0, we have m(B(P, r) ∩ Ω) ≥ cr2.

• If minQ∈Γ∞ |P−Q| ≤ ar0, call Qmin a point in Γ∞ achieving the minimum: then B(Qmin, (1−
a)r0) ⊂ B(P, r0). Therefore, from Lemma 1, m(B(P, r0)∩Ω) ≥ m(B(Qmin, (1−a)r0)∩Ω) ≥
c̃1(1 − a)2r2

0.

We can take c3 = min(c̃1(1 − a)2, c)r2
0 .

n → n + 1: The induction hypothesis is (16) with the value of c3 defined above. Take P ∈ Ω.

• If P ∈ Y 0, we have that m(B(P, an+1r0) ∩ Ω) ≥ cr2
0a

2(n+1) ≥ c3a
2(n+1).

• If P /∈ Y 0, we can assume without restriction that P ∈ f1(Ω). There exists Q ∈ Ω such
that P = f1(Q): therefore f1(B(Q, anr0)∩Ω) ⊂ B(P, an+1r0)∩Ω, and from the induction
hypothesis, m(B(Q, anr0) ∩ Ω) ≥ c3a

2n. Thus, m(B(P, an+1r0) ∩ Ω) ≥ c3a
2(n+1).

Step 2 For 0 < r ≤ r0, there exists a unique n > 0 such that r0a
n < r ≤ r0a

n−1. Thus, for
all p ∈ Ω, m(B(p, r) ∩ Ω) ≥ m(B(p, r0a

n) ∩ Ω) ≥ c3a
2n ≥ c3a2

r2
0

r2. We have proved (14) with

c1 = c3a2

r2
0

and c2 = π.

2.3 Hausdorff dimension of Ξ

We aim at characterizing Ξ defined in (6). We already know that Ξ 6= ∅ if and only if a = a∗.
Let us denote by Λ the vertical axis: Λ = {x : x1 = 0} and by O the origin O = (0, 0). Since
f1(Γ

∞) = Γ∞ ∩ {x1 ≤ 0} and f2(Γ
∞) = Γ∞ ∩ {x1 ≥ 0}, we immediately see that Ξ = Γ∞ ∩ Λ.

It can be observed (see [7] for the proof) that the sequences σ ∈ A∞ such that fσ(O) ∈ Λ and
that σ(1) = 1 are characterized by the following property: for all n ≤ 1, the truncated sequence
σn achieves the maximum of the abscissa of fη(O) over all η ∈ An such that η(1) = 1.
The Hausdorff dimension of Ξ depends on the value of m defined in (9):

Proposition 2 see [17] and also [7]. If mθ > π/2 and a = a∗, then Ξ contains a single point.
If mθ = π/2 and a = a∗, then the Hausdorff dimension of Ξ is d/2, where d is defined by (13).
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2.4 Examples

We make the choice θ = π/4, α = 1−a/
√

2, β = 1+a/
√

2. Hence m = 2. The critical parameter
a∗(π/4) is the unique positive solution of X3 +

√
2X2 −

√
2/2 = 0, i.e. a ≤ a∗(π/4) ' 0.593465.

The construction described in § 2.2.1 with the critical value a = a∗(π/4) leads to the domain Ω
shown in the left part of Figure 1. If a > 1/2, the Hausdorff dimension of Γ∞ is larger than one.
For instance, if a = a∗(π/4), then dimH(Γ∞) ' 1.3284371. In the right part of Figure 1, we
show a similar construction with θ = π/5 (for which m = 3) and a = a∗(π/5) ' 0.56658. Note
the difference between the two cases: in the former case m(θ) · θ = π/2 and the set Ξ defined in
(6) is not countable whereas in the latter case, m(θ) · θ > π/2 and the set Ξ is a singleton.

Γ∞

Ω

Γ∞

Ω

Figure 1: Left: the ramified domain Ω for θ = π/4, a = a∗(π/4), α = 1−a∗/
√

2, β = 1+a∗/
√

2.
Right: a similar construction for θ = π/5 and a = a∗(π/5).

2.5 The self-similar measure µ

To define traces on Γ∞, we recall the classical result on self-similar measures, see [9, 10] and [16]
page 26:

Theorem 3 There exists a unique Borel regular probability measure µ on Γ∞ such that for any
Borel set A ⊂ Γ∞,

µ(A) =
1

2
µ
(
f−1
1 (A)

)
+

1

2
µ
(
f−1
2 (A)

)
. (17)

The measure µ is called the self-similar measure defined in the self-similar triplet (Γ∞, f1, f2).

Proposition 3 The measure µ is a d-measure on Γ∞, with d = − log 2/ log a, according to the
definition in [14], page 28: there exist two positive constants c1 and c2 such that

c1r
d ≤ µ(B(x, r) ∩ Γ∞) ≤ c2r

d,
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for any r 0 < r < 1 and x ∈ Γ∞, where B(x, r) is the Euclidean ball in R
2 centered at x and

with radius r.

Proof. The proof stems from the Moran condition. It is due to Moran [20] and has been
extended by Kigami, see [16], §1.5, especially Proposition 1.5.8 and Theorem 1.5.7.

2.6 Additional notations

We define the sets Γσ = fσ(Γ0) and ΓN = ∪σ∈AN
Γσ. The one-dimensional Lebesgue measure of

Γσ for σ ∈ AN and of ΓN are

|Γσ| = aN |Γ0| and |ΓN | = (2a)N |Γ0|.

3 The space W 1,q(Ω)

Hereafter, we take θ in (0, π/2) and suppose that the parameters (α, β) satisfy Assumption 1.

3.1 Basic facts

For a real number q ≥ 1, let W 1,q(Ω) be the space of functions in Lq(Ω) with first order partial
derivatives in Lq(Ω). The space W 1,q(Ω) is a Banach space with the norm(
‖u‖q

Lq(Ω)
+ ‖ ∂u

∂x1
‖q

Lq(Ω)
+ ‖ ∂u

∂x2
‖q

Lq(Ω)

) 1
q
, see for example [5], p 60. Elementary calculus shows

that ‖u‖W 1,q(Ω) ≡
(
‖u‖q

Lq(Ω) + ‖∇u‖q
Lq(Ω)

) 1
q

is an equivalent norm, with ‖∇u‖q
Lq(Ω) ≡

∫
Ω |∇u|q

and |∇u| =
√
| ∂u
∂x1

|2 + | ∂u
∂x2

|2.
The spaces W 1,q(Ω) as well as elliptic boundary value problems in Ω have been studied in [2],
with, in particular Poincaré inequalities and a Rellich compactness theorem. The same results
in a similar but different geometry were proved by Berger [6] with other methods.

3.2 The classical definition of traces

We recall the classical definition of a trace operator on ∂ω, see for instance [14] page 206, when
ω is an open subset of R

2.

Definition 2 Consider an open set ω ⊂ R
2. The function u ∈ L1

loc(ω) can be strictly defined at
x ∈ ω if the limit

u(x) = lim
r→0

1

m2(B(x, r) ∩ ω)

∫

B(x,r)∩ω
u(z)dz (18)

exists.
The trace u|∂ω is defined as the function given by u|∂ω(x) = u(x) at every point x ∈ ∂ω such
that the limit u(x) exists.

In [14], Jonsson and Wallin proved the following result, ([14] page 206 Prop. 2), which we
state in the particular case when the space dimension is two:

9



Proposition 4 Let ω be an open 2-set such that the boundary ∂ω of ω is a 1-set. Let us assume
that for a real number q ∈ (1,∞), there exists an extension operator E : W 1,q(ω) → W 1,q(R2).
Let u ∈ W 1,q(ω), then u can be strictly defined in ∂ω almost everywhere with respect to the
one-dimensional Hausdorff measure m1 and ū = Eu m1− a.e..

Although Ω defined above is a two-set, Proposition 4 does not apply to Ω because ∂Ω is not
a 1-set even in the cases when Γ∞ is a 1-set.

3.3 A trace operator defined by self-similarity

In the remaining part of the paper, we will take a such that 1/2 ≤ a ≤ a∗, so the Hausdorff
dimension d of Γ∞ is not smaller than 1.
We define Lq

µ, q ∈ [1,+∞) as the class of µ-measurable functions v on Γ∞ such that
∫
Γ∞ |v|qdµ <

∞, endowed with the norm ‖v‖Lq
µ

=
(∫

Γ∞ |v|qdµ
)1/q

. We also introduce L∞
µ , the class of es-

sentially bounded functions with respect to the measure µ. A Hilbertian basis of L2
µ can be

constructed with e.g. Haar wavelets.
We recall the construction of the trace operator made in [2] by taking advantage of the self-
simililarity; this trace operator, called `∞ below, is well defined even if a = a∗.
We first construct a sequence (`n)n of approximations of the trace operator: consider the se-
quence of linear operators `n : W 1,q(Ω) → Lq

µ,

`n(v) =
∑

σ∈An

(
1

|Γσ|

∫

Γσ

v dx

)
1fσ(Γ∞), (19)

where |Γσ| is the one-dimensional Lebesgue measure of Γσ.

Proposition 5 see [2]. The sequence (`n)n converges in L(W 1,q(Ω), Lq
µ) to an operator that we

call `∞.

The operator `∞ is clearly a trace operator on Γ∞. The range of `∞ has been characterized in
[4]:

For a given θ, 0 < θ < π/2, let (α, β) satisfy Assumption 1 and Ω be constructed as in
§ 2.2.1, with 1/2 ≤ a ≤ a∗; then for all q, 1 < q < ∞,

`∞
(
W 1,q(Ω)

)
= JLip(1 − 2−d

q , q, q; 0; Γ∞), (20)

see § 1 for comments about the JLip spaces.

3.4 Extension results in the case when a < a∗

We have seen in § 1 that if ω is an ε − δ domain, then it is a Sobolev extension domain. In
dimension n = 2, the definition of such domains is equivalent to that of quasi-disks, see [18],
and the extension operator can be chosen such that E(u) ≥ 0 if u ≥ 0.
The above mentioned results clearly hold with our domains Ω if a < a∗.
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3.5 An extension result in the case when a = a∗

When a = a∗(θ), Ω is not an ε − δ domain, and the extension results of Jones and Vodopjanov
et al. cannot not be used. In [8], T. Deheuvels has proved the following theorem:

Theorem 4 see [8]

1. If mθ > π
2 and q ∈ (1, 2), then there exists a continuous linear operator E from W 1,q(Ω) to

W 1,q(R2) such that
E(u)|Ω = u, ∀u ∈ W 1,q(Ω)

and such that E(u) ≥ 0 is u ≥ 0.

2. If mθ = π
2 and q ∈ (1, 2− d

2), then there exists a continuous linear operator E from W 1,q(Ω)
to W 1,q(R2) such that

E(u)|Ω = u, ∀u ∈ W 1,q(Ω)

and such that E(u) ≥ 0 is u ≥ 0.

Let q̄θ be defined by q̄θ = 2 if mθ > π
2 and q̄θ = 2 − d

2 if mθ > π
2 ; it is clear that q̄θ > 1 and

a consequence of Theorem 4 is that Ω has the W 1,q extension property (thus W 1,q(R2)|Ω =
W 1,q(Ω)) if q ∈ (1, q̄θ).
The construction of E in [8] takes very much advantage of the self-similarity. It relies on the
following Theorem.

Theorem 5 see [8] In the case when a = a∗, if q < q̄θ, then

`∞(W 1,q(R2)|Ω) = `∞(W 1,q(Ω)) = JLip(1 − 2−d
q , q, q; 0; Γ∞).

Remark 3 In [14], Jonsson and Wallin proved that W 1,q(R2)|Γ∞ = Bq,q

1− 2−d
q

(Γ∞) for all q ∈
(1,∞), where the trace is meant in the classical sense (Theorem 1 p. 183). Theorem 5 can be
seen as the counterpart of this result for the functions in W 1,q(Ω), (note that the self-similar
definition of the trace `∞ is used and also the limitation on q).

Note that the critical exponent q̄θ already appeared in [1], where it was proved if a = a∗ and
1 < q < q̄θ, then

`∞(W 1,q(Ω)) = JLip(1 − 2−d
q , q, q; 0; Γ∞) = Lip(1 − 2−d

q , q, q; 0; Γ∞) = Bq,q

1− 2−d
q

(Γ∞),

and that the previous space identities do not hold for q > q̄θ.

4 Comparison of the two definitions of trace

We consider a such that 1/2 ≤ a ≤ a∗. Hereafter, the notation ū(x) will be used for the strict
definition at x ∈ Ω̄ of a function u ∈ L1(Ω).
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4.1 Some results on the classically defined trace

From §3.4 and § 3.5, we know that there exists a linear extension operator E which is continuous
from W 1,q(Ω) to W 1,q(R2), for all q, q ∈ (1, q̄θ) and which preserves the signs of the functions,
i.e. if u ≥ 0 in Ω then E(u) ≥ 0 in R

2. Note that if 1/2 ≤ a < a∗, then the extension property
holds for all q > 1, but we will not need this in what follows.
As a consequence, the operator E is continuous from W 1,p(Ω) to W 1,q(R2), for all p ≥ q̄θ and
1 < q < q̄θ and from W 1,p(Ω) to W 1,q(R2), for all q ≤ p < q̄θ. This extension operator is an
important ingredient for proving the following result:

Theorem 6 Let p > 1 be a real number. For all u ∈ W 1,p(Ω), u can be strictly defined m1-
almost everywhere on ∂Ω. Furthermore, m1-almost everywhere on ∂Ω, ū defined by (18) coin-

cides with Ẽ(u), the strictly defined function in R
2 which is given by

Ẽ(u)(x) = lim
r→0

1

m2(B(x, r))

∫

B(x,r)
E(u)(z)dz,when the limit exists.

Proof. The proof is similar to that of proposition 2 in [14] page 206. It is based on some results
on potential spaces, which we recall in the specific present framework for completeness.
Assume that u is positive. This is not a restriction, since it is always possible to decompose u
in u = u+ − u− with u+ ≥ 0, u− ≥ 0 and u+, u− ∈ W 1,p(Ω). We know that E(u) is positive and
belongs to ∈ W 1,q(R2) for some q, 1 < q ≤ min(p, q̄θ).
Thanks to the identification of the potential spaces and the Sobolev spaces (see for instance E.M.
Stein [21] Theorem 3, Ch. V page 135), there exist g ∈ Lq(R2), such that E(u) = G1 ? g where
G1 is the Bessel kernel of order one. Take β ∈ (0, 2). N.G. Meyers proved in [19], Theorem 3.2
page 165 that for almost every ξ0 (with respect to the β-Hausdorff measure), there exists a set
Eξ0 such that

1. E(u)(ξ0) = lim
ξ→ξ0, ξ /∈Eξ0

E(u)(ξ),

2. lim
r→0

Cq(B(ξ0, r) ∩ Eξ0)

rβ
= 0,

where Cq(A) is the capacity of a Borel set A, which is defined by

Cq(A) = inf

{∫

R2

f q : f ≥ 0 on R
2 G1 ? f(x) ≥ 1 ∀x ∈ A

}
.

Moreover, thanks to Proposition 1 page 151 in [14], see also [13], page 178, E(u) coincides with

Ẽ(u) a.e. with respect to the β-Hausdorff measure if 1 − (2−β)
q > 0.

For a fixed value of β > 2− q, let us consider ξ0 ∈ R
2 with the previously mentioned properties.

Let q∗ be the Sobolev exponent associated to q i.e. q∗ = 2q
2−q (we can always assume that

q < 2) and q∗
′

the conjugate exponent of q∗. Then for any f ∈ Lq(R2) such that f ≥ 0 and
G1 ? f(x) ≥ 1 ∀x ∈ B(ξ0, r) ∩ Eξ0

m2(B(ξ0, r) ∩ Eξ0) ≤
∫

B(ξ0 ,r)∩Eξ0

G1 ? f ≤ ‖G1 ? f‖Lq∗(R2)(m2(B(ξ0, r) ∩ Eξ0))
1

q∗
′

≤ c‖f‖Lq(R2)(m2(B(ξ0, r) ∩ Eξ0))
1

q∗
′
,
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and
m2(B(ξ0, r) ∩ Eξ0)

q/q∗ ≤ cq‖f‖q
Lq(R2)

.

Then, minimizing with respect to f and using N.G. Meyers result,

m2(B(ξ0, r) ∩ Eξ0)
2−q
2 ≤ Cqc

q(B(ξ0, r) ∩ Eξ0) = o(rβ),

which implies that

m2(B(ξ0, r) ∩ Eξ0) = o(r
2β
2−q ). (21)

Thanks to the assumptions on ξ0,

Ẽ(u)(ξ0) = limr→0
1

m2(B(ξ0 ,r))

∫
B(ξ0 ,r) E(u)dm2

= lim
r→0

1

m2(B(ξ0, r))

(∫

B(ξ0 ,r)∩Eξ0

E(u)dm2 +

∫

B(ξ0 ,r)∩Ec
ξ0

E(u)dm2

)
.

Thanks to the continuity property and (21), if β > 2 − q then

lim
r→0

1

m2(B(ξ0, r))

∫

B(ξ0,r)∩Ec
ξ0

E(u)dm2 = E(u)(ξ0),

and

lim
r→0

1

m2(B(ξ0, r))

∫

B(ξ0 ,r)∩Eξ0

E(u)dm2 = 0. (22)

Hence

Ẽ(u)(ξ0) = lim
r→0

1

m2(B(ξ0, r))

∫

B(ξ0,r)∩Ec
ξ0

E(u)dm2. (23)

We now have all the tools necessary to begin the proof:

1

m2(B(ξ0, r) ∩ Ω)

∫

B(ξ0,r)∩Ω
udm2 =

1

m2(B(ξ0, r) ∩ Ω)

∫

B(ξ0,r)∩Ω
E(u)dm2

=
1

m2(B(ξ0, r) ∩ Ω)

(∫

B(ξ0 ,r)∩Ω∩Eξ0

E(u)dm2 +

∫

B(ξ0 ,r)∩Ω∩Ec
ξ0

E(u)dm2

)
.

For the first integral, since Ω is a 2-set:

1

m2(B(ξ0, r) ∩ Ω)

∫

B(ξ0 ,r)∩Ω∩Eξ0

E(u)dm2 ≤ 1

m2(B(ξ0, r) ∩ Ω)

∫

B(ξ0 ,r)∩Eξ0

E(u)dm2

≤ C
1

m2(B(ξ0, r))

∫

B(ξ0,r)∩Eξ0

E(u)dm2

and as r → 0, this tends to zero if β > 2 − q thanks to (22).
For the second integral, if β > 2− q, using the continuity property of E(u) in Ω∩E c

ξ0
and again

the fact that Ω is a 2-set,

lim
r→0

1

m2(B(ξ0, r) ∩ Ω)

∫

B(ξ0 ,r)∩Ω∩Ec
ξ0

E(u)dm2 = E(u)(ξ0).
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Hence, for all ξ0 chosen as above, the limit ū(ξ0) = limr→0
1

m2(B(ξ0 ,r)∩Ω)

∫
B(ξ0 ,r)∩Ω u(z)dz exists

and
ū(ξ0) = E(u)(ξ0) = Ẽ(u)(ξ0).

We can choose β = 1 since with q > 1, the condition β > 2 − q is fulfilled. This concludes the
proof.

4.2 Self-similar strictly defined trace on Γ∞

Recall that Ξ = f1(Γ
∞) ∩ f2(Γ

∞), and define the set of the multiple points of Γ∞, Ξ∞ =

Ξ ∪
∞⋃

n=1

⋃

σ∈An

fσ(Ξ). Note that µ(Ξ∞) = 0 and m1((Ξ
∞) = 0. For x ∈ Γ∞\Ξ∞, there is one and

only one τx ∈ A∞ such that for all n > 0, x ∈ fτx,n(Γ∞), where τx,n ∈ An and τx,n(i) = τx(i)
for i = 1, . . . , n.

Definition 3 The function u ∈ L1
loc(Ω) can be self-similarly strictly defined at x ∈ Γ∞\Ξ∞ if

the limit

lim
n→∞

1

m2(Ωτx,n)

∫

Ωτx,n

u(z)dz

exists.
The self-similar strictly defined trace of u on Γ∞ is then defined as

ˇ̀∞(u)(x) = lim
n→∞

1

m2(Ωτx,n)

∫

Ωτx,n

u(z)dz (24)

at every point x ∈ Γ∞\Ξ∞ such that the limit exists.

Theorem 7 Let p > 1 be a real number. For all u ∈ W 1,p(Ω), the limit in the right hand side of
(24) can be self-similarly strictly defined m1-almost everywhere on Γ∞. Furthermore, m1-almost

everywhere on Γ∞, ˇ̀∞(u) coincides with Ẽ(u).

Proof. The proof is very similar to that of Theorem 6 and we take the same notation. We
know that for β = 1, we have 1 − 2−β

q = 1 − 1
q > 0 where q ∈ (1, 2) is defined in the proof of

Theorem 6. Hence, for almost every ξ0 ∈ Γ∞\Ξ∞ w.r.t. m1, there exists a Eξ0 such that

1. E(u)(ξ0) = lim
ξ→ξ0, ξ /∈Eξ0

E(u)(ξ),

2. lim
r→0

Cq(B(ξ0, r) ∩ Eξ0)

r
= 0,

and that E(u) coincides with Ẽ(u) at ξ0. Fix such a ξ0. We write τ = τξ0 and τn = τξ0,n for
brevity.
We know that Ωτn ⊂ B(ξ0, a

ndiam(Ω)) and that m2(Ω
τn) = a2nm2(Ω).

1

m2(Ωτn)

∫

Ωτn

udm2 =
1

m2(Ωτn)

∫

Ωτn

E(u)dm2 =
1

m2(Ωτn)

(∫

Ωτn∩Eξ0

E(u)dm2 +

∫

Ωτn∩Ec
ξ0

E(u)dm2

)
.
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Let us call rn = andiam(Ω). For the first integral,

1

m2(Ωτn)

∫

Ωτn∩Eξ0

E(u)dm2 ≤ m2(B(ξ0, rn) ∩ Ω)

m2(Ωτn)

1

m2(B(ξ0, rn) ∩ Ω)

∫

B(ξ0 ,rn)∩Ω∩Eξ0

E(u)dm2

≤ πdiam2(Ω)

m2(Ω)

1

m2(B(ξ0, rn) ∩ Ω)

∫

B(ξ0,rn)∩Ω∩Eξ0

E(u)dm2,

which tends to 0 as n tends to infinity from the proof of Theorem 6. The second term converges
to E(u)(ξ0) from (21) and the continuity property of E(u) in Ω ∩ Ec

ξ0
.

4.3 Comparison of the different traces

Proposition 6 For any u ∈ W 1,p(Ω), 1 < p < ∞, there exists a set N ⊂ Γ∞ containing Ξ∞

with µ(N ) = 0 such that for all x ∈ Γ∞\N ,

• Ẽ(u)(x), ū(x) and (`∞(u))(x) are well defined,

• (`∞(u))(x) = ū(x) = Ẽ(u)(x).

Proof. From Theorem 6, we know that there exists a subset N1 of Γ∞ with µ(N1) = 0 such that

Ẽ(u)(x) and ū(x) are well defined and coincide with each other for x ∈ Γ∞\N1. From Theorem 7,

we know that there exists a subset N2 of Γ∞ containing Ξ∞ with µ(N2) = 0 such that Ẽ(u)(x)
and ˇ̀∞(u)(x) are well defined and coincide with each other for x ∈ Γ∞\N2. Therefore, for

x ∈ Γ∞\(N1 ∪N2), ˇ̀∞(u)(x), Ẽ(u)(x) and ū(x) are well defined and coincide with each other.
On the other hand, it is elementary to check that if u ∈ W 1,p(Ω) with p ≥ 1, then

lim
n→∞

∥∥∥∥(`
n(u))(x) − 1

m2(Ωτn(x))

∫

Ωτn(x)

u(z)dz

∥∥∥∥
Lp

µ(Γ∞)

= 0,

because, for all x ∈ Γ∞\Ξ∞,
∣∣∣∣(`

n(u))(x) − 1

m2(Ωτn(x))

∫

Ωτn(x)

u(z)dz

∣∣∣∣ ≤ can(1−2/p)‖∇u‖Lp(Ωτn(x))

and
∑

τ∈An
2−nan(p−2)‖∇u‖p

Lp(Ωτ ) =
∑

τ an(p−2+d)‖∇u‖p
Lp(Ωτ ) tends to zero as n tends to +∞.

This implies that `∞(u) coincides with he ˇ̀∞(u) µ-almost everywhere on Γ∞.

As a consequence of the first point, `∞(u) coincides with ū and Ẽ(u) µ-almost everywhere on
Γ∞.

As a consequence of Proposition 6, we see that if p > q̄θ, there does not exist any continuous
extension operators from W 1,p(Ω) to W 1,p(R2). Indeed, if such an extension operator E existed,

then for any u ∈ W 1,p(Ω, the trace (in the classical sense) of E(u) on Γ∞, namely Ẽ(u) would
belong to Bp,p

1− 2−d
p

(Γ∞) (see [14]), where Bp,p
s (Γ∞) is given by (1).

But since `∞(u) and Ẽ(u) coincide µ-everywhere, this would imply that `∞(u) ∈ Bp,p

1− 2−d
p

(Γ∞) for

all u ∈ W 1,p(Ω. This is in contradiction with the characterization of `∞(W 1,p(Ω)) as JLip(1 −
2−d

p , p, p; 0; Γ∞) given in [4] and the fact that JLip(1− 2−d
p , p, p; 0; Γ∞) 6⊂ Bp,p

1− 2−d
p

(Γ∞) for p > q̄θ,

see [1].
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