N
N

N

HAL

open science

Isolated initial singularities for the viscous
Hamilton-Jacobi equation

Marie-Frangoise Bidaut-Véron, Nguyen Anh Dao

» To cite this version:

Marie-Francoise Bidaut-Véron, Nguyen Anh Dao. Isolated initial singularities for the viscous
Hamilton-Jacobi equation. 2012. hal-00657938

HAL Id: hal-00657938
https://hal.science/hal-00657938

Preprint submitted on 9 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00657938
https://hal.archives-ouvertes.fr

[solated initial singularities for the viscous Hamilton-Jacobi
equation

Marie Francoise BIDAUT-VERON* Nguyen Anh DAOT

Abstract

Here we study the nonnegative solutions of the viscous Hamilton-Jacobi equation
ug — Au+ |Vul?=0

in Qor = 2 x (0,T), where ¢ > 1,T € (0,00], and Q is a smooth bounded domain of R¥
containing 0, or = RY. We consider solutions with a possible singularity at point (z,t) = (0,0).
We show that if ¢ > g. = (N + 2)/(N + 1) the singularity is removable. For 1 < ¢ < ¢, we
prove the uniqueness of a very singular solution without condition as |z| — co; we also show the
existence and uniqueness of a very singular solution of the Dirichlet problem in Qo o, when
is bounded. We give a complete description of the solutions in each case.
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1 Introduction

Let © be a smooth bounded domain of RY containing 0, or Q = RY and Qy = Q\{0}. Here we
consider the nonnegative solutions of the viscous parabolic Hamilton-Jacobi equation

up — Au+|Vu|?=0 (1.1)

in Qo1 =Qx(0,T), where ¢ > 1, with a possible singularity at point (x,t) = (0,0), in the sense:

%gr(l) Qu(.,t)apdm =0, Vo € Ce(Qo), (1.2)

which means formally that u(x,0) = 0 for z # 0.

Such a problem was first considered for the semi-linear equation with a lower term or order O :
up — Au+ [ulflu =0 in Qqr, (1.3)

with ¢ > 1. In a well-known article of Brezis and Friedman [16], it was shown that the problem
admits a critical value ¢. = (N + 2)/N. For any ¢ < ¢., and any bounded Radon measure
ug € My(2), there exists a unique solution of (1.3) with Dirichlet conditions on 02 with initial
data ug, in the weak * sense:

t—0

lim [ u(., t)pdr = / eduy, Vo € Ce(Q). (1.4)
Q Q
Moreover, from [17] and [21],there exists a very singular solution in RY, satisfying

lim u(.,t)dx = oo, vV B, CQ, (1.5)
t—0 BT
and it is the limit as & — oo of the solutions with initial data kdy, where dg is the Dirac mass at 0;
its uniqueness, obtained in [33], is also a consequence of the general results of [31]. For any ¢ = ¢,

such solutions do not exist, and the singularity is removable, in other words any solution of (1.3),
(1.2) satisfies u € C%! (2 x [0,T)) and u(x,0) = 0 in ©Q, see again [16].

The problem was extended in various directions, where the Laplacian is replaced by the porous
medium operator A(|u|™ ' u), see among them [35], [24], [25], [26],27], [29], or the p-Laplacian
Apu, see for example [22], [36], [23].

Concerning equation (1.1), up to now, the description was not yet complete. Here another

critical value is involved:
_N+2

TN
In the case Q = RY, we define a very singular solution (called VSS) in QRN oo as any function
u € L}, (Qrn o), such that [Vu| € L (Qrw o), satisfying equation (1.1) in D'(Qgw ), and
conditions

lim [ u(,t)ede =0,  Vee C(RV\{0}). (1.6)
t—0 JrN
%1_{% . u(.,t)dx = oo, Vr > 0. (1.7)



For q € (1,q4), it was shown in [10] that, for any ug € My(RY), there exists a solution u with initial
data ug, unique in a suitable class, which was enlarged in [7]. The existence of a radial self-similar
VSS U in Qgv o, unique in that class, was obtained in [39]; independently in [11], proved the
existence of a VSS as a limit as k — oo of the solutions with initial data kdy. From [12], it is unique
among (possibly nonradial) functions such that

lim U(.,t)dx =0, Vr > 0, (1.8)
t—0 RN\BT
U € C* (Qgw o) N C((0,00); L' (RY)) N LE,.((0, 00); WHI(RY)), (1.9)
g N/2 (g(N+1)—N)/2q (¢=1)/q
sup(t™” (., )l v+ 1 [V, <o (1.10)

If ¢ = g«, it was proved in [11] that there is no solution u in Qg~ 7 with initial data Jp, under the
constraints
we C((0,T); L' (RY)) N LA((0,T); WH(RY); (1.11)
and the nonexistence of VSS was stated as an open problem.
In the case of the Dirichlet problem in Qq 7, with € bounded, similar results were obtained in
[8]: for ¢ € (1,¢«) and any ug € Myp(2), there exists a solution u such that
w€ C((0,T); LHQ)) N L0, T); Wy ' (), [Vul? € LY (Qar), (1.12)
satisfying (1.4) for any ¢ € Cp(€2), and unique in that class; for ¢ = ¢, there exists no solution in
this class when wug is a Dirac mass; the existence or nonexistence of a VSS was not studied.

In this article we answer to these questions and complete the description of the solutions.

In Section 2 we introduce the notion of weak solutions and study their first properties. We
extend some universal estimates of [19] for the Dirichlet problem. When ¢ < 2, we show that the
solutions are smooth, improving some results of [12], see Theorems 2.12 and 2.13. We point out
some particular singular solutions or supersolutions, fundamental in the sequel. We also give some
trace results, in the footsteps of [31], and apply them to the solutions of (1.1), (1.2).

Our main result is the remowvability in the supercritical case ¢ = ¢., proved in Section 3,

extending the results of [16] to equation (1.1).

Theorem 1.1 Assume q = q.. Let Q be any domain in RY. Let u € L}, (Qqr), such that |Vu| €
Ll (Qq,r), be any solution of problem

uw— Au+|Vul?=0 in D' (Qar),
(Pa)
lim;_sg fQ u(.,t)pdr =0, Vo € Ce(Qo),

Then the singularity is removable, in the following sense:
If ¢ <2, thenue C(2x[0,T)) and u(z,0) =0, Yz € Q.

If ¢ > 2, then u is locally bounded near 0, and for any domain w CC 2,

li =0.
PG



Observe that our conclusions hold without any condition as |x| — oo if Q = R¥| or near 00
when Q # RM. As a consequence, for q = ¢,

(i) there exists no VSS in Qgn o in the sense above.

(ii) there exists no solution of (Pq) with a Dirac mass at (0,0), without assuming (1.11) or
(1.12).

We give different proofs of Theorem 1.1 according to the values of ¢q. For ¢ < 2, we take benefit
of the regularity of the solutions shown in Section 2. When ¢ < 2, we make use of supersolutions,
and the difficult case is the critical one ¢ = g.. When ¢ = 2, our proof is based on a change of
unknown, and on our trace results; the case ¢ > 2 is the most delicate, because of the lack of
regularity.

Besides, if Q = RY, we can show a global removability, without condition at co:
Theorem 1.2 Under the assumptions of Theorem 1.1 with Q = RN, then
u(z,t) =0, ae. mRY,  for any t > 0.
In Section 4, we complete the study of the subcritical case ¢ < ¢,. Our main result in this range
is the uniqueness of the VSS in Qrn o without any condition:
Theorem 1.3 Let q € (1,q«). Then there exists a unique VSS in Qg -

Moreover we give a complete description of the solutions:

Theorem 1.4 Letq € (1,q.). Let u € L, (Qrn ), be any function such that |Vu| € L (Qpx o),
solution of equation (1.1) in D'(Qg~ ), and satisfying (1.6). Then

o either (1.7) holds and u = U,

e or there exists k > 0 such that u(.,0) = kdg in the weak sense of My(RN) :

lim u(., t)pdr = kep(0), Vo € Cy(RY), (1.13)
t—0 RN

and u is the unique solution satisfying (1.13),
o oru=0.

We also consider the Dirichlet problem in Qq 7 when (2 is bounded:

(Davr) w—Au+|Vul?=0 inQor
ar u=0 on 9 x (0,00).

We give a notion of VSS for this problem, generally nonradial, and show the parallel of Theorem
1.3:

(1.14)

Theorem 1.5 Assume that ¢ € (1,q.) and Q is a smooth bounded domain of RN . Then there exists
a unique VSS of problem (Dgq o).

Finally we describe all the solutions as above.

In conclusion, ¢, clearly appears as the upperbound for existence of solutions with an isolated
singularity at time 0. We refer to [14] for the study of equation (1.1) or more general quasilinear
parabolic equations with rough initial data, where we give new decay and uniqueness properties.
The problem of removability of nonpunctual singularities will be the object of a further article.



2 Weak solutions and regularity
2.1 First properties of the weak solutions
We set Qqsr = Q x (s,7), for any domain Q C RV, any —oco < s < 7 < o0, thus Qa7 = Qo071

Definition 2.1 For any function ® € L}, (Qqr), we say that a function U is a weak solution
(resp. subsolution, resp. supersolution) of equation

U—-AU=%  inQar, (2.1)

if U € Llloc(QQT) and, for any ¢ € DY (Qar),

T
/ / (Upr + UAp + Pp)dzdt =0 (resp. <, resp. 2).
0 Q
In all the sequel we use regularization arguments by to deal with weak solutions:
Notation 2.2 For any function u € L}, (Qar), we set
Ue = U * 967

where (o:) is sequence of mollifiers in (z,t) € RNFL. Then u. is well defined in Qqs. for any
domain w CC Q and 0 < s <7 < T and e > 0 small enough.

Lemma 2.3 Any solution (resp. subsolution) U of (2.1) such that U € C((0,T); L}, () satisfies
also for any nonnegative ¢ € C°(Q x [0,T]) and any s, € (0,T),

/QU(.,’T)QD(.,’T)dCE - /Q U(.,t)p(.,t)de — /ST /Q(USDt +UAp + ®p)drdt =0 (resp. £ 0) (2.2)

and for any nonnegative 1) € C? (Q),

/QU(.,T)wdx—/QU(.,S)i/de—/ST/Q(UAz/J—l—CM/J)dxdt:0 (resp. < 0). (2.3)

Proof. The regularization gives the equation (U:); — AU; = ®., and the relations (2.2), (2.3)
hold for U., ®., and for U, ® as ¢ — 0. Indeed, [, U-(.,7)¢(.,7)dx converges to [ U(.,7)¢(.,7)dx
for almost any 7, see for example [4], hence the relations hold for any s, 7 by continuity. [

Next we make precise our notion of solution of equation (1.1).
Definition 2.4 (i) We say that a nonnegative function u is a weak solution of equation (1.1) in

Qar, if u € L}, (Qar),|Vul? € L}, (Qar), and u is a weak solution of the equation in the sense
above:

T
/ /(—utpt —ulAyp + |Vullp)dzdt =0, Vo € D(Qa,1).
0 Ja

(11) We say that u is a weak solution of the Dirichlet problem (Dqr) if it is a weak solution of
(1.1) in Qo,r, such that

u € L, ((0,T); Wy ' () N C((0,T); L*()),  and [Vu| € LT, ((0,T); L9(2)).

loc



We first observe that the regularization keeps the subsolutions, which allow to give local esti-
mates:

Lemma 2.5 Let u be a weak nonnegative subsolution of (1.1) in Qqr. Let w be any domain
wCCand 0 < s <7 <T. Then for € small enough, u. is a subsolution of equation (1.1) in

Qw,s,r-
Proof. The function u. satisfies
(ue)t — Au, + ’vu‘q *0: =0,

in D'(Qu,s-) for € small enough. We find easily that

|Vuel? < | Vul? * o in Qu.s,r (2.4)

from the Holder inequality, since o. has a mass 1; thus |Vue|? € L}, (Qu.s+) and
(ue)t — Aug + [Vu|? £ 0. (2.5)
u

Next we recall some well known properties:

Lemma 2.6 Any weak nonnegative solution of equation (1.1) satisfies
we Lin(Qor),  Vue€ Lj(Qor),  ueC((0,T);Lj(R), Vr=Ll (2.6)

As a consequence, it satisfies

(i) for any ¢ € CH(Qa,r),
T
/ /(—wpt + Vu.Vo + |Vu|lp)dzdt = 0, (2.7)
0 Q
(i) for any s, € (0,T), and any ¢ € C1((0,T); CL (Q2)),
/ u(., 7)p(., 7)dx — / u(., 8)e(., s)dx + /T / (—upr + Vu.Vo + |Vullp)dzdt = 0 (2.8)
Q Q s Q
(i) for any s, € (0,T), and any ¢ € CL(Q),
/Qu(.,T)Q/)dx - /Qu(, s)dx + /ST /Q(VU.VQ/J + |Vul?y)dzdt = 0 (2.9)

Proof. The function u € L}OC(QQT) is nonnegative and subcaloric, then regularizing u by u.,
we get u € L2 (Qar), see for example [16]. Otherwise for any domains w CC w' CC £, taking

loc

Y € CL(Q) with support in w’ such that 1 =1 on w, ¥ () C [0, 1], we find

/ng(.,T)i/)de—/uz(.,s)¢2dx—|—/:/ﬂ|Vu€|21/)2dx

Q
<2/T/u Va ||V¢|dx<l/T/|Vu |2w2dx+4/7/u2|w|2dx-
= € € = € € I
s Q 2 s Q s Q



hence Vu € L2 (Qq,r) from the Fatou Lemma, and

IVullp2(uy < Ol )2, )+l ) S Cllullimi, .y (210)

S,T

with C' = C(N,w,w’). Then (2.7) holds for any ¢ € D(Qq,r). Moreover, since |Vul? € L], (Qa,r),
the function u lies in the set

B = {0 € B0, T) WEQ) v € L0, T W 2(Q) + L (Qor) ) (211)

From a local version of [38, Theorem 1.1], we have E C C((0,7T); L}

15-(§2)). Then (2.8) and (2.9)
follow. Moreover u € Li% (Qq,r), then u € C((0,7); L}, .(Q)) for any r > 1. ]

In the case of the Dirichlet problem (Dgq 1), the regularization does not provide estimates up
to the boundary, thus we use another argument: the notion of entropy solution that we recall now.
For any k: >0 and r 6 R, we define as usual Tj(r) = max(—k, min(k,r)) the truncation function,
and O(r fo T (s

Definition 2.7 Let s < 7, and f € LY(Qq.s+) and us € LY(Q). A function u is an entropy solution
of the problem

—Au = f in QQ,S,T?
u =0 on (s,7)x0%Q, (2.12)

u(.,8)  =us in Q,

if u € C([s,7]; L*(2)), and Ty(u) € L?((s,7); WOI’2(Q)) for any k> 0, and

/@ku— mx+LQ%Juu— Wﬁ+/l/VuVﬂm— o)dzdt

/ek ))dx—ir/ /ka w— P)dadt

for any p € L?((s,7); WH2(Q)) N L™ (Qq.+) such that o € L?((s,7); W12(Q)).

As a consequence, we identify three ways of defining solutions:

Lemma 2.8 Let 0 < s < 7 £ T, and f € LY(Qqs,) and u € C([s,7); L' (), us = u(s).
Denoting by '™ the semi-group of the heat equation with Dirichlet conditions acting on L' (Q), the
three properties are equivalent:

(i) uwe L .((s,7); VV01’1 (Q)) and uy — Au = f, in D' (Qq.s,r)
(11) w is an entropy solution of problem (2.12) in Qq s 7,
(iii)
t
u(.,t) = ey, 4 / =2 f(o)doe  in LN (Q), Vte s, T].

s

Proof. It follows from the existence and uniqueness of the solutions of (i) from [6, Lemma 3.4],
as noticed in [8], and of the entropy solutions, see [3], [34]. |

We deduce properties of all the bounded solutions u of (Dq r) :



Lemma 2.9 Any nonnegative weak solution of problem (Dq,r), such that w € L3S .((0,7); L> (Q2))
satisfies Vu € L2 (0,T); L2 (Q)) and u € C((0,T); L™ () for any r = 1.

loc

Proof. Since u € C((0,T); L1(Q2)), for any 0 < s < 7 < T, u is an entropy solution on [s, 7]
from Lemma 2.8. Since u is bounded, it follows that u = T} (u) € L*((s,7); Wol’z(Q)), and

/u2(.,7)daz—/u2(.,s)dm—|—/ /|Vu|2dx—i—/ /u|Vu|qudt:0;
Q Q s JQ s JQ

and u € C((0,7); L"(£2)) as in Lemma 2.6. |

2.2 Estimates of the classical solutions of the Dirichlet problem

First recall some results on the Dirichlet problem in a bounded domain €2 with regular initial and
boundary data

u — Au+ [Vu|? =0, in Qqr,

u=¢, ondQx(0,T), (2.13)

u(z,0) = up 2 0.
If p =0 and uy € C} (ﬁ), it is well known that problem (2.13) admits a unique solution u €
C?! (Qa,00) N C (€2 x [0,00)) such that [Vu| € C (Q x [0,00)) . For general p € C(9Q x [0,T]), the
same happens on [0, T) if ug € C*(Q), and ug(z) = ¢(x,0) on 9. If one only assumes uy € C(9),
there exist a unique solution u € C(Q x [0,T]) in the viscosity sense, see [5], but |Vu| may have a
blow-up near 92 when ¢ > 2.

Some fundamental universal estimates have been obtained in [19]:

Theorem 2.10 ([19]) Let Q be any smooth bounded domain. Let ¢ > 1, and ug € Cp () be
Lipschitz continuous. Let u be the classical solution of (2.13) with ¢ = 0. Then there exist functions
B,D € C((0,00)) depending only of N,q,?, such that such that, for any t € (0,T),

[u(.st) Lo @) = B(t)d(z,09), (2.14)
[Vu(., )|l e @) = D(?). (2.15)

In the following Lemma, we extend and make precise estimate (2.14), with nonzero data on the
lateral boundary:

Lemma 2.11 Let Q be any smooth bounded domain. Let g > 1. Let u € C(Q x (0,T))NC*Y(Qa.r)
be a nonnegative solution of equation (1.1) in Qq,r, bounded on O x (0,T). Then there is a constant
C = C(N,q,Q) such that for any Vt € (0,T),

[ )l e S O+ 71)d(2,00) +  sup u,. (2.16)
Q% (0,T)



Proof. Let M = supyqy (o) u- We set us = u — (M +6) for any § > 0. On 9Q x (0,T), we
have usy < —6 < 0. Since us(0) is continuous, there exists Q5 CC € such that us(0) £ —6/2 on
O\Qs. Then there exists a contant Cs such that us(0) < Csd(x,02). From [19], for any z € 09,
there exists a function b,(x) such that, for some k, K, A > 0 depending on €2, and for any = € €2,

kd(x,00) < inafﬂbz(x) < Kd(z,09), by(x) S A kS |Vbh(x) =1, |Aby(x)] =K.
ze
Then for any z € 0f, there exists a function w, of the form w,(x,t) = J(t)b,(x) such that w, is a
supersolution of equation (1.1), w, = 0 on 02, and

lim d(x, 0Q) w, (2,t) = oo
t—0

uniformly in Q. Otherwise J can be chosen explicitly by J(t) = C(Arctant)~/(@~1) with 7! =
k~9(Km/2+4 A/(q—1)). Thus there exists 75 > 0 such that w,(x,7) = us(0) for 7 < 75. Since u; is

a solution of (1.1), the function w,(z, T +t) —us(x,t) is nonnegative from the comparison principle.
Letting 7 — 0, and then § — 0 and finally taking the infimum over z € 9 leads to the estimate

u(z,t) < M+ KJ(t)d(x, 00), (2.17)

hence (2.16) follows with another constant C' > 0. ]

2.3 Regularity for ¢ <2

First of all, we give a result of regularity C*! for any weak solution of equation (1.1) and for any
g < 2. Such a regularity was obtained in [12, Proposition 3.2] for the VSS when ¢ < ¢, and the
proof was valid up to ¢ = (N +4)/(N +2). We did not find a good reference in the literature under
our weak assumptions, even if a priori estimates can be found in [30], and Holderian properties in
[4], [40]. Our proof is based on a bootstrap technique, starting from the fact that u is subcaloric.

We set W2LP(Qus-) = {u € LP(Qusr) : u, Vu, D*u € LP(Qus7)}, forany 0 S s <7 < T
and 1 £ p < co. This space is endowed with its usual norm.

Theorem 2.12 Let 1 < ¢ £ 2. Let Q be any domain in RY . Suppose that u is a weak nonnegative
solution of (1.1) in Qq,r.

(i) Then u € C>1(Qq.r), and there exists v € (0,1) such that for any smooth domains w CC w’' CC
Qandd<s<7t<T

HUHCH%HW?(QW,S,T) a3 C‘I)(HUHLOO(QOJ,’S/QJ)% (2.18)

where ® is a continuous increasing function and C = C(N,q,w,w’,s,T).

(it) As a consequence, for any sequence (uy,) of weak solutions of equation (1.1) in Qq 1, uniformly
locally bounded, one can extract a subsequence converging in Clzo’cl(QQT) to a weak solution u of

(1.1) in Qor.
Proof. (i) e Case ¢ < 2. We can write (2.6) under the form

Ut—A’U,:f, f:_’vu‘q7



and f € L (Qar), with ¢1 = 2/q € (1,2). From (2.6), there holds u, Vu, f € L} (Qqar). Then
u e W (Qa.r), see [30, theorem IV.9.1]. Choosing w” such that w CC w” CC w'and denoting

loc

Q=Qusr Q =Qu 2 Q"= Qur3s/ar, We deduce from (2.10) that

lullwera @) = CULI Lar (@ry + lull Lar (@) = C(||Vull%, @+ el e ()
g C(HUHLOO(Q/) + HUHL‘X’(Q’))a

with C = C(N, q,w,w’, s, 7). From the Gagliardo-Nirenberg inequality, there exists ¢ = ¢(NV, q,w) >
0 such that for almost any ¢ € (0,7),

IV, )l 201 ) S el 0, o) IO -

Then by integration, |[Vu| € L% (Q), and

loc

IVull 20 ) = ellul®iyan gy il g) < Cr1(lull (@), (2.19)

with a new constant C; as above, where ®; is a continuous increasing function. Thus f €
. . 2,1

LE (Qar), with go = (2/9)® € (q1,2q1) and u,Vu, f € L?OQC(QQT), in turn u € W, (Qa,r).

By induction we find that u € Wfo’cl’q’“(Q x (0,T)), with gz = ¢¥, for any k& > 1, and

[Vull p2ar (@) = CrPr(([ull oo (1))

with Cy, @ as above. Choosing any k so that g, > N +2, we deduce that |Vu| € C7/2(w x (s,7))
for any « € (0,1), see [30, Lemma 11.3.3]. Then f is locally Holderian, thus u € C?T1+7/2(Q,, ¢ ;),
and (2.18) holds.

e Case ¢ = 2. We define Q and Q' as above, and regularize by u. in Q' for ¢ small enough.
Since w is locally bounded, u. converges to u in L%(Q’) for any s = 1, and by extraction a.e. in Q.
And wu, satisfies the equation in @’

(us)e — Aue + |Vul? % o = 0.
Defining the functions z =1 — e " in Qqr, and 2° =1 — e % in @’, we obtain that

(%) — A(2F) + he = 0

where h, = e <|Vu|2 * 0z — |Vu€|2> > 0 from (2.4). Then |Vul? % o. converges to |[Vu|?> and
|Vue|? converges to [Vul? in L}, .(Qq,), thus h. tends to 0 in L}, .(Qqo,r). As e — 0, z° converges to
zin L*(Q) for any s = 1, and z is a solution of the heat equation in D’(Q’), hence also in D'(Qq,r)).
Then z € C*(Qq,r), hence maxgz < 1, thus u € C*(Qqo,r). And ||z (g <1 - el
then (2.18) follows from analogous estimates on z.

(ii) From the estimate (2.18), one can extract a diagonal subsequence, converging a.e. to a
function v in Qq , and the convergence holds in CZQO’E(QQT). Then u is a weak solution of (1.1) in

Qo,r. =

In the case of the Dirichlet problem we obtain a corresponding regularity result for the bounded
solutions. Our proof can be compared to the proof of [8, Proposition 4.1] relative to the case ¢ < 1.
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Theorem 2.13 Let 1 < g < 2. Let Q be a smooth bounded domain. Let u be any weak nonnegative
solution of problem (Dq 1), such that uw € L7 ((0,T); L>(£2)).

loc

(i) Then u satisfies the local estimates of Theorem 2.12. Moreover, u € CY9(Q x (0,T)) and there
exists v € (0,1) such that, for any 0 < s <71 <T,

HuHc(ﬁx[s,T]) + Hqucw/?(ﬁx[s,ﬂ) = C‘I)(HUHLOO(QQS/QJ)) (2:20)
where C' = C((N,q,Q,s,7,7), and ® is an increasing function.
(it) For any sequence (u,) of weak solutions of (Dqr) uniformly bounded in L;S.((0,T); L™ (R2)),

loc
one can extract a subsequence converging in Cllg’CO(Q x (0,T)) to a weak solution u of (Da.T).

Proof. (i) e Case ¢ < 2. From Lemma 2.9, we have Vu € L? (0,T);L?(Q)) and u €

loc

C((0,T); L*(2)). Then f = —|Vul? € L ((0,t); L% (Q)). For any 0 < s < 7 < T, and t € [s/2,7],

loc
we can write u(.,t) = uy(.,t) + ua(.,t), from Lemma 2.8, where

t
ui(t) = =P8y 3y (1) = / =92 f(5)do.
2 s/2
We get u; € C®(Qq,s.r) from the regularizing effect of the heat equation, and us € W?1491(Qq 1),
from [30, theorem IV.9.1]. As above, from the Gagliardo estimate, we get f € L ((0,t); L% (Q)),
and by induction |Vu| € C7/2(Qq,) for some y € (0,1), see [30, Lemma I1.3.3]. The estimates
follow as above.

e Case ¢ = 2. From Theorem 2.12, u is smooth in Qq 7, and z =1 —e™" is a solution of the

heat equation, and z € C((0,T); L*(R2)). Then z(.,t) = e*=5/222(5/2), thus z € C*®°(Qq.s.,). This
implies that maxg-—z < 1, thus u € C*(Qq.s,-) and the estimates follow again.

38, T

(ii) It follows directly from (2.20). |

Remark 2.14 As a consequence, in the case ¢ < 2, we find again the estimate (2.15) for the

problem (Dgq ) without using the Bernstein argu;Lent, and it is valid for any weak solution u €
L5 ((0,T) 5 L*(Q2)).

loc

2.4 Singular solutions or supersolutions
In the study some functions play a fundamental role. The first one was introduced in [10].

2.4.1 A stationary supersolution

Assume that 1 < ¢ < 2. Equation (1.1) admits a stationary solution whenever N = 1 or N = 2,
1 <q< N/(N —1), defined by

9 _
s € (0,00) > T'n(s) = yvgs™* ‘= F;J’ g =a (a+2-N)"
Moreover in the range 1 < ¢ < 2, the function I' = I'; defined by
2 — — 1)@
s € (0,00) —> I'(s) =45 ¢, a= a N Ut (2.21)

_ﬁ’ Yq 2_¢ )

is a radial supersolution of equation (1.1) for any N.
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2.4.2 Large solutions

Here we recall a main result of [19] obtained as a consequence of the universal estimates.

Theorem 2.15 ([19]) Let G be any smooth bounded domain, and n > 0 such that B, CC G. Then
for any q > 1, there exists a (unique) solution YnG of the problem

(Y,9): — AY,E + VY, Sl =0, in QG .00,
YnG =0, on 0G x (0,00),

a | oo ifxe By,
Y (x,O)—{ 0 if not,

which is uniformly Lipschitz continuous in G for t in compacts sets of (0,00) and is a classical
solution of the problem for t > 0, and satisfies the initial condition in the sense:

(2.22)

. . G o . . G _ N T
}g% mlg}f{ Y, (z,t) =00, VK compact C By; %gr(l) ig}}; Y, (z,t) =0, VK compact C G\By,.
(2.23)

And Y,]G is the supremum of the solutions y,, . with nonnegative initial data ¢, € C(G) such
that o =0 on G\B,,.

A crucial point for existence was the construction of a supersolution for the problem in a ball:

Lemma 2.16 For any ball B, C RN and any \ > 0, there exists a supersolution wy,s of equation
(1.1) in Bs x [0,00), such that

wy,s =00 on 0By x [0,00), Wy, = Necttl/es@) o = c(N) >0,

where oy is the solution of —Aas =1 in Bs and ag =0 on JB;.

2.5 Some trace results

First we extend a trace result of [32].
Lemma 2.17 Let U € C((0,T); L}, () be any nonnegative weak solution of equation
U —AU = (2.24)

m QQ7T7 with ® € Llloc(QﬂvT)'

(i) Assume that ® = —F, where F € L} (Qx[0,T)). Then U(.,t) converges weak* to some Radon
measure Uy :

lim [ U(.,t)pdr = / wdUy, Vo € Ce(Q).
Q

t—=0 Jo
Furthermore, ® € L}, ([0,T); L},.()), and for any ¢ € C2(Q x [0,T)),
T
—/ /(Ugot + UAp + ®p)dxdt = / ©(.,0)dUy. (2.25)
0 Q Q

(ii) Assume that ® has a constant sign. Then

® € Lige([0,T); Lige(Q)) <= U € L5 ([0,T) s Lipe(42))- (2.26)

loc
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Proof. (i) Let w CC o CcC Qand 0 < s < 7 < T. We approximate U by U and set
®+ F =F =0, so that for € small enough,

(Ua)t — AU, = E. — F; in Qw/,s/Z,T-

Let ¢1 be a positive eigenfunction associated to the first eigenvalue A; of —A in WO1 )2 (w). Multi-
plying the equation by ¢; and integrating on over w, we get, for any t € (s/2,7),

%/an(.,t)qﬁlderA1LU€(.,t)¢1dx:—/&J 0% +/E ¢1dw—/ (., ).

We set

T—

U(. d h(t) = eMX (¢ " s dxde,
Hordz,  h(t) = e <>/t/ (. 8)prda
U.(.,t)prdz,  he(t) = M X (t / / MEFL(., s)prdadd.

Then h, is nondecreasing on (s/2,7), and then h.(7) = h:(s). On the other hand, X.(¢) converges
to X(t) a.e. in (0,T) as ¢ — 0. Since U € C((0,T); L} (), we deduce that h(r) = h(s) +

loc

f f EX. ¢1 dw Thus h is nondecreasing on (0,7"). From the assumption on F, X has a limit as
t—0, and ® e L} .([0,T); L,.(Q)).Otherwise, for any nonnegative ¢ € C2(), for any ¢ < 7, there
holds

/QU(.,T)z/de - / /(UAT/J + ®Y)dxdt = /Q U(.,t)dx (2.27)
from (2.3). Thus [, U(.,t)¢dx has a nonnegative limit (1)) as ¢t — 0, and
/QU(.,T)qbdx - /0 /Q(UA¢ + ®Y)dxdt = p(v)

Then y is a nonnegative linear functional on C2(f2), thus it extends in a unique way as a Radon
measure ug on 2. Finally for any ¢ € C2°(Q2 x [0,T7]), we have

—/tT/Q(Ugot+UAgp+<I>gp)d:cdt:/QU(.,t)gp(.,t)dx.

Going to the limit as t — 0, we deduce (2.25), since

/U(.,t)(gp(.,t)—gp(.,O))dm gm/ U( ).
Q suppe

(i) IfU € LS.([0,T) ; L},.(Q)), then [, [, ®vdzdt is bounded as t — 0, and @ € L}, .([0,T); L. ()
from the Fatou Lemma. The converse is a direct consequence of (i). u

We deduce a trace property for equation (1.1), inspired by the results of [31] for equation 1.3,
see also [13]:
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Proposition 2.18 For any nonnegative weak solution w of (1.1) in Qqr, the following conditions
are equivalent:

(i) u € Ly, ([0,T) 5 Ljoe (),

loc loc

(ii) Vu € LL (2 % [0,T)),

loc

(iii) u(.,t) converges weak® to some nonnegative Radon measure ug in €.
And then for any T € (0,T), and any p € CX(Q x [0,T)),

/u(.,T)god:U —|—/ /(—ugpt + Vu.Vy — |Vul? p)dzdt = / (., 0)dug. (2.28)
Q 0 JQ Q

Remark 2.19 If q = 2, and u admits a Radon measure ug as a trace, in the sense of condition
(i), then necessarily

up € Lie(Q), andue C([0,T);L,.(Q)) .
Indeed condition (ii) implies that v € L2 ([0,T);WL*(Q)), and w, € L2 ((0,T); W, *(Q)) +

loc loc loc loc
LY (Qu.1) , then the conclusion holds from [38]. As a first consequence, there exists no weak solution
of equation (1.1) with a a Dirac mass as initial data. This had been shown in [1, Theorem 2.2 and

Remark 2.1] for the Dirichlet problem (Dq,r)..

2.6 Behaviour of Solutions of (1.1), (1.2) in

Next we come to problem (1.1), (1.2). In order to see what occurs at ¢ = 0, we extend the solutions
on (=7,T) as in [16].

Proposition 2.20 Let u be any weak solution of (1.1), (1.2). Then the function @ defined a.e. in
Qa,—11 by

- u(l’,t), lf (.%',t) € QQT7
t) = , ’ 2.29
w(z, ) { 0 if (z,t) € Qa,—T,0, (229)
is a weak solution of the equation (1.1) in Qqu —1,17. If moreover
lim [ u(.,t)pdr =0, Vo € C.(92), (2.30)
t—0 Q

then w is a weak solution of (1.1) in Qq,—171.

Proof. By assumption, u € L], ([0,T) x Qq), hence u € L}, .(Qqy—7,7). Then we can define

loc

Vu € D'(Qqq,—7,1) and for any ¢ € D(Qq,—7.1)

T T
<Vu,p >= —/ / uVedrdt = —/ / uVpdzxdt.
-TJQ 0 Q

For any k = 1, we consider a function (j on [0,00) such that

Ce(t) = ((kt), where ¢ € C*°([0,00)), (([0,00)) C[0,1], ¢=01in [0,1], (=1in [2,00).
(2.31)
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Since wu is a weak solution of (1.1), there holds

_ /0 ! /Q uV (@Cr)dadt = /O ! /Q G Vudadt. (2.32)

From (1.2), we see that u € L{° ([0,7); Li,.(Q0)), hence |Vu| € L (9o x [0,T)), from Proposition
2.18. Then we can go to the limit in (2.32) as k£ — oo from the Lebesgue theorem, hence

T T
—/ /qupdwdt:/ /@Vudxdt.
0 JO 0o Jo

Thus Vu € L} (Qq,,-1,r) and Vu(x,t) = x(o1)Vu(z,t); hence also Vu € L} (Qay,—7,r) from
Lemma 2.6, and for any ¢ € D(Qq,,—71.7),
T T
/ /(—mpt + Vu.Vo + |Vully)dxdt = / /(—utpt + Vu.Vy + |Vullp)dzdt. (2.33)
-TJQ 0 Q
Moreover

0= / / w(C)r + V.V (9Gs) + [Vl pCrdndt

T
_ _ q
/0 /{luw(gk)tdxdt + /0 /Q( upCr + Vu. V() + |Vu|?prdedt.

As k — oo, the first term in the right hand side tends to 0 from (1.2), since

2/k
uap (Ck) dxdt‘ < Ck:/ / wpdrdt < C sup / u(.,t)dz, (2.34)
te[1/k,2/k] J suppp

and we can go to the limit in the second term, since |[Vu| € LY (Qy % [0,T)). Thus from (2.33), u

is a weak solution of equation (1.1) in Qq, —77. If (2.30) holds, the same result holds in  instead
of QQ. |

Corollary 2.21 Assume 1 < q¢ < 2. Then any weak solution u of (1.1), (1.2) satisfies u €
C?*Y(Qp x [0,T)) and u(x,0) =0, Vz € Q.

If (2.30) holds, then u € C*Y(Q x [0,T)) and u(z,0) = 0, Vx € Q.

Proof. It follows directly from From Proposition 2.20 and Theorem 2.12 applied to . ]

3 The critical or supercritical case

3.1 Removability in the range ¢, < ¢ < 2

For any 1 < ¢ < 2 we can compare the solutions with the function I' defined at (2.21).

15



Lemma 3.1 Let 1 < g < 2. Let u be any nonnegative weak solution of (1.1) in Qq.r, satisfying

(1.2).

(i) Let v > 0 such that B, C Q.Then there exists 71 > 0 (depending on u,r) such that
0 < u(x,t) < T(|z)) V(z,t) € @B, (o) -, - (3.1)

(i3) If @ = RN then
0=ufz,t) =T(z)  Y(@,t) € Quy oy, (32)

Proof. (i) For any n € (0,7), we put , = B,\B,, and we set F,(z) = I'(|z| — ), for any

x € §1,. We find
N-—-1
~AF, + VB = 20T (o] ) e 20,
x
thus F;, is a super-solution of (1.1) in Qq, . From Theorem 2.12 and Proposition 2.20, u €
C*HQa,r)NC(Qx[0,T)) and u(.,0) = 0. Then there exists 71 < T'such that maxe(o -] u(t, z) < 1,
|z|=r

and u is bounded in €, x [0,71]. For any £ > 0 small enough, we have u(z,t) < F,(z) on
0By 4e x [0,71]. From the comparison principle in Qg we get u(z,t) = F(x) in Q, x [0,71],
as € — 0. As n — 0, we deduce (3.1).

n+e,7T1?

(ii) From Lemma 2.16, for any z9 € R\ By, the function z +— wq 1(z — z¢) is a supersolution of
equation (1.1) in Qp(z,1),00, then in particular u(t, zg) = ecWt+1/a1(0) thus 4 bounded in QrN\ By, T-

From the comparison principle in R¥\B, for any 1 € (0,1), see [20], we find u(z,t) < Fy(z) in
QRN\ET? hence (3.2) holds as n — 0. ;

As a direct consequence we get a simple proof of Theorem 1.1 in case ¢, < g < 2:

Theorem 3.2 Let g, < q < 2. Suppose that u is a nonnegative weak solution of (1.1),(1.2). Then
ue C(Qx[0,T)) and u(xz,0) =0, Vz € Q.

Proof. The assumption ¢, < ¢ is equivalent to a < N. Let B, C 2 and 7; defined at Lemma
3.1; we find for any ¢ € (0,71),

'Yq‘aBl,rNia
< [ T < 2al0Bu|r 7"
/ru(,t)dx_/BT (jaf)a < 20T,

then v € L*((0,71); L'(B,)). Applying Proposition 2.18, u(.,t) converges weak* to a measure y on
B, :

lim u(., t)pdr = / Wdp, Vi € C. (By).
t—0 B, B,

From (1.2), p is concentrated at 0 and then pu = kdp for some k = 0. Suppose that k£ > 0, we choose
¢y such that 1, (0) = 1, ¢,(B,) C [0,1], suppy, C By, with n € (0,7) small enough such that
Yq|0B1|nN =% £ (N — a)k/2. For any t € (0,71), lemma 3.1 yields

/ u(., t)ydx §/B I(|z])dz = g (3.3)
. "
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As t tends to 0 the left-hand side tends to k, which is a contradiction. Then k& = 0, hence for any
Y e (Br),

}1_% . u(.,t)pdr =0, (3.4)

and we conclude from Corollary 2.21. ]

3.2 Removability in the whole range ¢, < ¢ < 2

The proof of Theorem 3.2 is not valid in the critical case ¢ = gx, since the function x — I'(|z|) =
Yq |:c|7N is not integrable near 0. Then we use another argument of comparison with the large
solutions constructed at Theorem 2.15, valid for any 1 < ¢ < 2:

Proposition 3.3 Let 1 < g < 2. Under the assumptions of Theorem 2.15 with G = By, (n = 1)
the functions YnB" converge as n — oo to a radial solution Y, of problem

(V) — AY, + VY, |7 =0, N Qoo,

Yy(z,0) = { OO() i];;nifm &

Then, as n — 0, Y, converges to a radial self-similar solution Y of equation (1.1) in Qgy o, such
that

V(z,t) ST (|lz]), in Qoo (3.6)
Y, ) SO+t 77), inQu, (3.7)
where C' = C(N,q), and
lim(sup Y (x,t)) = 0. (3.8)
t—0 |z|2r

If ¢. < g < 2, then Y = 0.

Proof. Let n € (0,1/2). For any n = 1, YnB” is the supremum of the solutions y,,  ; from the
comparison principle, since ¢ < 2,

Yons, (T:8) ST (lz] =m)  in (Bp\By) x [0,00). (3.9)

From Lemma 2.11 in Qp, 0, We obtain, for any (z,t) € By x (0, 00)

__1 _2-g __1 2-q
Youp, (0:1) SCA+ 1 TT) Fy{l =)} =1 S C(L+1 a7T) 4942071, (3.10)
with C = C(N, q). And for any (z,t) € (B,\Bi) x (0,00), we have
2-g

Yonp, (1) ST (Jz] =n) ST (1 =) = 74207 (3.11)
Then (3.10) holds in B, x [0,00). The same majoration holds for YUB" : with a new C' = C(N, q),

1 .
YnB"(.,t) SC(+t 1), in @B,,c0-
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Then we can go to the limit as n — oo, for fixed 7. From Theorem 2.12 we can extract a (diagonal)
subsequence converging in Cfo’i(QRN,OO) to a weak solution Y, of equation (1.1). In fact the whole

n+1

8 g B Bni1 . _ Bn gaticfies
sequence converges, since Y,°" <Y, in @B, 0o Then Y, =supY,’ satisfies

Y, SCA+t77),  inQu, (3.12)
and Y,, solves the problem (3.5) in the sense

- i . _ N\~
%E)I(l) mlg}f{ Y, (x,t) = 0o, VK compact C By; }g% 52}3 Y,(z,t) =0, VK compact C RV\B,,.
(3.13)

Indeed from Lemma 2.16, for any ball B(z,s) C RV\B,, and any A > 0, we have YnB” S wys(x —
7o) in QB(zg,s),00 fOr any n > [zo|+|r|; in turn Y, = wy (7 —20), hence lim; o SUPB(zg,5/2) Y,(,t) =
Ael/(5/2) for any X > 0. Moreover (3.9) implies that

Y, (x,t) =T (Jz| —n) in Qpy\ By oo (3.14)
Then for any r > n, and any p > 7,

sup Yy (z,t) = sup  Yy(x,t) + sup Yi(x,t) = SUPiyn(x,t) + T (|p| —n)

|z|2r 2€B\ By zeRN\B, z€B,\ By
then we find
lim(sup Y, (z,t)) =0, 3.15
fmy(s1p Yo 1) (315)

since lim, o I'(r) = 0.

Next we let 7 — 0 : observing that Y;, < Y,y for n <7/, in the same way from Theorem 2.12, the
function Y = inf,~ Y, is a weak solution of equation (1.1) in Qg ,, satisfying the estimates (3.6),
(3.7), and (3.8) which implies in particular (1.7). Because of their uniqueness, all the functions
Y,]B" are radial, and satisfy the relation of similarity,

IiaYnB"(lix, K2t) = sz/n (x,1), Vi >0, VY(z,t) € By

then Y is radial and self-similar.

Suppose ¢ > ¢, and Y # 0; writing Y under the similar form Y (z,t) = t~%2f(t~1/2|z|), then
from [39, Theorem 2.1], we find lim, ,~,7%f(r) > 0, which contradicts (3.8); thus Y = 0. [

Proposition 3.4 Let 1 < ¢ < 2. Let Q be any domain in RYN. Let u be any weak solution of
(1.1),(1.2) in Qqor. Then for any T € (0,T) and any ball B, CC Q, there holds

vS<Y + max u, in QB, -
0B, x[0,7]
Moreover, if @ = RN, then
u é Y, mn QRN,T (316)

and u € C*H(Qrw o) N C((0,00); CZ(RY)).
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Proof. Let u be such a solution in Qq 7. Let 7 € (0,T), B, CC Q, and M, = maxyp, x[0,7] %
and € > 0 be fixed. From Corollary 2.21, u € C(Qy x [0,T)) and u(x,0) = 0,Vz € Q. Then for
any 0 < n < r/2, there is 6, > 0 such that

u(z,t) <e, for n<|z| <7, te(0,6,). (3.17)
Let R > r. Next, for any § € (0,6,), we make a comparison in @p, 5. between u(z,t) and
Yan,r,8(2,1) = YzﬁR(%t —0)+ M, +e

as follows. On the parabolic boundary of @p, s, it is clear that w < ¥, s g, since v = M, on
0B, x [0,7], u(z,8) < € for x € B \B,, and u(x,d) < 00 = yaps.r, for x € By,. And ya, rs
converges to +oo uniformly on B, as t — §, and u(.,d) is bounded on B_,] Then, from the
comparison principle,

U = Yoy R in Qp, s+ (3.18)

As 4 tends to 0 in (3.18), and we get

w<YPR 4 M, +e, inQp -, 3.19
2n )

by the continuity of ngR in @p, 7. Since (3.19) holds for any n < r/2, and any ¢ > 0, we finally
obtain
WY+ M, inQp..

Moreover if @ = RV, then M, < I'(r) from Lemma 3.1, and we get (3.16) by letting r — oo.

Moreover u € C*H(Qgn ) from Theorem 2.12, then from (3.7), u € Cy(Qrn o) for any € > 0,
then from [20, Theorems 3 and 6], u € C((0,00); CZ(RYM)). ]

As a direct consequence, we deduce a new proof of Theorem 1.1, valid in the range g, < ¢ < 2:

Theorem 3.5 Let ¢, < q < 2. Suppose that u is a nonnegative weak solution of (1.1),(1.2) in
Qo,r.
Then u € C(2 x[0,T)) and u(x,0) =0, Vz € €.

Proof. Since ¢ 2 ¢4, we have Y = 0, from Proposition 3.3, thus u is bounded in @p, , from
Proposition 3.4. Then (3.4) still holds for any i) € C2° (B,), and we conclude again from Corollary
2.21. [ |

3.3 Removability for ¢ = 2

When g > 2, the regularity of the solutions of equation (1.1), in particular the continuity property,
is not known up to now. It was shown recently in [18] that if a solution in the viscosity sense is
continuous, then it is Holderian. Then it is difficult to apply comparison theorems. Here we use
the transformation u — z = 1 — e~ ", which reduces classically equation (1.1) to the heat equation
when ¢ = 2, where we gain the fact that z is bounded. For p > 2, our proof requires regularization
arguments.
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Theorem 3.6 Let g = 2. Let u be any weak solution u of equation (1.1), (1.2), in Qqr.
(i) If ¢ = 2, then w € C*°(2 x [0,T)), and u(z,0) =0, Vze Q.
(ii) If ¢ > 2, then u satisfies

lim [ u(.,t)pdz =0, Vo € C.(2),
t—=0 Jo

and uw € C([0,T); L} () for any r = 1 and u(.,0) = 0 in the sense of L] (). Moreover

loc loc

u € L®(Qu,r) for any w CC Q, and 7 € (0,T), and

lim sup u = 0.
t—0 Qu.t

Proof. Let us set
z=1-w, v=e ", (3.20)

Notice that z is an increasing function of u and z takes its values in [0, 1] .

(i) Case ¢ = 2. From Theorem 2.12, u is a classical solution in Qq . Then z is a classical
solution of the heat equation
z—Az=0

in Qqo,r, and z € C(Qp x [0,T)) and z(x,0) = 0 for  # 0. From Lemma 2.17, z converges weak*
to a Radon measure u as t — 0, necessarily concentrated at 0, from (1.2), since z < u. Then p = 0,
because z is bounded. As for u, defining the extension Z of z by 0 for t € (=7',0) , we find that Z is
a solution of heat equation in Qq 7,7, then Z € C*°(Qq,—7,1). Hence Z is strictly locally bounded
by 1, thus also @w € C*°(Qq,—7,7), thus u(0,0) = 0, and the proof is done.

(ii) Case ¢ > 2. We regularize equation (1.1) and obtain
(ue)t — Aue + ([Vul?)e =0,
and we set v® = e%<.Then v° satisfies the equation
v — Av® =0° (|Vul?). — |Vue|?) .

Observe that v* is not the regularisation of v, but it has the same convergence properties. Going
to the limit as € — 0, we obtain

v — Av = o(|Vu|? — |Vul?)
in D'(Qq,1). Next we apply lemma 2.17 to v, with
® =o[|Vul?! = [Vul’] € Lj,o(Qar),  F=-1,

since from the Young inequality, ® = —v = —1. Then z(.,t) converges weak* to a Radon measure
past—0,and ® € L} (% [0,T)); and for any ¢ € C2(Q2 x [0,T)) there holds

loc

T T
/ /z(SDt+Ago)dacdt:/ /@godxdt+/go(x,0)du, (3.21)
0 Q 0 Q Q
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from (2.25). We claim that ¢ = 0 and the extension of z by 0 for ¢t = 0 satisfies
2 € C([0,T), Lig ().

Indeed, from assumption (1.2), u(.,t)converges to 0 in L} () as t — 0, thus also z(.,t). For any
sequence (t,) tending to 0, we can extract a (diagonal) subsequence such that wu(.,¢,) converges
to 0, a.e. in Q. Since z is bounded, it follows that (z(.,t,)) converges to 0 in L} () from the
Lebesgue theorem. And then z(.,t) converges to 0 in L} () as ¢t — 0.

We still consider the extension z of z by 0 on for ¢t € (—T,0). For any ¢ € D" (Qq.—7.1), we have

from (3.21),
- /_ i /ﬂ Z(¢y + Ag)dwdt = / / by + A¢)dudt = / / Dpdrdt
§/O /Q(l—z)gpdxdt < /_T/Qu — %)pdadt.

—Aw+w=1 (3.22)

Then % is a subsolution of equation

in D'(Qq,—7.1). Otherwise u is the weak solution of equation (1.1) in Qq,,—7,7, then 7 is subcaloric.
As a consequence, for any 7 € (0,7'), and any ball By, CC €, the function w is essentially bounded
on QBQT\Tp _,, by a constant M, -, and then Z <1 —eMr = m,r < 1 on this set. For any

K > 0 the function yx(t) = 1 — Ket is a solution of equation (3.22). Taking K = ¢~ (Mrrt7+1)
we can apply the comparison principle in @ g, — - to the regularisation z. of Z for € small enough,
and deduce that Z < yg a.e. in @B, —r -, and then

Z<1l—e Mrt2H) 1 in Qp, ..
Hence © = —In(1 — %) is essentially bounded in @p, ;. Finally w € LS (Qq,—711), from the
subcaloricity, hence u € LiS (Qa ).

Besides, for any 0 < s < t < 7, and any domain w CC {2,
(s 8) = (., 8)] S @D (1) — 2(.,8)];

then u € C([0,7); L}

loc

(€Q)), and u € C([0,7); L],

loc

(Q)), for any r > 1, since u is locally bounded.
Furthermore, for any ball B(xg,2p) C 2, and any t € (,02 - 1T, T),

t
sup < Cp N+ / / udxds,
B(z0,p)x (t=p?,t)) t—p? J B(z0,2p)

where C' = C(N), see for example [28, Theorem 6.17]. Hence for any t € (0,7) and p < T2, we
find

t
sup  u<Cp (VY / / udxdsgcp%N”)tHuHLw(QB( Y
0,2p LopnT

B(z0,p)x(0,t))

which achieves the proof. ]
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3.4 Global removability in RV

Next we show Theorem 1.2 relative to Q = RN. It is a consequence of Proposition 3.4 in case
1 < ¢ < 2. In fact the result is general, as shown below:

Proposition 3.7 Let q > 1. Let u be any non-negative weak subsolution of equation (1.1) in Qgn
such that u € C((0,T, L} (RN)), and

loc

lim u(.,t)pdr =0, (3.23)

t—0 JrN
for any ¢ € C, (RN) . Then u = 0.

Proof. From Lemmas 2.3 and 2.6, since u € C((0,T, L} (RY)), there holds

loc

/RN u(., t)dr — /RN u(., s)pdr + /ST /RN(VU.VQ/J + |Vu|?ypdzdt <0,

for any 1 € C2H(RYN), and any (s,t) C (0,T) . Taking ¢ = &9 with £ € DT(RY) and using Hélder
inequality, we deduce

/RN u(.,t)i/)dx—/RN u(.,s)q,z)dwr/: /RN|Vu|q¢dxdt§q’(/: /RN |vu|q¢dx)3(/: AN|vg|q/dx)é
%/: /RN Vu|%pdz + C, /: /RN|V£|‘1/dx

E(x) = qﬁ(%’), where ¢([0,00)) C [0,1], ¢=11in [0,1], ¢=0in [2,00),

A

with C, = (2(q — 1))7 .We choose for any R > r > 0,

and go to the limit as s — 0 from (3.23). It follows that

1/t ,
/ u(.,t)dﬂc+§/0/ \Vul%dzdt < C,tRN 7. (3.24)

e First assume ¢ < N/(N — 1); then N — ¢’ < 0. Letting R — oo, we deduce that fBr u(.,t)dz =0,
for any r > 0, thus u = 0.

e Next assume ¢ = N/(N — 1). Then we fix some k € (1, N/(N —1)); for any n € (0,1), there
holds n|Vu[* < 5+ |Vu|?, hence the function w, = /=1 (u — nt) satisfies

(wy)e — Awy +[Vwy[F £ 0
in the weak sense. Thanks to Kato’s inequality, see for example [33] or [6], we deduce that
(w)e — Awt + [V, |F <0, (3.25)

in D'(Qg~ 7). Moreover wy, € C([0,T), L},.(RY)), and, for any r > 0,

loc

lim w;r(.,t)dx = n_k_il lim (u(.,t) —nt)dx = 0.
t—0t /B, t—0t /B,

By the above proof, w;" = 0. Letting 1 tend to 0 we get again u = 0. ]
Y n
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3.5 Behaviour of the approximating sequences

When ¢ is critical or supercritical, a simple question is to know what can happen to a sequence of
solutions with smooth initial data converging to the Dirac mass, and one can expect that that it
converges to 0. We get more generally the following:

Theorem 3.8 Assume that ¢ = q.. Let (p:) be any sequence in DT (RN), with supp p. € Be. Then
the sequence (uc) of solutions of (1.1) in Qgx o, with inital data p., converges to 0 in Cioc(Qry o )-
In the same way, if Q0 is bounded, the sequence (u?) of solutions of (Dq o, with initial data o,
converges to 0 in Cio.(£2 x (0,00)).

Proof. Let ¢ € (0,1). Since u? < u., we only need to prove the result in case Q = R,

(i) Case ¢ < 2. We use the function Ya. defined at (3.5). There holds u. < Y. from the
comparison principle; and Y. converges to 0 in Cllo C(QRNpo) from Proposition 3.3, then also u..

(ii) Case ¢ = 2. Let us fix some k such that ¢, < k < 2. As in the proof of Proposition 3.7, for
any 7 € (0,1), we,, = n/*=D (u. — nt) satisfies
(Wep)t — Awey + ]wa,]k S0 (3.26)

in D'(Qpwy o), and wey, € L ([0,00); L°(RY)). From the comparison principle we find that

loc
Wen S v, where v, is the solution of equation (1.1) with ¢ replaced by k and v.(.,0) = p.; hence

ue < nt +n/*D. And (v.) converges to 0 in Cloc(Qprn o) from (i). Let K =|[s,7] x K be any
compact in Qgn . Then

lim sup [[uel| ooy S 07 + 7'/ * =1 lim sup [vell oo iy = M7

for any 7, then lim ||uc|| ;00 () = 0. |

4 The subcritical case 1 < ¢ < ¢,

We first recall the following results of [8, Theorem 3.2 and Proposition 5.1] for the Dirichlet problem.

Theorem 4.1 ([8]) Let1 < ¢ < g« and Q be a smooth bounded domain. Then for any ug € My(2)
and any T € (0,00] there exists a weak solution of problem (Dq o) such that u(.,0) = ug in the
weak sense of My(Q) :

lim [ wu(.,t)pdr = / eduyg, Vo € Cp(92), (4.1)
t—0 Q Q
and u is given equivalently by the semi-group formula
t
u(.,t) = ePug — / et =I2|Vu(.,5)|?(s)ds  in LY(Q), (4.2)
0
where e®uyg is the unique weak solution w of the heat equation such that
lim [ w(.,t)edr = / eduyg, Vo € Cp(92). (4.3)
t—0 Q Q

Moreover u € C*1(Qq0), and u € C (QQ,@OO) for any e > 0. And u is the unique weak solution of
problem (Dq ) for any T € (0, 00).
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This solution was obtained from the Banach fixed point theorem. The existence was also
obtained by approximation in [1], from the pioneer results of [15]. Here we give a shorter proof of
Theorem 4.1 when ug is nonnegative, and firm in details the convergence:

Proposition 4.2 Suppose 1 < q < g4. Let ug € M;(Q), and (ug,n) be any sequence of functions of
CHY) N Co(2) converging weak * to ug, such that [uonll 1) = lltoll pg, ) - Let un be the classical
solution of (Dq o) with initial data ug p,.

Then (un,) converges in Ciot(Qa.00) NCLY(Q x (0,00)) to a function u € LL ([0,00) ; Wy ()

and w is the unique solution of (Dqr), (4.1) for any T > 0. And u satisfies the estimates (2.16)
and (2.15).

Proof. There holds
t
U (1) = ePug ,, — / =2 |V, (., 9)|9 (s)ds in L1(Q).
0

From estimate (2.16) and Theorem 2.13, since ¢ < 2, one can extract a subsequence, still denoted
(uy), converging in C%;(QQ,OO) NCL.(Q x (0,00)) to a weak solution u of (Dg ). And

loc

wn(tydz+ [ [ [Fun( ) (s)dwds — [ a—zj/"(.,s)dxds: wopdr;  (44)
Q 0 Jo 0 Joa O Q

hence |Vu,|? is bounded in L!'(Qq ) by l[woll v, 02y - Then from [6, Lemma 3.3], (un) is bounded
in L7((0,7), W(}’A’(Q)) for any v € [1,¢.). Thus (|Vuy,|?) converges to |Vu|? in L} (]0,00), L(2)),

loc
and (etAuo,n) converges a.e. to etAuo, and u satisfies (4.2). Moreover u is the unique solution of
(Dqr). Indeed let v be any other solution; taking v € (g, ¢«), there holds from [6, Lemma 3.3],

with constants C' = C(v, ),

V(=) 15 gq.,) = ClIIVul! — [Vl

LY (Qq,r)

< OVl Latonry + 1901 Entgn ) 1V = ) oo
Y—q

< C ol py) IV (@ = )l 22 (o) T 7

hence v = w on (0,7) for 7 < C = C(v,Q,up), and then on (0,7"). Then the whole sequence (u,)
converges to u. ]

Remark 4.3 Applying Proposition 4.2 on (¢,T) for e > 0, we deduce regularity results: any weak
solution u of (Do) extends as a solution of the problem (Dq), and u € C*Y(Qa.00), and u €
C (Qayenc) for any € > 0, and u satisfies the universal estimates (2.16) and (2.15). In turn

ue C(Qa.00) from Theorem 2.13.

loc

Notation 4.4 For any k > 0, we denote by u** the above solution of (Dq,o0) with initial data
kdo.

24



4.1 The case Q = RV

We first show that the function Y constructed at Proposition 3.3 is a VSS:

Lemma 4.5 The function Y is a maximal V.S5.S. in Qg~
similar solution constructed in [39]. It satisfies

00s and coincides with the radial self-

lim Y (., t)dz =0, Vr > 0. (4.5)
t—0 RN\ B,

Proof. Consider any ball B, with p 2 1. We can approximate the function uFBr by uf’Bp,
solution with initial data kp., where (p.) is a sequence of mollifiers with support in B, C Bj. For
any 1 € (0,1), there holds ulg’B” =Y, for e < 7. Then we find uFBr <Y, As a first consequence,
Y # 0, and for any ball B, such that r < 1, taking ¢ € C.(B,) with values in [0, 1], such that
v =1on B,
gghﬁojf Y (., t)dr = lim [ uFBe( t)pdr =k,
B, t—=0/p,

thus Y satisfies (1.7). From (3.15), Y is the unique radial self-similar VSS constructed in ??. It
satisfies (4.5), since Y (z,t) = t~%/2f(t~1/2|z|), and lim,_,00 7% Ne™*/4f(r) > 0, from [39, Theorem
2.1], which implies (1.6). And Y is a maximal VSS, since Y is greater than any weak solution of
(1.1), (1.2), from Proposition 3.4. ]

In [11], a VSS U is constructed as the limit of a sequence of solutions u¥ of (1.1) in Qrn
with initial data kdg, constructed in [10]. The proof is based on difficult estimates of the gradient
obtained from from the Bernstein technique by derivation of equation, showing that U satisfies
(1.8), (1.9) and (1.10); and is minimal in that class, from [12, Theorem 3.8]. Here we prove again
the existence of the v* and U in a very simple way:

Lemma 4.6 (i) For any k > 0 there exists a weak solution u¥ of (1.1) in QRN oo, Such that
uP € L®((0,00); L*(RY)) and |VuF| € LYQgn o), with initial data kéo, in the weak sense of
My, (RY)
lim [ w*(.,t)de = kp(0), Yy € Cy(RY); (4.6)
t—0 RN
and u* = sup uFPr
kog.
(i) As k — oo, u

, where u®Br is the solution of the Dirichlet problem (DB,,00) with initial data

k converges in CZZO’E(QRNQO) to a V.S.SU in Qpn .

Proof. (i) Let k£ > 0 be fixed. Consider again the sequence (ukaP). We have

WP (1) SY (1) S O+t 7). (4.7)

from Proposition 3.3. From Theorem 2.12 the sequence converges in Cfo’i(Qgpo) to a solution u*

of equation (1.1) in Qg~ o, and uF <Y, thus u* satisfies (1.6) from (3.8). Moreover for any ¢ > 0,
from (4.2) and (4.3),

/ kB t)de <k, lim uPPr (. t)de = k.
B, t—0 B,
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Then from the Fatou Lemma,

/ uF (L t)de < k.
RN

In turn from Proposition 2.18, u*(.,t) converges weak* to a Radon measure u, concentrated at 0,
then pu = k0o, k' > 0. Otherwise u*B» < ¥, then pr uFBr( t)dx < Jan uF (., t)dz, thus

k < lim inf / uF (. t)da;
RN

t—0

then limy_,o [pn u”(.,t)dz = k. Taking ¢, € DT(RY), with values in [0, 1], such that ¢, = 1 on B,,
we get

[ s [ eS| ooda
By RN

RN

hence k' = k; thus u*(.,t) converges weak * to kdy as t — 0. In fact the convergence holds in the
weak sense of M,(RY). Indeed for any 1) € C;f (RY), using a function ¢ € C.(RY) with values in
[0,1] such that ¢ =1 on a ball B,, we can write

/RN uF (. t)dr = /RN uF (., t)hpda +/ Wk (L)1 — p)dz,

RN

and

[l = o) < e [ oy, P Z W L., Yo

RN\B

and the right hand side tends to 0 from (4.5). From (4.4), we find

k,By|?
Vb P ‘ <k —k,
196 g, ) = Floelrcn
k,B, |4 k14
hence ||| Vu®5r| HLl(QBp,oo) < k, and finally |||Vu"| HLI(QRN,OO) < k, from the convergence a.e. of
the gradients.
(ii) From (4.7) or from Proposition (3.4), there holds
W) SY (1) SO+t 1), (4.8)

From Theorem 2.12, u* converges in Clzo’cl(QRN,oo) to a weak solution U of equation (1.1). Then
uF < U LY, thus U satisfies (1.7) and (4.5) as Y. Hence U is a VSS in QRN oo ]
Next we prove the uniqueness of the VSS:

Proof of Theorem 1.3. Let us show that U is minimal VSS. Let u be any VSS in Qpn -
From Proposition 3.4, and (3.7), u € C*H(Qg~ o) NC((0,00); CZ(RY)) and u < Y. For fixed k > 0
and p > 1, one constructs a sequence of functions u’&n € Dt (RN ) with support in Bj such that

1, . :
uf, Su(,—) inRY, lim ulgmdx =k.
n n—oo RN
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Indeed [lu(.,1/n)|| 1y tends to oo, then, for n large enough, there exists s, > 0 such that
HTSn,k(u)('71/n)HL1(RN) = k. And &, = Hu('71/n)HL1(RN\Bl) + Hu('71/n)HL°°(RN\Bl) tends to 0,
from (4.5) and (3.8). Then vF = (Ts,, ,

take for u’&n a suitable regularization of vf. Let us call up”? the solution of (DB,,00) with initial

(u)(.,1/n) —2¢,)" has a compact support in By, and we can

data ulg,n. Then we obtain that up (

u'oin converges to kdy weakly in My(B,), since for any ¢ € C;f (B,), and any r € (0,1),

1) S u(.,t+1/n) from the comparison principle. As n — oo,

1
#2 Ml [, v sl =) [ e

Then uﬁ’B” converges to u®Br from Proposition 4.2, and v®P» < u. From Lemma 4.6, we get
wF <u Y. As k — oo, we deduce that U < u <Y. Moreover U is radial and self-similar, then
U=Y =u from [39]. ]

Finally we describe all the solutions:
Proof of Theorem 1.4. Let u be any weak solution of (1.1), (1.6). Either (1.7) holds,

then v = Y. Or there exists a ball B, such that fBr u(.,t)dz stays bounded as ¢ — 0. Then
w€ LS2([0,T); L} (RY)), from Corollary 2.21. From Proposition 2.18, u(.,t) converges weak* to

loc
a measure p as t — 0. Then p is concentrated at 0 from (1.6), hence the exists k& = 0 such that

= kdgy, and (1.13) holds as in Lemma 4.6, since u < Y. If kK = 0, then v = 0 from Theorem 1.2.

Next we show the uniqueness, namely that u = u* constructed at Lemma 4.6. Here only we use

the gradient estimates obtained by the Bernstein technique. We have u € C((0,00); CZ(RY)) from
Proposition (3.4), and u € L>®((0,00); L'(RY)) from (3.2) or (4.5) thus u € C((0,00); L (RY)).
From [10], [9], for any € > 0, and any t = €, we have the semi-group formula

t
u(.,t) = ety e) — / et =92 |Tu)? (s)ds in LY(RY), (4.9)
and there exists C'(¢q) such that for any t > 0,
[Vu(.,1)|" < Cla)(t — )~ ul.,1).
Going to the limit as ¢ — 0 we deduce from (1.10), since u <Y,
- 1 _
[V ) oo vy S @Y ()12 gy S CHmVHD/20

where C' = C(N,q). From (1.13) and (4.9) there holds |Vu|? € L} ([0,00); LY(RY)). Otherwise

loc
et=98y(x, €) converges to kg in Cj(RN), where g is the heat kernel, then

t
u(.,t) = kg — /0 =92 |Vul? (s)ds  in Cj(RN).

Then .
(= uM)(., 1) = _/ 3 (Tuft — |V [Ys)ds  in L'RY),
0
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ds

HV(u _ uk)(.,t)‘ .

|Vu(.,s)|T— |Vu™(.,s)
& q

s [Jo-os
La®RN) ™ Jo

t
< c/ (1 — )25~ @D/ | g 0 — b))
0

LY(RN)

S
La(RN)

Thus V(u — u*)(.,t) = 0 in L7 (RY), from the singular Gronwall lemma, valid since g < %—ﬁ;
k

hence u = u”. ]

Remark 4.7 This uniqueness result is a special case of a general one given for measure data in
[14, Theorem 3.27].
4.2 The Dirichlet problem (Dgq )

Here Q is bounded, and we consider the weak solutions of the problem (Dgq o) such that

lim u(.,t)pdr =0, Vo € C.(Q\ {0}). (4.10)
t—0 J

First, we give regularity properties of these solutions.
Lemma 4.8 Any weak solution u of (D), (4-10), in Q. satisfies
u € CHO(Q\ {0} x [0,00)) N CHO(Q x (0,00)) N C* (Qa,00) -

Proof. We know that u € C19(Q x (0,00)) N C*! (Qa.0), see Remark 4.3. Moreover u €
C%1(Qp x [0,00)) and u(z,0) = 0, Vz € Q, from Corollary 2.21. Let B, CC  be fixed, and
Q, = Q\B,. Then u € C' (8B, x [0,00)), thus for any T € (0,00), there exists C > 0 such that
u(.,t) = Crt on 0B, x [0,T). Then the function w = u — C-t solves

wy — Aw = — |Vu|q - C’T in D/ (QQWT) ’

then wt € C((0,T); L' (Q,) N L}

loc

((0,T); Wy'* (), and
w — Awt £0 in D’ (QQmT)

from the Kato inequality. Moreover, from assumption (4.10), w™ € L>((0,7); L' (£,))) and w™ (., ¢)
converges to 0 in the weak sense of M, (€2,). As a consequence, w < 0, from [6, Lemma 3.4];
thus u(.,t) < Ort in Q7. Then the function % defined by (2.29) is bounded in Qq, . Hence
u € CLO(Q, x (=T,T)) from Theorem 2.13, thus u € C1O(Q\ {0} x [0,0)). ]

Definition 4.9 Let T € (0,00]. We call VSS in Qq,r any weak solution u of the Dirichlet problem
(Da,1), (4.10), such that

lim [ wu(.,t)dr =0, VB, C . (4.11)
t—0 B,

Remark 4.10 From Remark 4.3, any VSS in Qo extends as a VSS in Qq o, and satisfies (2.16)
and (2.15).
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Next we prove the existence and uniqueness of the VSS. Our proof is based on the uniqueness

of the VSS in RV, and does not use the uniqueness of the function u*.

Proof of Theorem 1.5. (i) Existence of a minimal VSS. For any k > 0 we consider the
solution u¥ of (Dgq o) with initial data kdy. By regularization as in Lemma 4.6, we obtain that
uF < Y. The sequence (ukg) is nondecreasing. From estimate (2.16) and Theorem 2.13, (ukﬂ)
converges in C’i’;(QQm) N Cllo’g(ﬁ x (0,00)) to a weak solution U® of (Dgq ), and then U < Y.
Hence U* satisfies (4.11), and (4.10) from (4.5), thus U is a VSS in Q. Next we show that U is
minimal. Consider any VSS v in Qg . Let & > 0 be fixed. As in the proof of Theorem 1.3, one

constructs a sequence uof solutions of (Dg,00) with initial data functions ulg’g € D(9) such that

0= ug,’g S<u(.,—) in€Q, lim ug,’gd:v = k.
n n—oo Q

We still find uf (.,¢) < u(.,t +1/n) from the comparison principle, valid from Lemma 4.8. As

n — oo, ugr? converges to kdyg weakly in M;(Q2), then ulst converges to u**? from Proposition 4.2.

Then u* <y for any k > 0, thus U® < u.

(i1) Existence of a mazimal VSS. For any ball B, CC 2, we consider the function YnQ defined
at Theorem 2.15. Consider again any VSS u in €2, and follow the proof of Proposition 3.4, replacing
B, by Q. Let € > 0 be fixed. From Lemma 4.8, for any ball B, CC 2, setting ), = Q\B_,7 there is
0, > 0 such that

u(z,t) < e, in Qq, s, (4.12)

Next, for any § € (0, 6,), from the comparison principle in Qq s, we deduce that
U(.%'7 t) g Y2S1]7(w7 t— 5) +e€ in QQ,5,T-

As 4 tends to 0, and then ¢ — 0, we deduce that u < YQS,)] in Qq,0o. We observe that YnQ < Yng,l

for any n < 7/. From the estimates (2.16) and Theorem 2.12, YnQ converges in Cllo’co(ﬁ x (0,00)) to
a classical solution Y of (Dg, ), and u < Y. Moreover Y satisfies (4.11), since Y > U, and
(4.10) since Y <Y, then Y is a maximal VSS in €.

(iii) Uniqueness. For fixed k > 0, we intend to compare uF$ with «”, by approximation. Let
0 < n <7 be fixed such that B, CC . Consider again the function Y;, defined by (3.5). Let 6 > 0
be fixed. From (3.15), there exists 75 > 0 such that supe~\ g, yx[0,7,] Yy = 0. Let (p:) be a sequence
of mollifiers with support in B, C B,,. Let ulg’ﬂ be the solution of (Dg ) in Qq 0 with initial data
kp.. For any p > 1 such that {2 C B, let u?’B” be the solution of (DBp,oo) with the same initial
data. By definition of Yan and Y, there holds u?’B” < YnB” = Y, hence supyoy[o,7] u?’B” < 0.
Applying the comparison principle to the smooth functions uf’ﬂ and ulg’B” in Q x [0,00) , we obtain
that

ulg’B” < ulg’ﬂ +4 in Q x [0,75].

Going to the limit as ¢ — 0 from Proposition 4.2 and then as p — oo from Lemma 4.6, we obtain
that
b < uP 46 in  x (0,75];
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and going to the limit as k — oo, we find
USU%+56  inQx(0,75].

The function W = Y® — U® € C19(Q\ {0} x [0,00)) N CH0(Q x (0,00)) from Lemma (4.8), and
W =0o0n 990 x [0,00). Since Y? LY = U, then W? <5 in Q x (0,75]. Thus W(.,t) converges
uniformly to 0 as t — 0. Then for any € > 0, W — ¢ cannot have an extremal point in Q0,00 thus
W < ¢, hence Y = U, [ |

Finally we describe all the solutions as in the case of RN :

Theorem 4.11 Let u be any weak solution of (Dq ), (4-10). Then either u = U, or there exists
k> 0 such that u = u%, or u=0.

Proof. Either u = Y, or there exists a ball B, such that fBr u(.,t)dz stays bounded as t — 0.
Then from (4.10), u € L2 ([0,00);L'(Q)). From Proposition 2.18, u(.,t) converges weak* to a

measure p as t — 0, concentrated at {0} from (4.10). Hence the exists k = 0 such that u = kdp,
thus

lim [ u(.,t)pdr =ke(.,0), Vo € Ci(Q),
t—=0 Jo

and it holds for any ¢ € Cy(Q2), from (4.10). If k > 0, then u = v from uniqueness, see
Proposition 4.2. If k£ = 0, then v = 0 from Theorem 1.2. [
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