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Comparison of Different Definitions of Traces for a Class of Ramified Domains with Self-Similar Fractal Boundaries

We consider a class of ramified bidimensional domains Ω with a self-similar fractal boundary Γ ∞ , which is supplied with a probability measure µ called the self-similar measure. Emphasis is put on the case when the domain is not aδ domain as defined by Jones and the fractal set is not totally disconnected. We compare two notions of trace on Γ ∞ for functions in W 1,q (Ω): the classical one, see for instance the book by Jonnson and Wallin, 1984, page 206, using the strict definition of a function at a point of Ω, and another one proposed in 2007 and heavily relying on self-similarity. We prove that the two traces coincide µ-almost everywhere on Γ ∞ . As a corollary, we characterize the critical number q for which for all q < q (resp. q > q ) there is a (resp. no) continuous extension operator from W 1,q (Ω) to W 1,q (R 2 ).

Introduction

In the present work, we consider a class of self-similar sets noted Γ ∞ below, see for example Figure 1. The set Γ ∞ is the unique compact subset of R 2 such that

Γ ∞ = f 1 (Γ ∞ ) ∪ f 2 (Γ ∞ ),
where f 1 and f 2 are two similitudes with rotation angles ±θ and contraction factor a, 0 < a ≤ a * (θ). As we shall see, Γ ∞ can be seen as a part of the boundary of a ramified domain Ω in R 2 , see Figure 1, and the restriction a ≤ a * (θ) allows for the construction of Ω as a union of non-overlapping sub-domains, see [START_REF] Jonsson | Haar wavelets of higher order on fractals and regularity of functions[END_REF]. In § 2.5, we will recall the notion of self-similar measure µ defined in the triplet (Γ ∞ , f 1 , f 2 ), see [START_REF] Kigami | Analysis on fractals[END_REF]. With the Borel regular probability measure µ, Γ ∞ is a d-set where d ≡log 2/ log a is the Hausdorff dimension of Γ ∞ , i.e. there exist two positive constants c 1 and c 2 with

c 1 r d ≤ µ(B(x, r) ∩ Γ ∞ ) ≤ c 2 r d ,
for all x ∈ Γ ∞ and r < 1 (here B(x, r) is the ball with center x and radius r); Such a geometry can be seen as a bidimensional idealization of the bronchial tree, for example. Indeed, the present work is a continuation of [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF] and of [START_REF] Achdou | Trace results on domains with self-similar fractal boundaries[END_REF], which were part of a wider project aimed at simulating the diffusion of medical sprays in lungs. Since the exchanges between the lungs and the circulatory system take place only in the last generations of the bronchial tree (the smallest structures), reasonable models for the diffusion of, e.g., oxygen may involve a non-homogeneous Neumann or Robin condition on the boundary Γ ∞ . Similarly, the lungs are mechanically coupled to the diaphragm, which also implies non-homogeneous boundary conditions on Γ ∞ , if one is interested in a coupled fluid-structure model. It is therefore necessary to study traces of functions on Γ ∞ . There are several possible ways of defining the trace of a function v ∈ W 1,q (Ω) on Γ ∞ . The first one, refered to as the classical or strictly defined trace below, relies on the notion of the strict definition of a function at a point x ∈ Ω, see for instance [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] page 206. It is recalled in § 4 below. For 1/2 ≤ a ≤ a * , a different notion of trace was intoduced in [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF]. Its construction is recalled in § 3.3 below. This trace operator noted ∞ below, is obtained by exploiting the self-similarity, as the limit of a sequence of operators ( n ) n : the operator n maps W 1,q (Ω) to piecewise constant functions on a partition of Γ ∞ into 2 n sets whose µ-measure is 2 -n . Obtained by passing to the limit, ∞ is linear and continuous from W 1,q (Ω) to L q (Γ ∞ , dµ). The self-similar construction of the trace operator ∞ has permitted to obtain several results:

• The space ∞ W 1,q (Ω) was characterized in [START_REF] Achdou | Trace results on domains with self-similar fractal boundaries[END_REF] as a JLip space, see §3.3 below for the precise statement. The JLip spaces were presented in [START_REF] Jonsson | Haar wavelets of higher order on fractals and regularity of functions[END_REF]: Haar wavelets of arbitrary order on Γ ∞ were used for constructing a family of Lipschitz function spaces allowing jumps at the multiple points in Γ ∞ . These function spaces were named JLip(t, p, q; m; Γ ∞ ), where t is a positive real number, p, q are two real numbers not smaller than 1 and m is an integer (m is the order of the Haar wavelets used for constructing the space). Here J stands for jumps, since the considered functions may jump at the multiple points of Γ ∞ . Note that if a self-similar set S is totally disconnected, then the JLip spaces on S coincide with Lipschitz or Besov spaces, more precisely that the spaces JLip(t, p, q; m; S) coincide with the Lipschitz spaces Lip(t, p, q; m; S) also introduced in [START_REF] Jonsson | Haar wavelets of higher order on fractals and regularity of functions[END_REF]. The latter are a generalization of the more classical spaces Lip(t, p, q; S) introduced in [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] since Lip(t, p, q; [t]; S) = Lip(t, p, q; S). Note that Lip(t, p, q; S) coincides with the Besov space B p,q t (S), see [START_REF] Jonsson | The dual of Besov spaces on fractals[END_REF]. Remember that if p = q and s ∈ (0, 1)

B p,p s (Γ ∞ ) = f ∈ L p µ (Γ ∞ ); x,y∈Γ ∞ ,|x-y|<1 |f (x) -f (y)| p |x -y| d+sp dµ(x)dµ(y) < ∞ . (1) • As a consequence, if 1/2 ≤ a < a * , i.e. if Γ ∞ is totally disconnected, then the trace space ∞ W 1,q (Ω) is exactly B q,q 1-2-d q (Γ ∞ ). Note that B q,q 1-2-d q (Γ ∞ ) is precisely the image of W 1,q (R 2
) by the classical trace operator, see [START_REF] Jonsson | Function spaces on subsets of R n[END_REF].

• In the case when a = a * , i.e. when the set Γ ∞ self-intersects, relations between JLip and classical Besov spaces on Γ ∞ were studied in [START_REF] Achdou | JLip versus sobolev spaces on a class of self-similar fractal foliages[END_REF]. As a consequence, it was also shown in [START_REF] Achdou | JLip versus sobolev spaces on a class of self-similar fractal foliages[END_REF] that there exits a critical exponent qθ ∈ (1, 2), depending on the Hausdorff dimension of the self intersection of Γ ∞ such that for all q such that 1 < q < qθ , the identity ∞ W 1,q (Ω) = B q,q 1-2-d q (Γ ∞ ) holds, and is false for q > qθ .

The question of extensions is closely related to that of traces.

• Jones [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF] (and Vodopjanov et al. [START_REF] Vodop Janov | A criterion for the extension of functions of the class L 1 2 from unbounded plane domains[END_REF] in the case n = 2, see also [START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF][START_REF] Jonsson | Function spaces on subsets of R n[END_REF]) have studied the open bounded subsets Ω of R n such that there exists a continuous extension operator from W ,p (Ω) in W ,p (R n ), for all nonnegative integers and real numbers p, 1 ≤ p ≤ ∞. Such domains are sometimes called Sobolev extension domains. Jones has proved that if Ω is anδ domain for some parameters , δ > 0, see [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF][START_REF] Jonsson | Function spaces on subsets of R n[END_REF] for the definition, then it is a Sobolev extension domain. Moreover, in dimension two, if Ω is finitely connected and a Sobolev extension domain, then Ω is anδ domain for some parameters , δ > 0. In dimension two, the definition of such domains is equivalent to that of quasi-disks, see [START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF].

• It can be seen that if 1/2 ≤ a < a * , the domain Ω is anδ domain, hence a Sobolev extension domain.

• If on the contrary a = a * then the domain Ω is not a Sobolev extension domain (it is easily seen that for p > 2, the extension property from W 1,p (Ω) to W 1,p (R 2 ) is not satisfied; in this case, it was proved in [START_REF] Deheuvels | W 1,p -extension property for tree shaped domains with self-contacting fractal boundaries[END_REF] that Ω has the Sobolev extension property (from W 1,q (Ω) to W 1,q (R 2 )) for 1 < q < qθ , where qθ is the critical exponent mentioned above; the proof of this result consisted in the construction of an extension operator which was compatible with that of ∞ ; it used the above-mentioned characterization of ∞ (W 1,p (Ω)), and a strenghtened Poincaré inequality proved in [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF]. The results obtained in [START_REF] Deheuvels | W 1,p -extension property for tree shaped domains with self-contacting fractal boundaries[END_REF] are recalled in § 3.5 below.

A question that was not tackled in the previously mentioned works is the relation between the classically defined trace operator and the operator ∞ constructed using the self-similarity. Is it true that for a given function v ∈ W 1,p (Ω), the two definitions of the trace of v on Γ ∞ coincide µ-almost everywhere on Γ ∞ ? The goal of the present work is to give a positive answer to this question, using the extension operators constructed in [START_REF] Deheuvels | W 1,p -extension property for tree shaped domains with self-contacting fractal boundaries[END_REF]. As a consequence, we shall see in § 4.3 that for q > qθ , the domain Ω does not have the W 1,q extension property.

The Geometry

2.1 The similitudes f 1 and f 2 and the self-similar set Γ ∞ Consider four real numbers a, α, β, θ such that 0 < a < 1/ √ 2, α > 0, β > 0 and 0 < θ < π/2. Let f i , i = 1, 2 be the two similitudes in R 2 given by

f 1 x 1 x 2 = -α β + a x 1 cos θ -x 2 sin θ x 1 sin θ + x 2 cos θ , f 2 x 1 x 2 = α β + a x 1 cos θ + x 2 sin θ -x 1 sin θ + x 2 cos θ . (2) 
The two similitudes have the same dilation ratio a and opposite angles ±θ. One can obtain f 2 by composing f 1 with the symmetry with respect to the axis {x 1 = 0}. We denote by Γ ∞ the self-similar set associated to the similitudes f 1 and f 2 , i.e. the unique compact subset of R 2 such that

Γ ∞ = f 1 (Γ ∞ ) ∪ f 2 (Γ ∞ ).
For n ≥ 1, we denote by

• A n the set containing all the 2 n mappings from {1, . . . , n} to {1, 2}

• A the set defined by

A = ∪ n≥1 A n • A ∞ = {1, 2} N\{0} the set of the sequences σ = (σ(i) ) i=1,...,∞ with values σ(i) ∈ {1, 2}. Consider 1 ≤ m < n ≤ ∞ and σ ∈ A n : we say that σ m ∈ A m defined by σ m (i) = σ(i), i = 1, . . . , m is a prefix of σ.
For a positive integer n and σ ∈ A n , we define the similitude f σ by

f σ = f σ(1) • . . . • f σ(n) . (3) 
Similarly, if σ ∈ A ∞ , f σ = lim n→∞ f σ(1) • . . . • f σ(n) = lim n→∞ f σn (4) 
Let the subset Γ ∞,σ of Γ ∞ be defined by

Γ ∞,σ = f σ (Γ ∞ ). (5) 
The definition of Γ ∞ implies that for all n > 0, Γ ∞ = σ∈An Γ ∞,σ . We also define the set Ξ:

Ξ = f 1 (Γ ∞ ) ∩ f 2 (Γ ∞ ). ( 6 
)
The following theorem was stated by Mandelbrot et al., [START_REF] Mandelbrot | The canopy and shortest path in a self-contacting fractal tree[END_REF] (a complete proof is given in [7]):

Theorem 1 For any θ, 0 < θ < π/2, there exists a unique positive number a * (θ) < 1/ √ 2, (which does not depend of (α, β) see [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF]) such that

0 < a < a * (θ) ⇒ Ξ = ∅ ⇒ Γ ∞ is totally disconnected, a = a * (θ) ⇒ Ξ = ∅ ⇒ Γ ∞ is connected, (from Th. 1.6.2 in [16]). (7) 
The critical parameter a * (θ) is the unique positive root of the polynomial equation:

m-1 i=0 X i+2 cos iθ = 1 2 , ( 8 
)
where

m is the smallest integer such that mθ ≥ π/2. ( 9 
)
Remark 1 From (8), it can be seen that θ → a * (θ) is a continuous and increasing function from

(0, π/2) onto (1/2, 1/ √ 2) and that lim θ→0 a * (θ) = 1/2.
Hereafter, for a given θ, 0 < θ < π/2, we will write for brevity a * instead of a * (θ) and we will only consider a such that 0 < a ≤ a * .

Ramified domains

The construction

Call P 1 = (-1, 0) and P 2 = (1, 0) and Γ 0 the line segment Γ 0 = [P 1 , P 2 ]. We impose that f 2 (P 1 ), and f 2 (P 2 ) have positive coordinates, i.e. that a cos θ < α and a sin θ < β.

We also impose that the open domain Y 0 inside the closed polygonal line joining the points P 1 , P 2 , f 2 (P 2 ), f 2 (P 1 ), f 1 (P 2 ), f 1 (P 1 ), P 1 in this order is convex. With [START_REF] Hutchinson | Fractals and self-similarity[END_REF], this is true if and only

if (α -1) sin θ + β cos θ ≥ 0. ( 11 
)
Under assumptions ( 10) and ( 11), the domain Y 0 is either hexagonal or trapezoidal in degenerate cases, contained in the half-plane x 2 > 0 and symmetric w.r.t. the vertical axis x 1 = 0. We introduce K 0 = Y 0 . It is possible to glue together K 0 , f 1 (K 0 ) and f 2 (K 0 ) and obtain a new polygonal domain, also symmetric with respect to the axis {x 1 = 0}. The assumptions [START_REF] Hutchinson | Fractals and self-similarity[END_REF] and [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF] 

imply that Y 0 ∩ f 1 (Y 0 ) = ∅ and Y 0 ∩ f 2 (Y 0 ) = ∅.
We also define the ramified open domain Ω, see Figure 1:

Ω = Interior K 0 ∪ ∪ σ∈A f σ (K 0 ) . (12) 
Note that Ω is symmetric with respect to the axis x 1 = 0, and that for a < 1/ √ 2, the measure of Ω is finite.

For a given θ, with a * defined as above, we shall make the following assumption on (α, β): Assumption 1 For 0 < θ < π/2, the parameters α and β satisfy [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF] and [START_REF] Hutchinson | Fractals and self-similarity[END_REF] for a = a * , and are such that

   i) for all a, 0 < a ≤ a * , the sets Y 0 , f σ (Y 0 ), σ ∈ A n , n > 0, are disjoint ii) for all a, 0 < a < a * , f 1 (Ω) ∩ f 2 (Ω) = ∅ iii) for a = a * , f 1 (Ω) ∩ f 2 (Ω) = ∅.
Remark 2 As proved in [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF], Assumption 1 implies that if a = a * , then

f 1 (Ω) ∩ f 2 (Ω) = ∅.
The following theorem asserts that ∀θ, 0 < θ < π/2, there exists (α, β) satisfying Assumption 1.

Theorem 2 see [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF]. If θ ∈ (0, π/2), then for all α > a * cos θ, there exists β > 0 such that β > a * sin θ and (α -1) sin θ + β cos θ ≥ 0 and for all β ≥ β, (α, β) satisfies Assumption 1.

It has been proved in [START_REF] Achdou | Trace results on domains with self-similar fractal boundaries[END_REF] that if a < a * , then there exists > 0 and δ > 0 such that Ω is anδ domain as defined by Jones [START_REF] Jones | Quasiconformal mappings and extendability of functions in Sobolev spaces[END_REF], see also [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] or in an equivalent manner a quasi-disk, see [START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF]. On the contrary, if a = a * , then Ω is not anδ domain because it is possible to construct two sequences (x

(1) n ) n and (x (2) n ) n , x (1) 
n ∈ f 1 (Ω) and x

(2)

n ∈ f 2 (Ω) such that lim n→∞ |x (1) n -x (2) 
n | = 0; then, any arc contained in Ω and joining x 

n to x (2)
n has a length bounded from below by a positive constant.

The Moran condition

The Moran condition, (or open set condition), see [START_REF] Moran | Additive functions of intervals and Hausdorff measure[END_REF][START_REF] Kigami | Analysis on fractals[END_REF], is that there exists a nonempty bounded open subset ω of R 2 such that f 1 (ω) ∩ f 2 (ω) = ∅ and f 1 (ω) ∪ f 2 (ω) ⊂ ω. For a given θ ∈ (0, π/2), let (α, β) satisfy Assumption 1; for 0 < a ≤ a * , the Moran condition is satisfied with ω = Ω because

• f 1 (Ω) ∩ f 2 (Ω) = ∅, which stems from point ii) in Assumption 1 if a < a * ,

and from

Remark 2 if a = a * ;

• by construction of Ω, we also have

f 1 (Ω) ∪ f 2 (Ω) ⊂ Ω. The Moran condition implies that the Hausdorff dimension of Γ ∞ is dim H (Γ ∞ ) = d ≡ - log 2 log a , (13) 
see [START_REF] Moran | Additive functions of intervals and Hausdorff measure[END_REF][START_REF] Kigami | Analysis on fractals[END_REF]. If 0 < θ < π/2, we have 0 < a ≤ a * < 1/ √ 2 and thus d < 2.

Ω is a two-set

The definition of a d-set is given in [START_REF] Jonsson | Function spaces on subsets of R n[END_REF], chapter 8:

Definition 1 Let E ⊂ R 2 be an arbitrary Borel set. Let m d be the d-dimensional Hausdorff measure.
The set E is a d-set if there exist three positive constants r 0 , c 1 and c 2 such that for any closed ball B(P, r), P ∈ E, 0 < r ≤ r 0 ,

c 1 r d ≤ m d (B(P, r) ∩ E) ≤ c 2 r d . ( 14 
)
Lemma 1 There exist two positive constants c1 and c2 such that for any P ∈ Γ ∞ and for any r,

0 < r ≤ diam(Ω), c1 r 2 ≤ m(B(P, r) ∩ Ω) ≤ c2 r 2 , ( 15 
)
where m = m 2 is the standard Lebesgue measure un R 2 .

Proof. The right side of ( 15) is clearly true with c2 = π.

For the other inequality, take P ∈ Γ ∞ and r ∈ (0, diam Ω]. There exists σ ∈ A ∞ such that P = f σ (P ). Take n ∈ N such that a n diam Ω < r ≤ a n-1 diam Ω, which implies that diam f σn (Ω) = a n diam Ω < r. Since P ∈ f σn (Γ ∞ ), one has P ∈ f σn (Ω), and we deduce that f σn (Ω) ⊂ B(P, r). Therefore, since f σn (Ω) ⊂ Ω,

m(B(P, r) ∩ Ω) ≥ m(f σn (Ω)) = a 2n m(Ω) ≥ a 2 m(Ω) diam 2 Ω r 2 ,
and we obtain the desired result.

Proposition 1 Ω is a two-set.

Proof. Call r 0 = diam(Ω).

Step 1 We are going to prove first that there exist two positive constants c 3 and c 4 such that for all P ∈ Ω, for all n ∈ N,

c 3 a 2n ≤ m(B(P, a n r 0 ) ∩ Ω) ≤ c 4 a 2n . (16) 
Obviously, one can take c 4 = πr 2 0 . Let us proceed by induction on n: n = 0: from the self-similarity, at least one of the following assertion is true: P ∈ Y 0 or min Q∈Γ ∞ |P -Q| ≤ ar 0 . Indeed, if P / ∈ Y 0 , then one can suppose without restriction that P ∈ f 1 (Ω). In this case, min

Q∈Γ ∞ |P -Q| = min Q∈f 1 (Γ ∞ ) |P -Q|, because for all Q ∈ f 2 (Γ ∞ ), the symmetric Q of Q with respect to the vertical axis belongs to f 1 (Γ ∞ ) and is such that |P -Q| ≤ |P -Q |. Therefore, min Q∈Γ ∞ |P -Q| ≤ ar 0 .
• Since Y 0 is a polygonal domain of R 2 there exists a positive constant c such that for all r ≤ r 0 , and

Q ∈ Y 0 , m(B(Q, r) ∩ Y 0 ) ≥ cr 2 .
Therefore, if P ∈ Y 0 , then for all r, 0 < r ≤ r 0 , we have m(B(P, r) ∩ Ω) ≥ cr 2 .

• If min Q∈Γ ∞ |P -Q| ≤ ar 0 , call Q min a point in Γ ∞ achieving the minimum: then B(Q min , (1a)r 0 ) ⊂ B(P, r 0 ). Therefore, from Lemma 1, m(B(P, r

0 )∩Ω) ≥ m(B(Q min , (1-a)r 0 )∩Ω) ≥ c1 (1 -a) 2 r 2 0 . We can take c 3 = min(c 1 (1 -a) 2 , c)r 2 0 . n → n + 1:
The induction hypothesis is [START_REF] Kigami | Analysis on fractals[END_REF] with the value of c 3 defined above. Take P ∈ Ω.

• If P ∈ Y 0 , we have that m(B(P, a n+1 r 0 ) ∩ Ω) ≥ cr 2 0 a 2(n+1) ≥ c 3 a 2(n+1) . • If P /
∈ Y 0 , we can assume without restriction that P ∈ f 1 (Ω). There exists Q ∈ Ω such that P = f 1 (Q): therefore f 1 (B(Q, a n r 0 ) ∩ Ω) ⊂ B(P, a n+1 r 0 ) ∩ Ω, and from the induction hypothesis, m(B(Q, a n r 0 ) ∩ Ω) ≥ c 3 a 2n . Thus, m(B(P, a n+1 r 0 ) ∩ Ω) ≥ c 3 a 2(n+1) .

Step 2 For 0 < r ≤ r 0 , there exists a unique n > 0 such that r 0 a n < r ≤ r 0 a n-1 . Thus, for all p ∈ Ω, m(B(p, r) ∩ Ω) ≥ m(B(p, r 0 a n ) ∩ Ω) ≥ c 3 a 2n ≥ c 3 a 2 r 2 0 r 2 . We have proved [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] with

c 1 = c 3 a 2 r 2 0 and c 2 = π.

Hausdorff dimension of Ξ

We aim at characterizing Ξ defined in [START_REF] Berger | Eigenvalue distribution of elliptic operators of second order with Neumann boundary conditions in a snowflake domain[END_REF]. We already know that Ξ = ∅ if and only if a = a * . Let us denote by Λ the vertical axis: Λ = {x : x 1 = 0} and by O the origin O = (0, 0). Since

f 1 (Γ ∞ ) = Γ ∞ ∩ {x 1 ≤ 0} and f 2 (Γ ∞ ) = Γ ∞ ∩ {x 1 ≥ 0}, we immediately see that Ξ = Γ ∞ ∩ Λ.
It can be observed (see [7] for the proof) that the sequences σ ∈ A ∞ such that f σ (O) ∈ Λ and that σ(1) = 1 are characterized by the following property: for all n ≤ 1, the truncated sequence σ n achieves the maximum of the abscissa of f η (O) over all η ∈ A n such that η(1) = 1. The Hausdorff dimension of Ξ depends on the value of m defined in (9): Proposition 2 see [START_REF] Mandelbrot | The canopy and shortest path in a self-contacting fractal tree[END_REF] and also [7]. If mθ > π/2 and a = a * , then Ξ contains a single point. If mθ = π/2 and a = a * , then the Hausdorff dimension of Ξ is d/2, where d is defined by (13).

Examples

We make the choice θ = π/4, α = 1-a/ √ 2, β = 1+a/ √ 2. Hence m = 2. The critical parameter a * (π/4) is the unique positive solution of X 3 + √ 2X 2 -√ 2/2 = 0, i.e. a ≤ a * (π/4) 0.593465. The construction described in § 2.2.1 with the critical value a = a * (π/4) leads to the domain Ω shown in the left part of Figure 1. If a > 1/2, the Hausdorff dimension of Γ ∞ is larger than one. For instance, if a = a * (π/4), then dim H (Γ ∞ ) 1.3284371. In the right part of Figure 1, we show a similar construction with θ = π/5 (for which m = 3) and a = a * (π/5) 0.56658. Note the difference between the two cases: in the former case m(θ) • θ = π/2 and the set Ξ defined in ( 6) is not countable whereas in the latter case, m(θ) • θ > π/2 and the set Ξ is a singleton. 

The self-similar measure µ

To define traces on Γ ∞ , we recall the classical result on self-similar measures, see [START_REF] Falconer | Techniques in fractal geometry[END_REF][START_REF] Hutchinson | Fractals and self-similarity[END_REF] and [START_REF] Kigami | Analysis on fractals[END_REF] page 26:

Theorem 3 There exists a unique Borel regular probability measure µ on Γ ∞ such that for any

Borel set A ⊂ Γ ∞ , µ(A) = 1 2 µ f -1 1 (A) + 1 2 µ f -1 2 (A) . ( 17 
)
The measure µ is called the self-similar measure defined in the self-similar triplet (Γ ∞ , f 1 , f 2 ).

Proposition 3

The measure µ is a d-measure on Γ ∞ , with d =log 2/ log a, according to the definition in [START_REF] Jonsson | Function spaces on subsets of R n[END_REF], page 28: there exist two positive constants c 1 and c 2 such that

c 1 r d ≤ µ(B(x, r) ∩ Γ ∞ ) ≤ c 2 r d ,
for any r 0 < r < 1 and x ∈ Γ ∞ , where B(x, r) is the Euclidean ball in R 2 centered at x and with radius r.

Proof. The proof stems from the Moran condition. It is due to Moran [START_REF] Moran | Additive functions of intervals and Hausdorff measure[END_REF] and has been extended by Kigami, see [START_REF] Kigami | Analysis on fractals[END_REF], §1.5, especially Proposition 1.5.8 and Theorem 1.5.7.

Additional notations

We define the sets Γ σ = f σ (Γ 0 ) and Γ N = ∪ σ∈A N Γ σ . The one-dimensional Lebesgue measure of Γ σ for σ ∈ A N and of Γ N are

|Γ σ | = a N |Γ 0 | and |Γ N | = (2a) N |Γ 0 |.
3 The space W 1,q (Ω)

Hereafter, we take θ in (0, π/2) and suppose that the parameters (α, β) satisfy Assumption 1.

Basic facts

For a real number q ≥ 1, let W 1,q (Ω) be the space of functions in L q (Ω) with first order partial derivatives in L q (Ω). The space W 1,q (Ω) is a Banach space with the norm

u q L q (Ω) + ∂u ∂x 1 q L q (Ω) + ∂u ∂x 2 q L q (Ω)
1 q , see for example [START_REF] Adams | Pure and Applied Mathematics[END_REF], p 60. Elementary calculus shows that u W 1,q (Ω) ≡ u q L q (Ω) + ∇u q L q (Ω)

1 q is an equivalent norm, with ∇u q L q (Ω) ≡ Ω |∇u| q and |∇u| = | ∂u ∂x 1 | 2 + | ∂u ∂x 2 | 2 .
The spaces W 1,q (Ω) as well as elliptic boundary value problems in Ω have been studied in [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF], with, in particular Poincaré inequalities and a Rellich compactness theorem. The same results in a similar but different geometry were proved by Berger [START_REF] Berger | Eigenvalue distribution of elliptic operators of second order with Neumann boundary conditions in a snowflake domain[END_REF] with other methods.

The classical definition of traces

We recall the classical definition of a trace operator on ∂ω, see for instance [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] page 206, when

ω is an open subset of R 2 . Definition 2 Consider an open set ω ⊂ R 2 . The function u ∈ L 1 loc (ω) can be strictly defined at x ∈ ω if the limit u(x) = lim r→0 1 m 2 (B(x, r) ∩ ω) B(x,r)∩ω u(z)dz (18) 
exists.

The trace u| ∂ω is defined as the function given by u| ∂ω (x) = u(x) at every point x ∈ ∂ω such that the limit u(x) exists.

In [START_REF] Jonsson | Function spaces on subsets of R n[END_REF], Jonsson and Wallin proved the following result, ([14] page 206 Prop. 2), which we state in the particular case when the space dimension is two:

Some results on the classically defined trace

From §3.4 and § 3.5, we know that there exists a linear extension operator E which is continuous from W 1,q (Ω) to W 1,q (R 2 ), for all q, q ∈ (1, qθ ) and which preserves the signs of the functions, i.e. if u ≥ 0 in Ω then E(u) ≥ 0 in R 2 . Note that if 1/2 ≤ a < a * , then the extension property holds for all q > 1, but we will not need this in what follows. As a consequence, the operator E is continuous from W 1,p (Ω) to W 1,q (R 2 ), for all p ≥ qθ and 1 < q < qθ and from W 1,p (Ω) to W 1,q (R 2 ), for all q ≤ p < qθ . This extension operator is an important ingredient for proving the following result: Theorem 6 Let p > 1 be a real number. For all u ∈ W 1,p (Ω), u can be strictly defined m 1almost everywhere on ∂Ω. Furthermore, m 1 -almost everywhere on ∂Ω, ū defined by ( 18) coincides with E(u), the strictly defined function in R 2 which is given by

E(u)(x) = lim r→0 1 m 2 (B(x, r)) B(x,r)
E(u)(z)dz, when the limit exists.

Proof. The proof is similar to that of proposition 2 in [START_REF] Jonsson | Function spaces on subsets of R n[END_REF] page 206. It is based on some results on potential spaces, which we recall in the specific present framework for completeness. Assume that u is positive. This is not a restriction, since it is always possible to decompose u in u = u +u -with u + ≥ 0, u -≥ 0 and u + , u -∈ W 1,p (Ω). We know that E(u) is positive and belongs to ∈ W 1,q (R 2 ) for some q, 1 < q ≤ min(p, qθ ). Thanks to the identification of the potential spaces and the Sobolev spaces (see for instance E.M. Stein [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF] Theorem 3, Ch. V page 135), there exist g ∈ L q (R 2 ), such that E(u) = G 1 g where G 1 is the Bessel kernel of order one. Take β ∈ (0, 2). N.G. Meyers proved in [START_REF] Norman | Continuity properties of potentials[END_REF], Theorem 3.2 page 165 that for almost every ξ 0 (with respect to the β-Hausdorff measure), there exists a set

E ξ 0 such that 1. E(u)(ξ 0 ) = lim ξ→ξ 0 , ξ / ∈E ξ 0 E(u)(ξ), 2. lim r→0 C q (B(ξ 0 , r) ∩ E ξ 0 ) r β = 0,
where C q (A) is the capacity of a Borel set A, which is defined by

C q (A) = inf R 2 f q : f ≥ 0 on R 2 G 1 f (x) ≥ 1 ∀x ∈ A .
Moreover, thanks to Proposition 1 page 151 in [START_REF] Jonsson | Function spaces on subsets of R n[END_REF], see also [START_REF] Jonsson | A Whitney extension theorem in L p and Besov spaces[END_REF], page 178, E(u) coincides with E(u) a.e. with respect to the β-Hausdorff measure if 1 -(2-β) q > 0. For a fixed value of β > 2q, let us consider ξ 0 ∈ R 2 with the previously mentioned properties. Let q * be the Sobolev exponent associated to q i.e. q * = 2q 2-q (we can always assume that q < 2) and q * the conjugate exponent of q * . Then for any f ∈ L q (R 2 ) such that f ≥ 0 and

G 1 f (x) ≥ 1 ∀x ∈ B(ξ 0 , r) ∩ E ξ 0 m 2 (B(ξ 0 , r) ∩ E ξ 0 ) ≤ B(ξ 0 ,r)∩E ξ 0 G 1 f ≤ G 1 f L q * (R 2 ) (m 2 (B(ξ 0 , r) ∩ E ξ 0 )) 1 q * ≤ c f L q (R 2 ) (m 2 (B(ξ 0 , r) ∩ E ξ 0 )) 1 q * ,
and m 2 (B(ξ 0 , r) ∩ E ξ 0 ) q/q * ≤ c q f q L q (R 2 ) . Then, minimizing with respect to f and using N.G. Meyers result,

m 2 (B(ξ 0 , r) ∩ E ξ 0 ) 2-q 2 ≤ C q c q (B(ξ 0 , r) ∩ E ξ 0 ) = o(r β ), which implies that m 2 (B(ξ 0 , r) ∩ E ξ 0 ) = o(r 2β 2-q ). ( 21 
)
Thanks to the assumptions on ξ 0 ,

E(u)(ξ 0 ) = lim r→0 1 m 2 (B(ξ 0 ,r)) B(ξ 0 ,r) E(u)dm 2 = lim r→0 1 m 2 (B(ξ 0 , r)) B(ξ 0 ,r)∩E ξ 0 E(u)dm 2 + B(ξ 0 ,r)∩E c ξ 0 E(u)dm 2 .
Thanks to the continuity property and [START_REF] Elias | Singular integrals and differentiability properties of functions[END_REF]

, if β > 2 -q then lim r→0 1 m 2 (B(ξ 0 , r)) B(ξ 0 ,r)∩E c ξ 0 E(u)dm 2 = E(u)(ξ 0 ), and lim r→0 1 m 2 (B(ξ 0 , r)) B(ξ 0 ,r)∩E ξ 0 E(u)dm 2 = 0. ( 22 
) Hence E(u)(ξ 0 ) = lim r→0 1 m 2 (B(ξ 0 , r)) B(ξ 0 ,r)∩E c ξ 0 E(u)dm 2 . (23) 
We now have all the tools necessary to begin the proof:

1 m 2 (B(ξ 0 , r) ∩ Ω) B(ξ 0 ,r)∩Ω udm 2 = 1 m 2 (B(ξ 0 , r) ∩ Ω) B(ξ 0 ,r)∩Ω E(u)dm 2 = 1 m 2 (B(ξ 0 , r) ∩ Ω) B(ξ 0 ,r)∩Ω∩E ξ 0 E(u)dm 2 + B(ξ 0 ,r)∩Ω∩E c ξ 0 E(u)dm 2 .
For the first integral, since Ω is a 2-set:

1 m 2 (B(ξ 0 , r) ∩ Ω) B(ξ 0 ,r)∩Ω∩E ξ 0 E(u)dm 2 ≤ 1 m 2 (B(ξ 0 , r) ∩ Ω) B(ξ 0 ,r)∩E ξ 0 E(u)dm 2 ≤ C 1 m 2 (B(ξ 0 , r)) B(ξ 0 ,r)∩E ξ 0 E(u)dm 2
and as r → 0, this tends to zero if β > 2q thanks to [START_REF] Vodop Janov | A criterion for the extension of functions of the class L 1 2 from unbounded plane domains[END_REF].

For the second integral, if β > 2q, using the continuity property of E(u) in Ω ∩ E c ξ 0 and again the fact that Ω is a 2-set,

lim r→0 1 m 2 (B(ξ 0 , r) ∩ Ω) B(ξ 0 ,r)∩Ω∩E c ξ 0 E(u)dm 2 = E(u)(ξ 0 ). m 2 (B(ξ 0 ,r)∩Ω) B(ξ 0 ,r)∩Ω u(z)dz exists and ū(ξ 0 ) = E(u)(ξ 0 ) = E(u)(ξ 0 ).
We can choose β = 1 since with q > 1, the condition β > 2q is fulfilled. This concludes the proof.

4.2 Self-similar strictly defined trace on Γ ∞

Recall that Ξ = f 1 (Γ ∞ ) ∩ f 2 (Γ ∞ ), and define the set of the multiple points of Γ

∞ , Ξ ∞ = Ξ ∪ ∞ n=1 σ∈An f σ (Ξ). Note that µ(Ξ ∞ ) = 0 and m 1 ((Ξ ∞ ) = 0. For x ∈ Γ ∞ \Ξ ∞ ,
there is one and only one τ x ∈ A ∞ such that for all n > 0, x ∈ f τx,n (Γ ∞ ), where τ x,n ∈ A n and τ x,n (i) = τ x (i) for i = 1, . . . , n.

Definition 3 The function u ∈ L 1 loc (Ω) can be self-similarly strictly defined at x ∈ Γ ∞ \Ξ ∞ if the limit lim n→∞ 1 m 2 (Ω τx,n ) Ω τx,n u(z)dz exists.
The self-similar strictly defined trace of u on Γ ∞ is then defined as

ˇ ∞ (u)(x) = lim n→∞ 1 m 2 (Ω τx,n ) Ω τx,n u(z)dz (24) 
at every point x ∈ Γ ∞ \Ξ ∞ such that the limit exists.

Theorem 7 Let p > 1 be a real number. For all u ∈ W 1,p (Ω), the limit in the right hand side of (24) can be self-similarly strictly defined m 1 -almost everywhere on Γ ∞ . Furthermore, m 1 -almost everywhere on Γ ∞ , ˇ ∞ (u) coincides with E(u).

Proof. The proof is very similar to that of Theorem 6 and we take the same notation. We know that for β = 1, we have 1 -2-β q = 1 -1 q > 0 where q ∈ (1, 2) is defined in the proof of Theorem 6. Hence, for almost every ξ 0 ∈ Γ ∞ \Ξ ∞ w.r.t. m 1 , there exists a E ξ 0 such that 1. E(u)(ξ 0 ) = lim ξ→ξ 0 , ξ / ∈E ξ 0 E(u)(ξ),

lim r→0

C q (B(ξ 0 , r) ∩ E ξ 0 ) r = 0, and that E(u) coincides with E(u) at ξ 0 . Fix such a ξ 0 . We write τ = τ ξ 0 and τ n = τ ξ 0 ,n for brevity.

We know that Ω τn ⊂ B(ξ 0 , a n diam(Ω)) and that m 2 (Ω τn ) = a 2n m 2 (Ω). Proof. From Theorem 6, we know that there exists a subset N 1 of Γ ∞ with µ(N 1 ) = 0 such that E(u)(x) and ū(x) are well defined and coincide with each other for x ∈ Γ ∞ \N 1 . From Theorem 7, we know that there exists a subset N 2 of Γ ∞ containing Ξ ∞ with µ(N 2 ) = 0 such that E(u)(x) and ˇ ∞ (u)(x) are well defined and coincide with each other for x ∈ Γ ∞ \N 2 . Therefore, for x ∈ Γ ∞ \(N 1 ∪ N 2 ), ˇ ∞ (u)(x), E(u)(x) and ū(x) are well defined and coincide with each other. On the other hand, it is elementary to check that if u ∈ W 1,p (Ω) with p ≥ 1, then lim n→∞ ( n (u))(x) -1 m 2 (Ω τn(x) ) Ω τn (x) u(z)dz

L p µ (Γ ∞ ) = 0,
because, for all x ∈ Γ ∞ \Ξ ∞ , ( n (u))(x) -1 m 2 (Ω τn(x) ) Ω τn (x) u(z)dz ≤ ca n(1-2/p) ∇u L p (Ω τn (x) )

and τ ∈An 2 -n a n(p-2) ∇u p L p (Ω τ ) = τ a n(p-2+d) ∇u p L p (Ω τ ) tends to zero as n tends to +∞. This implies that ∞ (u) coincides with he ˇ ∞ (u) µ-almost everywhere on Γ ∞ . As a consequence of the first point, ∞ (u) coincides with ū and E(u) µ-almost everywhere on Γ ∞ .

As a consequence of Proposition 6, we see that if p > qθ , there does not exist any continuous extension operators from W 1,p (Ω) to W 1,p (R 2 ). Indeed, if such an extension operator E existed, then for any u ∈ W 1,p (Ω, the trace (in the classical sense) of E(u) on Γ ∞ , namely E(u) would belong to B p,p 1-2-d p (Γ ∞ ) (see [START_REF] Jonsson | Function spaces on subsets of R n[END_REF]), where B p,p s (Γ ∞ ) is given by (1).

But since ∞ (u) and E(u) coincide µ-everywhere, this would imply that ∞ (u) ∈ B p,p 1-2-d p (Γ ∞ ) for all u ∈ W 1,p (Ω. This is in contradiction with the characterization of ∞ (W 1,p (Ω)) as JLip(1 -

2-d

p , p, p; 0; Γ ∞ ) given in [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF] and the fact that JLip(1-2-d p , p, p; 0; Γ ∞ ) ⊂ B p,p 1-2-d p (Γ ∞ ) for p > qθ , see [START_REF] Achdou | JLip versus sobolev spaces on a class of self-similar fractal foliages[END_REF].

Figure 1 :

 1 Figure 1: Left: the ramified domain Ω for θ = π/4, a = a * (π/4), α = 1a * / √ 2, β = 1 + a * / √ 2. Right: a similar construction for θ = π/5 and a = a * (π/5).
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 2 (Ω τn ) Ω τn udm 2 = 1 m 2 (Ω τn ) Ω τn E(u)dm 2 = 1 m 2 (Ω τn ) Ω τn ∩E ξ 0 E(u)dm 2 + Ω τn ∩E c ξ 0 E(u)dm 2 .

 Proposition 4Let ω be an open 2-set such that the boundary ∂ω of ω is a 1-set. Let us assume that for a real number q ∈ (1, ∞), there exists an extension operator E : W 1,q (ω) → W 1,q (R 2 ). Let u ∈ W 1,q (ω), then u can be strictly defined in ∂ω almost everywhere with respect to the one-dimensional Hausdorff measure m 1 and ū = Eu m 1a.e..

Although Ω defined above is a two-set, Proposition 4 does not apply to Ω because ∂Ω is not a 1-set even in the cases when Γ ∞ is a 1-set.

A trace operator defined by self-similarity

In the remaining part of the paper, we will take a such that 1/2 ≤ a ≤ a * , so the Hausdorff dimension d of Γ ∞ is not smaller than 1. We define L q µ , q ∈ [1, +∞) as the class of µ-measurable functions v on Γ ∞ such that Γ ∞ |v| q dµ < ∞, endowed with the norm v L q µ = Γ ∞ |v| q dµ 1/q . We also introduce L ∞ µ , the class of essentially bounded functions with respect to the measure µ. A Hilbertian basis of L 2 µ can be constructed with e.g. Haar wavelets. We recall the construction of the trace operator made in [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF] by taking advantage of the selfsimililarity; this trace operator, called ∞ below, is well defined even if a = a * . We first construct a sequence ( n ) n of approximations of the trace operator: consider the sequence of linear operators n :

where |Γ σ | is the one-dimensional Lebesgue measure of Γ σ .

Proposition 5 see [START_REF] Achdou | Neumann conditions on fractal boundaries[END_REF]. The sequence ( n ) n converges in L(W 1,q (Ω), L q µ ) to an operator that we call ∞ .

The operator ∞ is clearly a trace operator on Γ ∞ . The range of ∞ has been characterized in [START_REF] Achdou | Trace theorems for a class of ramified domains with self-similar fractal boundaries[END_REF]:

For a given θ, 0 < θ < π/2, let (α, β) satisfy Assumption 1 and Ω be constructed as in § 2.2.1, with 1/2 ≤ a ≤ a * ; then for all q, 1 < q < ∞,

see § 1 for comments about the JLip spaces.

3.4

Extension results in the case when a < a *

We have seen in § 1 that if ω is anδ domain, then it is a Sobolev extension domain. In dimension n = 2, the definition of such domains is equivalent to that of quasi-disks, see [START_REF] Maz'ja | Springer Series in Soviet Mathematics[END_REF], and the extension operator can be chosen such that E(u) ≥ 0 if u ≥ 0. The above mentioned results clearly hold with our domains Ω if a < a * .

3.5

An extension result in the case when a = a * When a = a * (θ), Ω is not anδ domain, and the extension results of Jones and Vodopjanov et al. cannot not be used. In [START_REF] Deheuvels | W 1,p -extension property for tree shaped domains with self-contacting fractal boundaries[END_REF], T. Deheuvels has proved the following theorem:

1. If mθ > π 2 and q ∈ (1, 2), then there exists a continuous linear operator E from W 1,q (Ω) to

and such that E(u) ≥ 0 is u ≥ 0.

, then there exists a continuous linear operator

and such that E(u) ≥ 0 is u ≥ 0.

Let qθ be defined by qθ = 2 if mθ > π 2 and qθ = 2 -d 2 if mθ > π 2 ; it is clear that qθ > 1 and a consequence of Theorem 4 is that Ω has the W 1,q extension property (thus

The construction of E in [START_REF] Deheuvels | W 1,p -extension property for tree shaped domains with self-contacting fractal boundaries[END_REF] takes very much advantage of the self-similarity. It relies on the following Theorem.

Theorem 5 see [START_REF] Deheuvels | W 1,p -extension property for tree shaped domains with self-contacting fractal boundaries[END_REF] In the case when a = a * , if q < qθ , then

q , q, q; 0; Γ ∞ ).

Remark 3 In [START_REF] Jonsson | Function spaces on subsets of R n[END_REF], Jonsson and Wallin proved that

(1, ∞), where the trace is meant in the classical sense (Theorem 1 p. 183). Theorem 5 can be seen as the counterpart of this result for the functions in W 1,q (Ω), (note that the self-similar definition of the trace ∞ is used and also the limitation on q).

Note that the critical exponent qθ already appeared in [START_REF] Achdou | JLip versus sobolev spaces on a class of self-similar fractal foliages[END_REF], where it was proved if a = a * and 1 < q < qθ , then ∞ (W 1,q (Ω)) = JLip(1 -2-d q , q, q; 0; Γ ∞ ) = Lip(1 -2-d q , q, q; 0; Γ ∞ ) = B q,q 1-2-d q (Γ ∞ ), and that the previous space identities do not hold for q > qθ .

Comparison of the two definitions of trace

We consider a such that 1/2 ≤ a ≤ a * . Hereafter, the notation ū(x) will be used for the strict definition at x ∈ Ω of a function u ∈ L 1 (Ω).