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Abstract

Here we study the nonnegative solutions of the viscous Hamilton-Jacobi equation

ut −∆u+ |∇u|q = 0

in QΩ,T = Ω × (0, T ) , where q > 1, T ∈ (0,∞] , and Ω is a smooth bounded domain of RN

containing 0, or Ω = RN .We consider solutions with a possible singularity at point (x, t) = (0, 0).
We show that if q ≥ q∗ = (N + 2)/(N + 1) the singularity is removable. For 1 < q < q∗, we
prove the uniqueness of a very singular solution without condition as |x| → ∞; we also show the
existence and uniqueness of a very singular solution of the Dirichlet problem in QΩ,∞, when Ω
is bounded. We give a complete description of the solutions in each case.
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1 Introduction

Let Ω be a smooth bounded domain of RN containing 0, or Ω = RN , and Ω0 = Ω\{0}. Here we
consider the nonnegative solutions of the viscous parabolic Hamilton-Jacobi equation

ut −∆u+ |∇u|q = 0 (1.1)

in QΩ,T = Ω× (0, T ) , where q > 1, with a possible singularity at point (x, t) = (0, 0), in the sense:

lim
t→0

∫

Ω
u(., t)ϕdx = 0, ∀ϕ ∈ Cc(Ω0), (1.2)

which means formally that u(x, 0) = 0 for x 6= 0.

Such a problem was first considered for the semi-linear equation with a lower term or order 0 :

ut −∆u+ |u|q−1u = 0 in QΩ,T , (1.3)

with q > 1. In a well-known article of Brezis and Friedman [16], it was shown that the problem
admits a critical value qc = (N + 2)/N . For any q < qc, and any bounded Radon measure
u0 ∈ Mb(Ω), there exists a unique solution of (1.3) with Dirichlet conditions on ∂Ω with initial
data u0, in the weak ∗ sense:

lim
t→0

∫

Ω
u(., t)ϕdx =

∫

Ω
ϕdu0, ∀ϕ ∈ Cc(Ω). (1.4)

Moreover, from [17] and [21],there exists a very singular solution in RN , satisfying

lim
t→0

∫

Br

u(., t)dx = ∞, ∀ Br ⊂ Ω, (1.5)

and it is the limit as k → ∞ of the solutions with initial data kδ0, where δ0 is the Dirac mass at 0;
its uniqueness, obtained in [33], is also a consequence of the general results of [31]. For any q ≧ qc,
such solutions do not exist, and the singularity is removable, in other words any solution of (1.3),
(1.2) satisfies u ∈ C2,1 (Ω× [0, T )) and u(x, 0) = 0 in Ω, see again [16].

The problem was extended in various directions, where the Laplacian is replaced by the porous
medium operator ∆(|u|m−1 u), see among them [35], [24], [25], [26],[27], [29], or the p-Laplacian
∆pu, see for example [22], [36], [23].

Concerning equation (1.1), up to now, the description was not yet complete. Here another
critical value is involved:

q∗ =
N + 2

N + 1
.

In the case Ω = RN , we define a very singular solution (called VSS) in QRN ,∞ as any function
u ∈ L1

loc(QRN ,∞), such that |∇u| ∈ Lq
loc(QRN ,∞), satisfying equation (1.1) in D′(QRN ,∞), and

conditions

lim
t→0

∫

RN

u(., t)ϕdx = 0, ∀ϕ ∈ Cc(R
N\ {0}). (1.6)

lim
t→0

∫

Br

u(., t)dx = ∞, ∀r > 0. (1.7)
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For q ∈ (1, q∗) , it was shown in [10] that, for any u0 ∈ Mb(R
N ), there exists a solution u with initial

data u0, unique in a suitable class, which was enlarged in [7]. The existence of a radial self-similar
VSS U in QRN ,∞, unique in that class, was obtained in [39]; independently in [11], proved the
existence of a VSS as a limit as k → ∞ of the solutions with initial data kδ0. From [12], it is unique
among (possibly nonradial) functions such that

lim
t→0

∫

RN\Br

U(., t)dx = 0, ∀r > 0, (1.8)

U ∈ C2,1
(

QRN ,∞

)

∩C((0,∞);L1(RN )) ∩ Lq
loc((0,∞);W 1,q(RN )), (1.9)

sup
t>0

(tN/2 ‖u(., t)‖L∞(RN ) + t(q(N+1)−N)/2q
∥

∥

∥
∇(u(q−1)/q(., t))

∥

∥

∥

L∞(RN )
<∞ (1.10)

If q ≧ q∗, it was proved in [11] that there is no solution u in QRN ,T with initial data δ0, under the
constraints

u ∈ C((0, T );L1(RN )) ∩ Lq((0, T );W 1,q(RN ); (1.11)

and the nonexistence of VSS was stated as an open problem.

In the case of the Dirichlet problem in QΩ,T , with Ω bounded, similar results were obtained in
[8]: for q ∈ (1, q∗) and any u0 ∈ Mb(Ω), there exists a solution u such that

u ∈ C((0, T );L1(Ω)) ∩ L1((0, T );W 1,1
0 (Ω), |∇u|q ∈ L1 (QΩ,T ) , (1.12)

satisfying (1.4) for any ϕ ∈ Cb(Ω), and unique in that class; for q ≧ q∗ there exists no solution in
this class when u0 is a Dirac mass; the existence or nonexistence of a VSS was not studied.

In this article we answer to these questions and complete the description of the solutions.

In Section 2 we introduce the notion of weak solutions and study their first properties. We
extend some universal estimates of [19] for the Dirichlet problem. When q ≦ 2, we show that the
solutions are smooth, improving some results of [12], see Theorems 2.12 and 2.13. We point out
some particular singular solutions or supersolutions, fundamental in the sequel. We also give some
trace results, in the footsteps of [31], and apply them to the solutions of (1.1), (1.2).

Our main result is the removability in the supercritical case q ≧ q∗, proved in Section 3,
extending the results of [16] to equation (1.1).

Theorem 1.1 Assume q ≧ q∗. Let Ω be any domain in RN . Let u ∈ L1
loc(QΩ,T ), such that |∇u| ∈

Lq
loc(QΩ,T ), be any solution of problem

(PΩ)







ut −∆u+ |∇u|q = 0 in D′(QΩ,T ),

limt→0

∫

Ω u(., t)ϕdx = 0, ∀ϕ ∈ Cc(Ω0),

Then the singularity is removable, in the following sense:

If q ≦ 2, then u ∈ C(Ω× [0, T )) and u(x, 0) = 0, ∀x ∈ Ω.

If q > 2, then u is locally bounded near 0, and for any domain ω ⊂⊂ Ω,

lim
t→0

(sup
Qω,t

u) = 0.
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Observe that our conclusions hold without any condition as |x| → ∞ if Ω = RN , or near ∂Ω
when Ω 6= RN . As a consequence, for q ≧ q∗,

(i) there exists no VSS in QRN ,∞ in the sense above.

(ii) there exists no solution of (PΩ) with a Dirac mass at (0, 0), without assuming (1.11) or
(1.12).

We give different proofs of Theorem 1.1 according to the values of q. For q ≦ 2, we take benefit
of the regularity of the solutions shown in Section 2. When q < 2, we make use of supersolutions,
and the difficult case is the critical one q = q∗. When q ≧ 2, our proof is based on a change of
unknown, and on our trace results; the case q > 2 is the most delicate, because of the lack of
regularity.

Besides, if Ω = RN , we can show a global removability, without condition at ∞:

Theorem 1.2 Under the assumptions of Theorem 1.1 with Ω = RN , then

u(x, t) ≡ 0, a.e. in RN , for any t > 0.

In Section 4, we complete the study of the subcritical case q < q∗. Our main result in this range
is the uniqueness of the VSS in QRN ,∞ without any condition:

Theorem 1.3 Let q ∈ (1, q∗) . Then there exists a unique VSS in QRN ,∞.

Moreover we give a complete description of the solutions:

Theorem 1.4 Let q ∈ (1, q∗) . Let u ∈ L1
loc(QRN ,∞), be any function such that |∇u| ∈ Lq

loc(QRN ,∞),
solution of equation (1.1) in D′(QRN ,∞), and satisfying (1.6). Then

• either (1.7) holds and u = U,
• or there exists k > 0 such that u(., 0) = kδ0 in the weak sense of Mb(R

N ) :

lim
t→0

∫

RN

u(., t)ϕdx = kϕ(0), ∀ϕ ∈ Cb(R
N ), (1.13)

and u is the unique solution satisfying (1.13),
• or u ≡ 0.

We also consider the Dirichlet problem in QΩ,T when Ω is bounded:

(DΩ,T )

{

ut −∆u+ |∇u|q = 0 in QΩ,T

u = 0 on ∂Ω× (0,∞) .
(1.14)

We give a notion of VSS for this problem, generally nonradial, and show the parallel of Theorem
1.3:

Theorem 1.5 Assume that q ∈ (1, q∗) and Ω is a smooth bounded domain of RN . Then there exists
a unique VSS of problem (DΩ,∞).

Finally we describe all the solutions as above.

In conclusion, q∗ clearly appears as the upperbound for existence of solutions with an isolated
singularity at time 0. We refer to [14] for the study of equation (1.1) or more general quasilinear
parabolic equations with rough initial data, where we give new decay and uniqueness properties.
The problem of removability of nonpunctual singularities will be the object of a further article.
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2 Weak solutions and regularity

2.1 First properties of the weak solutions

We set QΩ,s,τ = Ω× (s, τ) , for any domain Ω ⊂ RN , any −∞ ≦ s < τ ≦ ∞, thus QΩ,T = QΩ,0,T .

Definition 2.1 For any function Φ ∈ L1
loc(QΩ,T ), we say that a function U is a weak solution

(resp. subsolution, resp. supersolution) of equation

Ut −∆U = Φ in QΩ,T , (2.1)

if U ∈ L1
loc(QΩ,T ) and, for any ϕ ∈ D+(QΩ,T ),

∫ T

0

∫

Ω
(Uϕt + U∆ϕ+Φϕ)dxdt = 0 (resp. ≦, resp. ≧).

In all the sequel we use regularization arguments by to deal with weak solutions:

Notation 2.2 For any function u ∈ L1
loc(QΩ,T ), we set

uε = u ∗ ̺ε,

where (̺ε) is sequence of mollifiers in (x, t) ∈ RN+1. Then uε is well defined in QΩ,s,τ for any
domain ω ⊂⊂ Ω and 0 < s < τ < T and ε > 0 small enough.

Lemma 2.3 Any solution (resp. subsolution) U of (2.1) such that U ∈ C((0, T );L1
loc(Ω)) satisfies

also for any nonnegative ϕ ∈ C∞
c (Ω× [0, T ]) and any s, τ ∈ (0, T ),

∫

Ω
U(., τ)ϕ(., τ)dx −

∫

Ω
U(., t)ϕ(., t)dx −

∫ τ

s

∫

Ω
(Uϕt +U∆ϕ+Φϕ)dxdt = 0 (resp. ≦ 0) (2.2)

and for any nonnegative ψ ∈ C2
c (Ω) ,

∫

Ω
U(., τ)ψdx −

∫

Ω
U(., s)ψdx −

∫ τ

s

∫

Ω
(U∆ψ +Φψ)dxdt = 0 (resp. ≦ 0). (2.3)

Proof. The regularization gives the equation (Uε)t −∆Uε = Φε, and the relations (2.2), (2.3)
hold for Uε,Φε, and for U,Φ as ε → 0. Indeed,

∫

Ω Uε(., τ)ϕ(., τ)dx converges to
∫

Ω U(., τ)ϕ(., τ)dx
for almost any τ, see for example [4], hence the relations hold for any s, τ by continuity.

Next we make precise our notion of solution of equation (1.1).

Definition 2.4 (i) We say that a nonnegative function u is a weak solution of equation (1.1) in
QΩ,T , if u ∈ L1

loc(QΩ,T ), |∇u|
q ∈ L1

loc(QΩ,T ), and u is a weak solution of the equation in the sense
above:

∫ T

0

∫

Ω
(−uϕt − u∆ϕ+ |∇u|qϕ)dxdt = 0, ∀ϕ ∈ D(QΩ,T ).

(ii) We say that u is a weak solution of the Dirichlet problem (DΩ,T ) if it is a weak solution of
(1.1) in QΩ,T , such that

u ∈ L1
loc((0, T );W

1,1
0 (Ω)) ∩ C((0, T );L1(Ω)), and |∇u| ∈ Lq

loc((0, T );L
q(Ω)).
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We first observe that the regularization keeps the subsolutions, which allow to give local esti-
mates:

Lemma 2.5 Let u be a weak nonnegative subsolution of (1.1) in QΩ,T . Let ω be any domain
ω ⊂⊂ Ω and 0 < s < τ < T . Then for ε small enough, uε is a subsolution of equation (1.1) in
Qω,s,τ .

Proof. The function uε satisfies

(uε)t −∆uε + |∇u|q ∗ ̺ε ≦ 0,

in D′(Qω,s,τ ) for ε small enough. We find easily that

|∇uε|
q ≦ |∇u|q ∗ ̺ε in Qω,s,τ , (2.4)

from the Hölder inequality, since ̺ε has a mass 1; thus |∇uε|
q ∈ L1

loc(Qω,s,τ ) and

(uε)t −∆uε + |∇uε|
q ≦ 0. (2.5)

Next we recall some well known properties:

Lemma 2.6 Any weak nonnegative solution of equation (1.1) satisfies

u ∈ L∞
loc(QΩ,T ), ∇u ∈ L2

loc(QΩ,T ), u ∈ C((0, T );Lr
loc(Ω)), ∀r ≧ 1. (2.6)

As a consequence, it satisfies

(i) for any ϕ ∈ C1
c (QΩ,T ),

∫ T

0

∫

Ω
(−uϕt +∇u.∇ϕ+ |∇u|qϕ)dxdt = 0, (2.7)

(ii) for any s, τ ∈ (0, T ), and any ϕ ∈ C1((0, T );C1
c (Ω)),

∫

Ω
u(., τ)ϕ(., τ)dx −

∫

Ω
u(., s)ϕ(., s)dx +

∫ τ

s

∫

Ω
(−uϕt +∇u.∇ϕ+ |∇u|qϕ)dxdt = 0 (2.8)

(iii) for any s, τ ∈ (0, T ), and any ψ ∈ C1
c (Ω) ,

∫

Ω
u(., τ)ψdx −

∫

Ω
u(., s)ψdx +

∫ τ

s

∫

Ω
(∇u.∇ψ + |∇u|qψ)dxdt = 0 (2.9)

Proof. The function u ∈ L1
loc(QΩ,T ) is nonnegative and subcaloric, then regularizing u by uε,

we get u ∈ L∞
loc(QΩ,T ), see for example [16]. Otherwise for any domains ω ⊂⊂ ω′ ⊂⊂ Ω, taking

ψ ∈ C1
c (Ω) with support in ω′ such that ψ ≡ 1 on ω, ψ (Ω) ⊂ [0, 1] , we find

∫

Ω
u2ε(., τ)ψ

2dx−

∫

Ω
u2ε(., s)ψ

2dx+

∫ τ

s

∫

Ω
|∇uε|

2 ψ2dx

≦ 2

∫ τ

s

∫

Ω
uε |∇uε| |∇ψ| dx ≦

1

2

∫ τ

s

∫

Ω
|∇uε|

2 ψ2dx+ 4

∫ τ

s

∫

Ω
u2ε |∇ψ|

2 dx;
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hence ∇u ∈ L2
loc(QΩ,T ) from the Fatou Lemma, and

‖∇u‖L2(Qω,s,τ )
≦ C(‖u(., s)‖L2(Qω′,s,τ )

+ ‖u‖L2(Qω′,s,τ )
) ≦ C ‖u‖L∞(Qω′,s,τ )

, (2.10)

with C = C(N,ω, ω′). Then (2.7) holds for any ϕ ∈ D(QΩ,T ). Moreover, since |∇u|q ∈ L1
loc(QΩ,T ),

the function u lies in the set

E =
{

v ∈ L2
loc((0, T );W

1,2
loc (Ω)) : vt ∈ L2

loc((0, T );W
−1,2(Ω)) + L1

loc (QΩ,T )
}

(2.11)

From a local version of [38, Theorem 1.1], we have E ⊂ C((0, T );L1
loc(Ω)). Then (2.8) and (2.9)

follow. Moreover u ∈ L∞
loc(QΩ,T ), then u ∈ C((0, T );Lr

loc(Ω)) for any r > 1.

In the case of the Dirichlet problem (DΩ,T ), the regularization does not provide estimates up
to the boundary, thus we use another argument: the notion of entropy solution that we recall now.
For any k > 0 and r ∈ R, we define as usual Tk(r) = max(−k,min(k, r)) the truncation function,
and Θk(r) =

∫ r
0 Tk(s)ds.

Definition 2.7 Let s < τ, and f ∈ L1(QΩ,s,τ ) and us ∈ L1(Ω). A function u is an entropy solution
of the problem







ut −∆u = f in QΩ,s,τ ,
u = 0 on (s, τ)× ∂Ω,

u(., s) = us in Ω,
(2.12)

if u ∈ C([s, τ ] ;L1(Ω)), and Tk(u) ∈ L
2((s, τ) ;W 1,2

0 (Ω)) for any k > 0, and

∫

Ω
Θk(u− ϕ)(., τ)dx +

∫ τ

s
〈ϕt, Tk(u− ϕ)〉dt+

∫ τ

s

∫

Ω
∇u.∇Tk(u− ϕ)dxdt

=

∫

Ω
Θk(us − ϕ(., 0))dx +

∫ τ

s

∫

Ω
fTk(u− ϕ)dxdt

for any ϕ ∈ L2((s, τ);W 1,2(Ω)) ∩ L∞ (QΩ,τ ) such that ϕt ∈ L2((s, τ);W−1,2(Ω)).

As a consequence, we identify three ways of defining solutions:

Lemma 2.8 Let 0 ≦ s < τ ≦ T, and f ∈ L1(QΩ,s,τ ) and u ∈ C([s, τ) ;L1 (Ω)), us = u(s).
Denoting by et∆ the semi-group of the heat equation with Dirichlet conditions acting on L1 (Ω) , the
three properties are equivalent:

(i) u ∈ L1
loc((s, τ);W

1,1
0 (Ω)) and ut −∆u = f, in D′(QΩ,s,τ ),

(ii) u is an entropy solution of problem (2.12) in QΩ,s,τ ,
(iii)

u(., t) = e(t−s)∆us +

∫ t

s
e(t−σ)∆f(σ)dσ in L1 (Ω) , ∀t ∈ [s, τ ] .

Proof. It follows from the existence and uniqueness of the solutions of (i) from [6, Lemma 3.4],
as noticed in [8], and of the entropy solutions, see [3], [34].

We deduce properties of all the bounded solutions u of (DΩ,T ) :
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Lemma 2.9 Any nonnegative weak solution of problem (DΩ,T ), such that u ∈ L∞
loc((0, T );L

∞ (Ω))
satisfies ∇u ∈ L2

loc(0, T );L
2 (Ω)) and u ∈ C((0, T );Lr(Ω)) for any r ≧ 1.

Proof. Since u ∈ C((0, T );L1(Ω)), for any 0 < s < τ < T, u is an entropy solution on [s, τ ]
from Lemma 2.8. Since u is bounded, it follows that u = Tk(u) ∈ L2((s, τ) ;W 1,2

0 (Ω)), and

∫

Ω
u2(., τ)dx −

∫

Ω
u2(., s)dx +

∫ τ

s

∫

Ω
|∇u|2 dx+

∫ τ

s

∫

Ω
u|∇u|qdxdt = 0;

and u ∈ C((0, T );Lr(Ω)) as in Lemma 2.6.

2.2 Estimates of the classical solutions of the Dirichlet problem

First recall some results on the Dirichlet problem in a bounded domain Ω with regular initial and
boundary data







ut −∆u+ |∇u|q = 0, in QΩ,T ,
u = ϕ, on ∂Ω× (0, T ),
u(x, 0) = u0 ≧ 0.

(2.13)

If ϕ ≡ 0 and u0 ∈ C1
0

(

Ω
)

, it is well known that problem (2.13) admits a unique solution u ∈
C2,1 (QΩ,∞)∩ C

(

Ω× [0,∞)
)

such that |∇u| ∈ C
(

Ω× [0,∞)
)

. For general ϕ ∈ C(∂Ω× [0, T ]), the
same happens on [0, T ) if u0 ∈ C1(Ω), and u0(x) = ϕ(x, 0) on ∂Ω. If one only assumes u0 ∈ C(Ω),
there exist a unique solution u ∈ C(Ω× [0, T ]) in the viscosity sense, see [5], but |∇u| may have a
blow-up near ∂Ω when q > 2.

Some fundamental universal estimates have been obtained in [19]:

Theorem 2.10 ([19]) Let Ω be any smooth bounded domain. Let q > 1, and u0 ∈ C0

(

Ω
)

be
Lipschitz continuous. Let u be the classical solution of (2.13) with ϕ = 0. Then there exist functions
B,D ∈ C((0,∞)) depending only of N, q,Ω, such that such that, for any t ∈ (0, T ),

‖u(., t)‖L∞(Ω) ≦ B(t)d(x, ∂Ω), (2.14)

‖∇u(., t)‖L∞(Ω) ≦ D(t). (2.15)

In the following Lemma, we extend and make precise estimate (2.14), with nonzero data on the
lateral boundary:

Lemma 2.11 Let Ω be any smooth bounded domain. Let q > 1. Let u ∈ C(Ω×(0, T ))∩C2,1(QΩ,T )
be a nonnegative solution of equation (1.1) in QΩ,T , bounded on ∂Ω×(0, T ). Then there is a constant
C = C(N, q,Ω) such that for any ∀t ∈ (0, T ),

‖u(., t)‖L∞(Ω) ≦ C(1 + t
− 1

q−1 )d(x, ∂Ω) + sup
∂Ω×(0,T )

u, . (2.16)
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Proof. Let M = sup∂Ω×(0,T ) u. We set uδ = u − (M + δ) for any δ > 0. On ∂Ω × (0, T ), we
have uδ,k ≦ −δ < 0. Since uδ(0) is continuous, there exists Ωδ ⊂⊂ Ω such that uδ(0) ≦ −δ/2 on
Ω\Ωδ. Then there exists a contant Cδ such that uδ(0) ≦ Cδd(x, ∂Ω). From [19], for any z ∈ ∂Ω,
there exists a function bz(x) such that, for some k,K,A > 0 depending on Ω, and for any x ∈ Ω,

kd(x, ∂Ω) ≦ inf
z∈∂Ω

bz(x) ≦ Kd(x, ∂Ω), bz(x) ≦ A, k ≦ |∇bz(x)| ≦ 1, |∆bz(x)| ≦ K.

Then for any z ∈ ∂Ω, there exists a function wz of the form wz(x, t) = J(t)bz(x) such that wz is a
supersolution of equation (1.1), wz ≧ 0 on ∂Ω, and

lim
t→0

d(x, ∂Ω)−1wz(x, t) = ∞

uniformly in Ω. Otherwise J can be chosen explicitly by J(t) = C(Arctan t)−1/(q−1) with Cq−1 =
k−q(Kπ/2 +A/(q − 1)). Thus there exists τδ > 0 such that wz(x, τ) ≧ uδ(0) for τ ≦ τδ. Since uδ is
a solution of (1.1), the function wz(x, τ + t)−uδ(x, t) is nonnegative from the comparison principle.
Letting τ → 0, and then δ → 0 and finally taking the infimum over z ∈ ∂Ω leads to the estimate

u(x, t) ≦M +KJ(t)d(x, ∂Ω), (2.17)

hence (2.16) follows with another constant C > 0.

2.3 Regularity for q ≦ 2

First of all, we give a result of regularity C2,1 for any weak solution of equation (1.1) and for any
q ≦ 2. Such a regularity was obtained in [12, Proposition 3.2] for the VSS when q < q∗, and the
proof was valid up to q = (N +4)/(N +2). We did not find a good reference in the literature under
our weak assumptions, even if a priori estimates can be found in [30], and Hölderian properties in
[4], [40]. Our proof is based on a bootstrap technique, starting from the fact that u is subcaloric.

We set W2,1,ρ(Qω,s,τ ) = {u ∈ Lρ(Qω,s,τ ) : ut,∇u,D
2u ∈ Lρ(Qω,s,τ )}, for any 0 ≦ s < τ < T

and 1 ≦ ρ ≦ ∞. This space is endowed with its usual norm.

Theorem 2.12 Let 1 < q ≦ 2. Let Ω be any domain in RN . Suppose that u is a weak nonnegative
solution of (1.1) in QΩ,T .

(i) Then u ∈ C2,1(QΩ,T ), and there exists γ ∈ (0, 1) such that for any smooth domains ω ⊂⊂ ω′ ⊂⊂
Ω, and 0 < s < τ < T

‖u‖C2+γ,1+γ/2(Qω,s,τ )
≦ CΦ(‖u‖L∞(Qω′,s/2,τ )

), (2.18)

where Φ is a continuous increasing function and C = C(N, q, ω, ω′, s, τ).

(ii) As a consequence, for any sequence (un) of weak solutions of equation (1.1) in QΩ,T , uniformly

locally bounded, one can extract a subsequence converging in C2,1
loc (QΩ,T ) to a weak solution u of

(1.1) in QΩ,T .

Proof. (i) • Case q < 2. We can write (2.6) under the form

ut −∆u = f, f = −|∇u|q,
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and f ∈ Lq1
loc(QΩ,T ), with q1 = 2/q ∈ (1, 2). From (2.6), there holds u,∇u, f ∈ Lq1

loc(QΩ,T ). Then

u ∈ W2,1,q1
loc (QΩ,T ), see [30, theorem IV.9.1]. Choosing ω′′ such that ω ⊂⊂ ω′′ ⊂⊂ ω′and denoting

Q = Qω,s,τ , Q
′ = Qω′,s/2,τ , Q

′′ = Qω′′,3s/4,τ , we deduce from (2.10) that

‖u‖W2,1,q1 (Q) ≦ C(‖f‖Lq1 (Q′′) + ‖u‖Lq1 (Q′′)) ≦ C(‖∇u‖q
L2(Q′′)

+ ‖u‖L∞(Q′))

≦ C(‖u‖qL∞(Q′) + ‖u‖L∞(Q′)),

with C = C(N, q, ω, ω′, s, τ). From the Gagliardo-Nirenberg inequality, there exists c = c(N, q, ω) >
0 such that for almost any t ∈ (0, T ),

‖∇u(., t)‖L2q1 (ω) ≦ c‖u(t)‖
1/2

W 2,q1 (ω)
‖u(t)‖

1/2
L∞(ω).

Then by integration, |∇u| ∈ L2q1
loc (Q), and

‖∇u‖L2q1 (Q) ≦ c‖u(t)‖
1/2

W 2,q1 (Q)
‖u‖

1/2
L∞(Q) ≦ C1Φ1(‖u‖L∞(Q′))), (2.19)

with a new constant C1 as above, where Φ1 is a continuous increasing function. Thus f ∈
Lq2
loc(QΩ,T ), with q2 = (2/q)2 ∈ (q1, 2q1) and u,∇u, f ∈ Lq2

loc(QΩ,T ), in turn u ∈ W2,1,q2
loc (QΩ,T ).

By induction we find that u ∈ W2,1,qk
loc (Ω × (0, T )), with qk = qk1 , for any k ≧ 1, and

‖∇u‖L2qk (Q) ≦ CkΦk(‖u‖L∞(Q′))

with Ck,Φk as above. Choosing any k so that qk > N +2, we deduce that |∇u| ∈ Cγ,γ/2(ω× (s, τ))
for any γ ∈ (0, 1), see [30, Lemma II.3.3]. Then f is locally Hölderian, thus u ∈ C2+γ,1+γ/2(Qω,s,τ ),
and (2.18) holds.

• Case q = 2. We define Q and Q′ as above, and regularize by uε in Q′ for ε small enough.
Since u is locally bounded, uε converges to u in Ls(Q′) for any s ≧ 1, and by extraction a.e. in Q.
And uε satisfies the equation in Q′

(uε)t −∆uε + |∇u|2 ∗ ̺ε = 0.

Defining the functions z = 1− e−u in QΩ,T , and z
ε = 1− e−uε in Q′, we obtain that

(zε)t −∆(zε) + hε = 0,

where hε = e−uε

(

|∇u|2 ∗ ̺ε − |∇uε|
2
)

≧ 0 from (2.4). Then |∇u|2 ∗ ̺ε converges to |∇u|2 and

|∇uε|
2 converges to |∇u|2 in L1

loc(QΩ,T ), thus hε tends to 0 in L1
loc(QΩ,T ). As ε→ 0, zε converges to

z in Ls(Q) for any s ≧ 1, and z is a solution of the heat equation in D′(Q′), hence also in D′(QΩ,T )).

Then z ∈ C∞(QΩ,T ), hence maxQz < 1, thus u ∈ C∞(QΩ,T ). And ‖z‖L∞(Q′) < 1 − e−‖u‖L∞(Q′) ,
then (2.18) follows from analogous estimates on z.

(ii) From the estimate (2.18), one can extract a diagonal subsequence, converging a.e. to a
function u in QΩ,T , and the convergence holds in C2,1

loc (QΩ,T ). Then u is a weak solution of (1.1) in
QΩ,T .

In the case of the Dirichlet problem we obtain a corresponding regularity result for the bounded
solutions. Our proof can be compared to the proof of [8, Proposition 4.1] relative to the case q < 1.
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Theorem 2.13 Let 1 < q ≦ 2. Let Ω be a smooth bounded domain. Let u be any weak nonnegative
solution of problem (DΩ,T ), such that u ∈ L∞

loc((0, T ) ;L
∞(Ω)).

(i) Then u satisfies the local estimates of Theorem 2.12. Moreover, u ∈ C1,0(Ω× (0, T )) and there
exists γ ∈ (0, 1) such that, for any 0 < s < τ < T,

‖u‖C(Ω×[s,τ ]) + ‖∇u‖Cγ,γ/2(Ω×[s,τ ]) ≦ CΦ(‖u‖L∞(QΩ,s/2,τ )
) (2.20)

where C = C((N, q,Ω, s, τ, γ), and Φ is an increasing function.

(ii) For any sequence (un) of weak solutions of (DΩ,T ) uniformly bounded in L∞
loc((0, T );L

∞ (Ω)),

one can extract a subsequence converging in C1,0
loc (Ω× (0, T )) to a weak solution u of (DΩ,T ).

Proof. (i) • Case q < 2. From Lemma 2.9, we have ∇u ∈ L2
loc(0, T );L

2 (Ω)) and u ∈
C((0, T );L1(Ω)). Then f = −|∇u|q ∈ Lq1

loc((0, t);L
q1 (Ω)). For any 0 < s < τ < T, and t ∈ [s/2, τ ] ,

we can write u(., t) = u1(., t) + u2(., t), from Lemma 2.8, where

u1(., t) = e(t−s/2)∆u(
s

2
), u2(., t) =

∫ t

s/2
e(t−σ)∆f(σ)dσ.

We get u1 ∈ C∞(QΩ,s,τ ) from the regularizing effect of the heat equation, and u2 ∈ W2,1,q1(QΩ,T ),
from [30, theorem IV.9.1]. As above, from the Gagliardo estimate, we get f ∈ Lq2

loc((0, t);L
q2 (Ω)),

and by induction |∇u| ∈ Cγ,γ/2(QΩ,s,τ ) for some γ ∈ (0, 1), see [30, Lemma II.3.3]. The estimates
follow as above.

• Case q = 2. From Theorem 2.12, u is smooth in QΩ,T , and z = 1 − e−u is a solution of the
heat equation, and z ∈ C((0, T );L1(Ω)). Then z(., t) = e(t−s/2)∆z(s/2), thus z ∈ C∞(QΩ,s,τ ). This
implies that maxQΩ,s,τ

z < 1, thus u ∈ C∞(QΩ,s,τ ) and the estimates follow again.

(ii) It follows directly from (2.20).

Remark 2.14 As a consequence, in the case q ≦ 2, we find again the estimate (2.15) for the
problem (DΩ,T ) without using the Bernstein argument, and it is valid for any weak solution u ∈
L∞
loc((0, T ) ;L

∞(Ω)).

2.4 Singular solutions or supersolutions

In the study some functions play a fundamental role. The first one was introduced in [10].

2.4.1 A stationary supersolution

Assume that 1 < q < 2. Equation (1.1) admits a stationary solution whenever N = 1 or N ≧ 2,
1 < q < N/(N − 1), defined by

s ∈ (0,∞) 7−→ ΓN (s) = γN,qs
−a, a =

2− q

q − 1
, γN,q = a−1(a+ 2−N)1−q.

Moreover in the range 1 < q < 2, the function Γ = Γ1 defined by

s ∈ (0,∞) 7−→ Γ(s) = γqs
−a, a =

2− q

q − 1
, γq =

(q − 1)−a

2− q
, (2.21)

is a radial supersolution of equation (1.1) for any N.
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2.4.2 Large solutions

Here we recall a main result of [19] obtained as a consequence of the universal estimates.

Theorem 2.15 ([19]) Let G be any smooth bounded domain, and η > 0 such that Bη ⊂⊂ G. Then
for any q > 1, there exists a (unique) solution Y G

η of the problem















(Y G
η )t −∆Y G

η + |∇Y G
η |q = 0, in QG,∞,

Y G
η = 0, on ∂G× (0,∞),

Y G
η (x, 0) =

{

∞ if x ∈ Bη,
0 if not,

(2.22)

which is uniformly Lipschitz continuous in G for t in compacts sets of (0,∞) and is a classical
solution of the problem for t > 0, and satisfies the initial condition in the sense:

lim
t→0

inf
x∈K

Y G
η (x, t) = ∞, ∀K compact ⊂ Bη; lim

t→0
sup
x∈K

Y G
η (x, t) = 0, ∀K compact ⊂ G\Bη.

(2.23)
And Y G

η is the supremum of the solutions yϕη,G
with nonnegative initial data ϕη,G ∈ C(G) such

that ϕη,G = 0 on G\Bη .

A crucial point for existence was the construction of a supersolution for the problem in a ball:

Lemma 2.16 For any ball Bs ⊂ RN and any λ > 0, there exists a supersolution wλ,s of equation
(1.1) in Bs × [0,∞), such that

wλ,s = ∞ on ∂Bs × [0,∞) , wλ,s = λect+1/αs(x), c = c(λ) > 0,

where αs is the solution of −∆αs = 1 in Bs and αs = 0 on ∂Bs.

2.5 Some trace results

First we extend a trace result of [32].

Lemma 2.17 Let U ∈ C((0, T );L1
loc(Ω)) be any nonnegative weak solution of equation

Ut −∆U = Φ (2.24)

in QΩ,T , with Φ ∈ L1
loc(QΩ,T ).

(i) Assume that Φ ≧ −F, where F ∈ L1
loc(Ω× [0, T )). Then U(., t) converges weak∗ to some Radon

measure U0 :

lim
t→0

∫

Ω
U(., t)ϕdx =

∫

Ω
ϕdU0, ∀ϕ ∈ Cc(Ω).

Furthermore, Φ ∈ L1
loc([0, T );L

1
loc(Ω)), and for any ϕ ∈ C2

c (Ω× [0, T )),

−

∫ T

0

∫

Ω
(Uϕt + U∆ϕ+Φϕ)dxdt =

∫

Ω
ϕ(., 0)dU0 . (2.25)

(ii) Assume that Φ has a constant sign. Then

Φ ∈ L1
loc([0, T );L

1
loc(Ω)) ⇐⇒ U ∈ L∞

loc( [0, T ) ;L
1
loc(Ω)). (2.26)
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Proof. (i) Let ω ⊂⊂ ω′ ⊂⊂ Ω and 0 < s < τ < T . We approximate U by Uε and set
Φ + F = E ≧ 0, so that for ε small enough,

(Uε)t −∆Uε = Eε − Fε in Qω′,s/2,τ .

Let φ1 be a positive eigenfunction associated to the first eigenvalue λ1 of −∆ in W 1,2
0 (ω). Multi-

plying the equation by φ1 and integrating on over ω, we get, for any t ∈ (s/2, τ),

d

dt

∫

ω
Uε(., t)φ1dx+ λ1

∫

ω
Uε(., t)φ1dx = −

∫

∂ω
Uε(., t)

∂φ1
∂ν

dσ +

∫

ω
Eε(., t)φ1dx−

∫

ω
Fε(., t)φ1dx.

We set

X(t) =

∫

ω
U(., t)φ1dx, h(t) = eλ1tX(t) −

∫ τ

t

∫

ω
eλ1sF (., s)φ1dxdθ,

Xε(t) =

∫

ω
Uε(., t)φ1dx, hε(t) = eλ1tXε(t)−

∫ τ

t

∫

ω
eλ1sFε(., s)φ1dxdθ.

Then hε is nondecreasing on (s/2, τ) , and then hε(τ) ≧ hε(s). On the other hand, Xε(t) converges
to X(t) a.e. in (0, T ) as ε → 0. Since U ∈ C((0, T );L1

loc(Ω)), we deduce that h(τ) ≧ h(s) +
∫ τ
s

∫

ω E(., t)φ1dx. Thus h is nondecreasing on (0, T ). From the assumption on F, X has a limit as
t→ 0, and Φ ∈ L1

loc([0, T );L
1
loc(Ω)).Otherwise, for any nonnegative ψ ∈ C2

c (Ω), for any t < τ, there
holds

∫

Ω
U(., τ)ψdx −

∫ τ

t

∫

Ω
(U∆ψ +Φψ)dxdt =

∫

Ω
U(., t)ψdx (2.27)

from (2.3). Thus
∫

Ω U(., t)ψdx has a nonnegative limit µ(ψ) as t→ 0, and

∫

Ω
U(., τ)ψdx −

∫ τ

0

∫

Ω
(U∆ψ +Φψ)dxdt = µ(ψ)

Then µ is a nonnegative linear functional on C2
c (Ω), thus it extends in a unique way as a Radon

measure u0 on Ω. Finally for any ϕ ∈ C∞
c (Ω× [0, T ]), we have

−

∫ T

t

∫

Ω
(Uϕt + U∆ϕ+Φϕ)dxdt =

∫

Ω
U(., t)ϕ(., t)dx.

Going to the limit as t→ 0, we deduce (2.25), since

∣

∣

∣

∣

∫

Ω
U(., t)(ϕ(., t) − ϕ(., 0))dx

∣

∣

∣

∣

≦ Ct

∫

suppϕ
U(., t)dx.

(ii) If U ∈ L∞
loc( [0, T ) ;L

1
loc(Ω)), then

∫ τ
t

∫

ΩΦψdxdt is bounded as t→ 0, and Φ ∈ L1
loc([0, T );L

1
loc(Ω))

from the Fatou Lemma. The converse is a direct consequence of (i).

We deduce a trace property for equation (1.1), inspired by the results of [31] for equation 1.3,
see also [13]:
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Proposition 2.18 For any nonnegative weak solution u of (1.1) in QΩ,T , the following conditions
are equivalent:

(i) u ∈ L∞
loc( [0, T ) ;L

1
loc(Ω)),

(ii) ∇u ∈ Lq
loc(Ω× [0, T )),

(iii) u(., t) converges weak∗ to some nonnegative Radon measure u0 in Ω.
And then for any τ ∈ (0, T ), and any ϕ ∈ C1

c (Ω × [0, T )),

∫

Ω
u(., τ)ϕdx +

∫ τ

0

∫

Ω
(−uϕt +∇u.∇ϕ− |∇u|q ϕ)dxdt =

∫

Ω
ϕ(., 0)du0. (2.28)

Remark 2.19 If q ≧ 2, and u admits a Radon measure u0 as a trace, in the sense of condition
(iii), then necessarily

u0 ∈ L1
loc(Ω), and u ∈ C

(

[0, T ) ;L1
loc(Ω)

)

.

Indeed condition (ii) implies that u ∈ L2
loc([0, T ) ;W

1,2
loc (Ω)), and ut ∈ L2

loc((0, T );W
−1,2
loc (Ω)) +

L1 (Qω,T ) , then the conclusion holds from [38]. As a first consequence, there exists no weak solution
of equation (1.1) with a a Dirac mass as initial data. This had been shown in [1, Theorem 2.2 and
Remark 2.1] for the Dirichlet problem (DΩ,T )..

2.6 Behaviour of Solutions of (1.1), (1.2) in Ω0

Next we come to problem (1.1), (1.2). In order to see what occurs at t = 0, we extend the solutions
on (−T, T ) as in [16].

Proposition 2.20 Let u be any weak solution of (1.1), (1.2). Then the function u defined a.e. in
QΩ,−T,T by

u(x, t) =

{

u(x, t), if (x, t) ∈ QΩ,T ,
0 if (x, t) ∈ QΩ,−T,0,

(2.29)

is a weak solution of the equation (1.1) in QΩ0,−T,T . If moreover

lim
t→0

∫

Ω
u(., t)ϕdx = 0, ∀ϕ ∈ Cc(Ω), (2.30)

then u is a weak solution of (1.1) in QΩ,−T,T .

Proof. By assumption, u ∈ L1
loc([0, T ) × Ω0), hence u ∈ L1

loc(QΩ0,−T,T ). Then we can define
∇u ∈ D′(QΩ0,−T,T ) and for any ϕ ∈ D(QΩ0,−T,T ),

< ∇u, ϕ >= −

∫ T

−T

∫

Ω
u∇ϕdxdt = −

∫ T

0

∫

Ω
u∇ϕdxdt.

For any k ≧ 1, we consider a function ζk on [0,∞) such that

ζk(t) = ζ(kt), where ζ ∈ C∞ ([0,∞)) , ζ([0,∞)) ⊂ [0, 1] , ζ ≡ 0 in [0, 1] , ζ ≡ 1 in [2,∞) .
(2.31)
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Since u is a weak solution of (1.1), there holds

−

∫ T

0

∫

Ω
u∇(ϕζk)dxdt =

∫ T

0

∫

Ω
ϕζk∇udxdt. (2.32)

From (1.2), we see that u ∈ L∞
loc( [0, T ) ;L

1
loc(Ω0)), hence |∇u| ∈ L

q
loc(Ω0× [0, T )), from Proposition

2.18. Then we can go to the limit in (2.32) as k → ∞ from the Lebesgue theorem, hence

−

∫ T

0

∫

Ω
u∇ϕdxdt =

∫ T

0

∫

Ω
ϕ∇udxdt.

Thus ∇u ∈ Lq
loc(QΩ0,−T,T ) and ∇u(x, t) = χ(0,T )∇u(x, t); hence also ∇u ∈ L2

loc(QΩ0,−T,T ) from
Lemma 2.6, and for any ϕ ∈ D(QΩ0,−T,T ),

∫ T

−T

∫

Ω
(−uϕt +∇u.∇ϕ+ |∇u|qϕ)dxdt =

∫ T

0

∫

Ω
(−uϕt +∇u.∇ϕ+ |∇u|qϕ)dxdt. (2.33)

Moreover

0 =

∫ T

0

∫

Ω
(−u(ϕζk)t +∇u.∇(ϕζk) + |∇u|qϕζkdxdt

= −

∫ T

0

∫

Ω
uϕ(ζk)tdxdt+

∫ T

0

∫

Ω
(−uϕtζk +∇u.∇(ϕζk) + |∇u|qϕζkdxdt.

As k → ∞, the first term in the right hand side tends to 0 from (1.2), since

∣

∣

∣

∣

∫ T

0

∫

Ω
uϕ(ζk)tdxdt

∣

∣

∣

∣

≦ Ck

∫ 2/k

1/k

∫

Ω
uϕdxdt ≦ C sup

t∈[1/k,2/k]

∫

suppϕ
u(., t)dx, (2.34)

and we can go to the limit in the second term, since |∇u| ∈ Lq
loc(Ω0 × [0, T )). Thus from (2.33), u

is a weak solution of equation (1.1) in QΩ0,−T,T . If (2.30) holds, the same result holds in Ω instead
of Ω0.

Corollary 2.21 Assume 1 < q ≦ 2. Then any weak solution u of (1.1), (1.2) satisfies u ∈
C2,1(Ω0 × [0, T )) and u(x, 0) = 0, ∀x ∈ Ω0.

If (2.30) holds, then u ∈ C2,1(Ω× [0, T )) and u(x, 0) = 0, ∀x ∈ Ω.

Proof. It follows directly from From Proposition 2.20 and Theorem 2.12 applied to u.

3 The critical or supercritical case

3.1 Removability in the range q∗ < q < 2

For any 1 < q < 2 we can compare the solutions with the function Γ defined at (2.21).
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Lemma 3.1 Let 1 < q < 2. Let u be any nonnegative weak solution of (1.1) in QΩ,T , satisfying
(1.2).
(i) Let r > 0 such that Br ⊂ Ω.Then there exists τ1 > 0 (depending on u, r) such that

0 ≦ u(x, t) ≦ Γ(|x|) ∀(x, t) ∈ QBr\{0},τ1
. (3.1)

(ii) If Ω = RN , then
0 ≦ u(x, t) ≦ Γ(|x|) ∀(x, t) ∈ Q

RN\{0},τ1
. (3.2)

Proof. (i) For any η ∈ (0, r), we put Ωη = Br\Bη, and we set Fη(x) = Γ(|x| − η), for any
x ∈ Ωη. We find

−∆Fη + |∇Fη |
q = γqa

(N − 1)

|x|
(|x| − η)−(a+1) ≧ 0,

thus Fη is a super-solution of (1.1) in QΩη ,∞. From Theorem 2.12 and Proposition 2.20, u ∈
C2,1(QΩ,T )∩C(Ω0×[0, T )) and u(., 0) = 0. Then there exists τ1 < T such that maxt∈[0,τ1]

|x|=r

u(t, x) < 1,

and u is bounded in Ωη × [0, τ1]. For any ε > 0 small enough, we have u(x, t) ≦ Fη(x) on
∂Bη+ε × [0, τ1] . From the comparison principle in QΩη+ε,τ1 , we get u(x, t) ≦ Fη(x) in Ωη × [0, τ1] ,
as ε→ 0. As η → 0, we deduce (3.1).

(ii) From Lemma 2.16, for any x0 ∈ RN\B2, the function x 7→ w1,1(x−x0) is a supersolution of
equation (1.1) inQB(x0,1),∞, then in particular u(t, x0) ≦ ec(1)t+1/α1(0), thus u bounded inQRN\B2,T .

From the comparison principle in RN\Bη for any η ∈ (0, 1), see [20], we find u(x, t) ≦ Fη(x) in
QRN\Bη ,T

, hence (3.2) holds as η → 0.

As a direct consequence we get a simple proof of Theorem 1.1 in case q∗ < q < 2 :

Theorem 3.2 Let q∗ < q < 2. Suppose that u is a nonnegative weak solution of (1.1),(1.2). Then
u ∈ C(Ω× [0, T )) and u(x, 0) = 0, ∀x ∈ Ω.

Proof. The assumption q∗ < q is equivalent to a < N. Let Br ⊂ Ω and τ1 defined at Lemma
3.1; we find for any t ∈ (0, τ1) ,

∫

Br

u(., t)dx ≦

∫

Br

Γ(|x|)dx ≦
γq |∂B1| r

N−a

N − a
;

then u ∈ L∞((0, τ1);L
1(Br)). Applying Proposition 2.18, u(., t) converges weak∗ to a measure µ on

Br :

lim
t→0

∫

Br

u(., t)ψdx =

∫

Br

ψdµ, ∀ψ ∈ Cc (Br) .

From (1.2), µ is concentrated at 0 and then µ = kδ0 for some k ≧ 0. Suppose that k > 0, we choose
ψη such that ψη(0) = 1, ψη(Br) ⊂ [0, 1] , suppψη ⊂ Bη, with η ∈ (0, r) small enough such that
γq |∂B1| η

N−a ≦ (N − a)k/2. For any t ∈ (0, τ1), lemma 3.1 yields

∫

Br

u(., t)ψηdx ≦

∫

Bη
Γ(|x|)dx ≦

k

2
. (3.3)
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As t tends to 0 the left-hand side tends to k, which is a contradiction. Then k = 0, hence for any
ψ ∈ C∞

c (Br) ,

lim
t→0

∫

Br

u(., t)ψdx = 0, (3.4)

and we conclude from Corollary 2.21.

3.2 Removability in the whole range q∗ ≦ q < 2

The proof of Theorem 3.2 is not valid in the critical case q = q∗, since the function x 7−→ Γ(|x|) =
γq |x|

−N is not integrable near 0. Then we use another argument of comparison with the large
solutions constructed at Theorem 2.15, valid for any 1 < q < 2 :

Proposition 3.3 Let 1 < q < 2. Under the assumptions of Theorem 2.15 with G = Bn (n ≧ 1)
the functions Y Bn

η converge as n→ ∞ to a radial solution Yη of problem







(Yη)t −∆Yη + |∇Yη|
q = 0, in Q∞,

Yη(x, 0) =

{

∞ if x ∈ Bη,
0 if not.

(3.5)

Then, as η → 0, Yη converges to a radial self-similar solution Y of equation (1.1) in QRN ,∞, such
that

Y (x, t) ≦ Γ (|x|) , in Q∞, (3.6)

Y (x, t) ≦ C(1 + t
− 1

q−1 ), in Q∞, (3.7)

where C = C(N, q), and
lim
t→0

( sup
|x|≧r

Y (x, t)) = 0. (3.8)

If q∗ ≦ q < 2, then Y = 0.

Proof. Let η ∈ (0, 1/2). For any n ≧ 1, Y Bn
η is the supremum of the solutions yϕη,Bn

; from the
comparison principle, since q < 2,

yϕη,Bn
(x, t) ≦ Γ (|x| − η) in (Bn\Bη)× [0,∞) . (3.9)

From Lemma 2.11 in QB1,∞, we obtain, for any (x, t) ∈ B1 × (0,∞)

yϕη,Bn
(x, t) ≦ C(1 + t

− 1
q−1 ) + γq{1− η)}

− 2−q
q−1 ≦ C(1 + t

− 1
q−1 ) + γq2

2−q
q−1 , (3.10)

with C = C(N, q). And for any (x, t) ∈ (Bn\B1)× (0,∞), we have

yϕη,Bn
(x, t) ≦ Γ (|x| − η) ≦ Γ (1− η) ≦ γq2

2−q
q−1 (3.11)

Then (3.10) holds in Bn × [0,∞) . The same majoration holds for Y Bn
η : with a new C = C(N, q),

Y Bn
η (., t) ≦ C(1 + t

− 1
q−1 ), in QBn,∞.
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Then we can go to the limit as n→ ∞, for fixed η. From Theorem 2.12 we can extract a (diagonal)
subsequence converging in C2,1

loc (QRN ,∞) to a weak solution Yη of equation (1.1). In fact the whole

sequence converges, since Y Bn
η ≦ Y

Bn+1
η in QBn,∞. Then Yη = supY Bn

η satisfies

Yη ≦ C(1 + t−
1

q−1 ), in Q∞, (3.12)

and Yη solves the problem (3.5) in the sense

lim
t→0

inf
x∈K

Yη(x, t) = ∞, ∀K compact ⊂ Bη; lim
t→0

sup
x∈K

Yη(x, t) = 0, ∀K compact ⊂ RN\Bη .

(3.13)
Indeed from Lemma 2.16, for any ball B(x0, s) ⊂ RN\Bη , and any λ > 0, we have Y Bn

η ≦ wλ,s(x−
x0) in QB(x0,s),∞ for any n > |x0|+|r| ; in turn Yη ≦ wλ,s(x−x0), hence limt→0 supB(x0,s/2) Yη(., t) ≦

λe1/α(s/2) for any λ > 0. Moreover (3.9) implies that

Yη(x, t) ≦ Γ (|x| − η) in QRN\Bη ,∞
. (3.14)

Then for any r > η, and any p > r,

sup
|x|≧r

Yη(x, t) ≦ sup
x∈Bp\Bη

Yη(x, t) + sup
x∈RN\Bp

Yη(x, t) ≦ sup
x∈Bp\Bη

Yη(x, t) + Γ (|p| − η)

then we find
lim
t→0

( sup
|x|≧r

Yη(x, t)) = 0, (3.15)

since limr→∞ Γ(r) = 0.

Next we let η → 0 : observing that Yη ≦ Yη′ for η ≦ η′, in the same way from Theorem 2.12, the
function Y = infη>0 Yη is a weak solution of equation (1.1) in QRN ,∞, satisfying the estimates (3.6),
(3.7), and (3.8) which implies in particular (1.7). Because of their uniqueness, all the functions
Y Bn
η are radial, and satisfy the relation of similarity,

κaY Bn
η (κx, κ2t) = Y

Bn/κ

η/κ (x, t), ∀κ > 0, ∀(x, t) ∈ Bn/k;

then Y is radial and self-similar.

Suppose q ≧ q∗ and Y 6≡ 0; writing Y under the similar form Y (x, t) = t−a/2f(t−1/2 |x|), then
from [39, Theorem 2.1], we find limr→∞r

af(r) > 0, which contradicts (3.8); thus Y ≡ 0.

Proposition 3.4 Let 1 < q < 2. Let Ω be any domain in RN . Let u be any weak solution of
(1.1),(1.2) in QΩ,T . Then for any τ ∈ (0, T ) and any ball Br ⊂⊂ Ω, there holds

u ≦ Y + max
∂Br×[0,τ ]

u, in QBr ,τ .

Moreover, if Ω = RN , then
u ≦ Y, in QRN ,T (3.16)

and u ∈ C2,1(QRN ,∞) ∩ C((0,∞);C2
b (R

N )).
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Proof. Let u be such a solution in QΩ,T . Let τ ∈ (0, T ) , Br ⊂⊂ Ω, and Mr = max∂Br×[0,τ ] u
and ε > 0 be fixed. From Corollary 2.21, u ∈ C(Ω0 × [0, T )) and u(x, 0) = 0,∀x ∈ Ω0. Then for
any 0 < η < r/2, there is δη > 0 such that

u(x, t) < ε, for η ≦ |x| ≦ r, t ∈ (0, δη). (3.17)

Let R > r. Next, for any δ ∈ (0, δη), we make a comparison in QBr ,δ,τ between u(x, t) and

y2η,R,δ(x, t) = Y BR
2η (x, t− δ) +Mr + ε

as follows. On the parabolic boundary of QBr ,δ,τ , it is clear that u ≦ y2η,δ,R, since u ≦ Mr on
∂Br × [δ, τ ] , u(x, δ) ≦ ε for x ∈ Br\Bη, and u(x, δ) ≦ ∞ = y2η,δ,R, for x ∈ Bη. And y2η,R,δ

converges to +∞ uniformly on Bη as t → δ, and u(., δ) is bounded on Bη. Then, from the
comparison principle,

u ≦ y2η,R,δ, in QBr ,δ,τ . (3.18)

As δ tends to 0 in (3.18), and we get

u ≦ Y BR
2η +Mr + ε, in QBr,τ , (3.19)

by the continuity of Y BR
2η in QBr ,T . Since (3.19) holds for any η < r/2, and any ε > 0, we finally

obtain
u ≦ Y +Mr, in QBr ,τ .

Moreover if Ω = RN , then Mr ≦ Γ(r) from Lemma 3.1, and we get (3.16) by letting r → ∞.
Moreover u ∈ C2,1(QRN ,∞) from Theorem 2.12, then from (3.7), u ∈ Cb(QRN ,ǫ,∞) for any ǫ > 0,

then from [20, Theorems 3 and 6], u ∈ C((0,∞);C2
b (R

N )).

As a direct consequence, we deduce a new proof of Theorem 1.1, valid in the range q∗ ≦ q < 2 :

Theorem 3.5 Let q∗ ≦ q < 2. Suppose that u is a nonnegative weak solution of (1.1),(1.2) in
QΩ,T .

Then u ∈ C(Ω× [0, T )) and u(x, 0) = 0, ∀x ∈ Ω.

Proof. Since q ≧ q∗, we have Y = 0, from Proposition 3.3, thus u is bounded in QBr,τ from
Proposition 3.4. Then (3.4) still holds for any ψ ∈ C∞

c (Br) , and we conclude again from Corollary
2.21.

3.3 Removability for q ≧ 2

When q > 2, the regularity of the solutions of equation (1.1), in particular the continuity property,
is not known up to now. It was shown recently in [18] that if a solution in the viscosity sense is
continuous, then it is Hölderian. Then it is difficult to apply comparison theorems. Here we use
the transformation u 7−→ z = 1− e−u, which reduces classically equation (1.1) to the heat equation
when q = 2, where we gain the fact that z is bounded. For p > 2, our proof requires regularization
arguments.
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Theorem 3.6 Let q ≧ 2. Let u be any weak solution u of equation (1.1), (1.2), in QΩ,T .

(i) If q = 2, then u ∈ C∞(Ω× [0, T )), and u(x, 0) = 0, ∀x ∈ Ω.

(ii) If q > 2, then u satisfies

lim
t→0

∫

Ω
u(., t)ϕdx = 0, ∀ϕ ∈ Cc(Ω),

and u ∈ C([0, T );Lr
loc(Ω)) for any r ≧ 1 and u(., 0) = 0 in the sense of Lr

loc(Ω). Moreover
u ∈ L∞(Qω,τ ) for any ω ⊂⊂ Ω, and τ ∈ (0, T ) , and

lim
t→0

sup
Qω,t

u = 0.

Proof. Let us set
z = 1− v, v = e−u, (3.20)

Notice that z is an increasing function of u and z takes its values in [0, 1] .

(i) Case q = 2. From Theorem 2.12, u is a classical solution in QΩ,T . Then z is a classical
solution of the heat equation

zt −∆z = 0

in QΩ,T , and z ∈ C(Ω0 × [0, T )) and z(x, 0) = 0 for x 6= 0. From Lemma 2.17, z converges weak∗

to a Radon measure µ as t→ 0, necessarily concentrated at 0, from (1.2), since z ≦ u. Then µ = 0,
because z is bounded. As for u, defining the extension z of z by 0 for t ∈ (−T, 0) , we find that z is
a solution of heat equation in QΩ,−T,T , then z ∈ C∞(QΩ,−T,T ). Hence z is strictly locally bounded
by 1, thus also u ∈ C∞(QΩ,−T,T ), thus u(0, 0) = 0, and the proof is done.

(ii) Case q > 2. We regularize equation (1.1) and obtain

(uε)t −∆uε + (|∇u|q)ε = 0,

and we set vε = euε .Then vε satisfies the equation

vεt −∆vε = vε
(

|∇u|q)ε − |∇uε|
2
)

.

Observe that vε is not the regularisation of v, but it has the same convergence properties. Going
to the limit as ε→ 0, we obtain

vt −∆v = v(|∇u|q − |∇u|2)

in D′(QΩ,T ). Next we apply lemma 2.17 to v, with

Φ = v[|∇u|q − |∇u|2] ∈ L1
loc(QΩ,T ), F = −1,

since from the Young inequality, Φ ≧ −v ≧ −1. Then z(., t) converges weak∗ to a Radon measure
µ as t→ 0, and Φ ∈ L1

loc(Ω× [0, T )); and for any ϕ ∈ C2
c (Ω × [0, T )) there holds

∫ T

0

∫

Ω
z(ϕt +∆ϕ)dxdt =

∫ T

0

∫

Ω
Φϕdxdt+

∫

Ω
ϕ(x, 0)dµ, (3.21)

20



from (2.25). We claim that µ = 0 and the extension of z by 0 for t = 0 satisfies

z ∈ C([0, T ) , L1
loc (Ω)).

Indeed, from assumption (1.2), u(., t)converges to 0 in L1
loc (Ω0) as t → 0, thus also z(., t). For any

sequence (tn) tending to 0, we can extract a (diagonal) subsequence such that u(., tν) converges
to 0, a.e. in Ω. Since z is bounded, it follows that (z(., tν)) converges to 0 in L1

loc (Ω) from the
Lebesgue theorem. And then z(., t) converges to 0 in L1

loc (Ω) as t→ 0.

We still consider the extension z of z by 0 on for t ∈ (−T, 0) . For any φ ∈ D+(QΩ,−T,T ), we have
from (3.21),

−

∫ T

−T

∫

Ω
z(φt +∆φ)dxdt = −

∫ T

0

∫

Ω
z(φt +∆φ)dxdt = −

∫ T

0

∫

Ω
Φϕdxdt

≦

∫ T

0

∫

Ω
(1− z)ϕdxdt ≦

∫ T

−T

∫

Ω
(1− z)ϕdxdt.

Then z is a subsolution of equation

wt −∆w + w = 1 (3.22)

in D′(QΩ,−T,T ). Otherwise u is the weak solution of equation (1.1) in QΩ0,−T,T , then u is subcaloric.
As a consequence, for any τ ∈ (0, T ), and any ball B2r ⊂⊂ Ω, the function u is essentially bounded
on QB2r\Br/2,−τ,τ by a constant Mr,τ , and then z ≦ 1 − e−Mr,τ = mr,τ < 1 on this set. For any

K > 0 the function yK(t) = 1 −Ke−t is a solution of equation (3.22). Taking K = e−(Mr,τ+τ+1),
we can apply the comparison principle in QBr ,−τ,τ to the regularisation zε of z for ε small enough,
and deduce that z ≦ yK a.e. in QBr ,−τ,τ , and then

z ≦ 1− e−(Mr,τ+2τ+1) < 1 in QBr ,−τ,τ .

Hence u = − ln(1 − z) is essentially bounded in QBr ,−τ,τ . Finally u ∈ L∞
loc(QΩ,−T,T ), from the

subcaloricity, hence u ∈ L∞
loc(QΩ,T ).

Besides, for any 0 < s < t < τ, and any domain ω ⊂⊂ Ω,

|u(., t)− u(., s)| ≦ e
‖u‖L∞(Qω,−τ,τ ) |z(., t) − z(., s)|;

then u ∈ C([0, T );L1
loc(Ω)), and u ∈ C([0, T );Lr

loc(Ω)), for any r > 1, since u is locally bounded.

Furthermore, for any ball B(x0, 2ρ) ⊂ Ω, and any t ∈
(

ρ2 − T, T
)

,

sup
B(x0,ρ)×(t−ρ2,t))

u ≦ Cρ−(N+2)

∫ t

t−ρ2

∫

B(x0,2ρ)
udxds,

where C = C(N), see for example [28, Theorem 6.17]. Hence for any t ∈ (0, τ) and ρ < T 1/2, we
find

sup
B(x0,ρ)×(0,t))

u ≦ Cρ−(N+2)

∫ t

0

∫

B(x0,2ρ)
udxds ≦ Cρ−(N+2)t ‖u‖L∞(QB(x0,2ρ),τ

) ,

which achieves the proof.
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3.4 Global removability in RN

Next we show Theorem 1.2 relative to Ω = RN . It is a consequence of Proposition 3.4 in case
1 < q < 2. In fact the result is general, as shown below:

Proposition 3.7 Let q > 1. Let u be any non-negative weak subsolution of equation (1.1) in QRN ,T

such that u ∈ C((0, T, L1
loc(R

N )), and

lim
t→0

∫

RN

u(., t)ψdx = 0, (3.23)

for any ψ ∈ Cc

(

RN
)

. Then u ≡ 0.

Proof. From Lemmas 2.3 and 2.6, since u ∈ C((0, T, L1
loc(R

N )), there holds
∫

RN

u(., t)ψdx −

∫

RN

u(., s)ψdx +

∫ τ

s

∫

RN

(∇u.∇ψ + |∇u|qψdxdt ≦ 0,

for any ψ ∈ C2,+
c (RN ), and any (s, t) ⊂ (0, T ) .Taking ψ = ξq

′
with ξ ∈ D+(RN ) and using Hölder

inequality, we deduce
∫

RN

u(., t)ψdx −

∫

RN

u(., s)ψdx +

∫ t

s

∫

RN

|∇u|qψdxdt ≦ q′(

∫ t

s

∫

RN

|∇u|qψdx)
1
q (

∫ t

s

∫

RN

|∇ξ|q
′
dx)

1
q′

≦
1

2

∫ t

s

∫

RN

|∇u|qψdx+Cq

∫ t

s

∫

RN

|∇ξ|q
′
dx

with Cq = (2(q − 1))q
′
.We choose for any R > r > 0,

ξ(x) = φ(
|x|

R
), where φ([0,∞)) ⊂ [0, 1] , φ ≡ 1 in [0, 1] , φ ≡ 0 in [2,∞) ,

and go to the limit as s→ 0 from (3.23). It follows that
∫

Br

u(., t)dx +
1

2

∫ t

0

∫

Br

|∇u|qdxdt ≦ CqtR
N−q′. (3.24)

• First assume q < N/(N − 1); then N − q′ < 0. Letting R→ ∞, we deduce that
∫

Br
u(., t)dx = 0,

for any r > 0, thus u ≡ 0.

• Next assume q ≧ N/(N − 1). Then we fix some k ∈ (1, N/(N − 1)) ; for any η ∈ (0, 1), there
holds η|∇u|k ≦ η + |∇u|q, hence the function wη = η1/(k−1)(u− ηt) satisfies

(wη)t −∆wη + |∇wη|
k ≦ 0

in the weak sense. Thanks to Kato’s inequality, see for example [33] or [6], we deduce that

(w+
η )t −∆w+

η + |∇w+
η |

k ≦ 0, (3.25)

in D′(QRN ,T ). Moreover wη ∈ C([0, T ) , L1
loc(R

N )), and, for any r > 0,

lim
t→0+

∫

Br

w+
η (., t)dx = η−

1
k−1 lim

t→0+

∫

Br

(u(., t)− ηt)+dx = 0.

By the above proof, w+
η ≡ 0. Letting η tend to 0 we get again u ≡ 0.
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3.5 Behaviour of the approximating sequences

When q is critical or supercritical, a simple question is to know what can happen to a sequence of
solutions with smooth initial data converging to the Dirac mass, and one can expect that that it
converges to 0. We get more generally the following:

Theorem 3.8 Assume that q ≧ q∗. Let (ϕε) be any sequence in D+
(

RN
)

, with supp ϕε ∈ Bε. Then
the sequence (uε) of solutions of (1.1) in QRN ,∞, with inital data ϕε, converges to 0 in Cloc(QRN ,∞).

In the same way, if Ω is bounded, the sequence
(

uΩε
)

of solutions of (DΩ,∞, with initial data ϕε,
converges to 0 in Cloc(Ω× (0,∞)).

Proof. Let ε ∈ (0, 1) . Since uΩε ≦ uε, we only need to prove the result in case Ω = RN .

(i) Case q < 2. We use the function Y2ε defined at (3.5). There holds uε ≦ Y2ε from the
comparison principle; and Y2ε converges to 0 in C1

loc(QRN ,∞) from Proposition 3.3, then also uε.

(ii) Case q ≧ 2. Let us fix some k such that q∗ < k < 2. As in the proof of Proposition 3.7, for
any η ∈ (0, 1) , wε,η = η1/(k−1)(uε − ηt) satisfies

(wε,η)t −∆wε,η + |∇wε,η|
k ≦ 0 (3.26)

in D′(QRN ,∞), and wε,η ∈ L∞
loc([0,∞) ;L∞(RN )). From the comparison principle we find that

wε,η ≦ vε, where vε is the solution of equation (1.1) with q replaced by k and vε(., 0) = ρε; hence
uε ≦ ηt + η1/(k−1). And (vε) converges to 0 in Cloc(QRN ,∞) from (i). Let K =[s, τ ] × K be any
compact in QRN ,∞. Then

lim sup ‖uε‖L∞(K) ≦ ητ + η1/(k−1) lim sup ‖vε‖L∞(K) = ητ

for any η, then lim ‖uε‖L∞(K) = 0.

4 The subcritical case 1 < q < q∗

We first recall the following results of [8, Theorem 3.2 and Proposition 5.1] for the Dirichlet problem.

Theorem 4.1 ([8]) Let 1 < q < q∗ and Ω be a smooth bounded domain. Then for any u0 ∈ Mb(Ω)
and any T ∈ (0,∞] there exists a weak solution of problem (DΩ,∞) such that u(., 0) = u0 in the
weak sense of Mb(Ω) :

lim
t→0

∫

Ω
u(., t)ϕdx =

∫

Ω
ϕdu0, ∀ϕ ∈ Cb(Ω), (4.1)

and u is given equivalently by the semi-group formula

u(., t) = et∆u0 −

∫ t

0
e(t−s)∆ |∇u(., s)|q (s)ds in L1(Ω), (4.2)

where et∆u0 is the unique weak solution w of the heat equation such that

lim
t→0

∫

Ω
w(., t)ϕdx =

∫

Ω
ϕdu0, ∀ϕ ∈ Cb(Ω). (4.3)

Moreover u ∈ C2,1(QΩ,∞), and u ∈ C
(

QΩ,ǫ,∞

)

for any ǫ > 0. And u is the unique weak solution of
problem (DΩ,T ) for any T ∈ (0,∞) .
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This solution was obtained from the Banach fixed point theorem. The existence was also
obtained by approximation in [1], from the pioneer results of [15]. Here we give a shorter proof of
Theorem 4.1 when u0 is nonnegative, and firm in details the convergence:

Proposition 4.2 Suppose 1 < q < q∗. Let u0 ∈ M+
b (Ω), and (u0,n) be any sequence of functions of

C1
b (Ω)∩C0(Ω) converging weak ∗ to u0, such that ‖u0,n‖L1(Ω) ≦ ‖u0‖Mb(Ω) . Let un be the classical

solution of (DΩ,∞) with initial data u0,n.

Then (un) converges in C2,1
loc (QΩ,∞) ∩ C1,0

loc (Ω × (0,∞)) to a function u ∈ Lq
loc([0,∞) ;W 1,q

0 (Ω))
and u is the unique solution of (DΩ,T ), (4.1) for any T > 0. And u satisfies the estimates (2.16)
and (2.15).

Proof. There holds

un(., t) = et∆u0,n −

∫ t

0
e(t−s)∆ |∇un(., s)|

q (s)ds in L1(Ω).

From estimate (2.16) and Theorem 2.13, since q < 2, one can extract a subsequence, still denoted
(un), converging in C2,1

loc (QΩ,∞) ∩ C1
loc(Ω× (0,∞)) to a weak solution u of (DΩ,∞). And

∫

Ω
un(., t)dx +

∫ t

0

∫

Ω
|∇un(., s)|

q (s)dxds−

∫ t

0

∫

∂Ω

∂un
∂ν

(., s)dxds =

∫

Ω
u0,ndx; (4.4)

hence |∇un|
q is bounded in L1(QΩ,∞) by ‖u0‖Mb(Ω) . Then from [6, Lemma 3.3], (un) is bounded

in Lγ((0, τ),W 1,γ
0 (Ω)) for any γ ∈ [1, q∗). Thus (|∇un|

q) converges to |∇u|q in L1
loc([0,∞) , L1(Ω)),

and
(

et∆u0,n
)

converges a.e. to et∆u0, and u satisfies (4.2). Moreover u is the unique solution of
(DΩ,T ). Indeed let v be any other solution; taking γ ∈ (q, q∗) , there holds from [6, Lemma 3.3],
with constants C = C(γ,Ω),

‖∇(u− v)‖Lγ(QΩ,τ )
≦ C ‖|∇u|q − |∇v|q‖

L1(QΩ,τ )

≦ C(‖∇u‖q−1
Lq(QΩ,T ) + ‖∇v‖q−1

Lq(QΩ,T )) ‖∇(u− v)‖Lq(QΩ,τ )

≦ C ‖u0‖Mb(Ω) ‖∇(u− v)‖Lγ(QΩ,τ )
τ

γ−q
γq ,

hence v = u on (0, τ) for τ ≦ C = C(γ,Ω, u0), and then on (0, T ). Then the whole sequence (un)
converges to u.

Remark 4.3 Applying Proposition 4.2 on (ǫ, T ) for ǫ > 0, we deduce regularity results: any weak
solution u of (DΩ,T ) extends as a solution of the problem (DΩ,∞), and u ∈ C2,1(QΩ,∞), and u ∈
C
(

QΩ,ǫ,∞

)

for any ǫ > 0, and u satisfies the universal estimates (2.16) and (2.15). In turn

u ∈ C1,0
loc (QΩ,∞) from Theorem 2.13.

Notation 4.4 For any k > 0, we denote by uk,Ω the above solution of (DΩ,∞) with initial data
kδ0.
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4.1 The case Ω = RN

We first show that the function Y constructed at Proposition 3.3 is a VSS:

Lemma 4.5 The function Y is a maximal V.S.S. in QRN ,∞, and coincides with the radial self-
similar solution constructed in [39]. It satisfies

lim
t→0

∫

RN\Br

Y (., t)dx = 0, ∀r > 0. (4.5)

Proof. Consider any ball Bp with p ≧ 1. We can approximate the function uk,Bp by u
k,Bp
ε ,

solution with initial data kρε, where (ρε) is a sequence of mollifiers with support in Bε ⊂ B1. For

any η ∈ (0, 1) , there holds u
k,Bp
ε ≦ Yη for ε < η. Then we find uk,Bp ≦ Y. As a first consequence,

Y 6= 0, and for any ball Br such that r < 1, taking ϕ ∈ Cc(Br) with values in [0, 1] , such that
ϕ ≡ 1 on Br/2,

limt→0

∫

Br

Y (., t)dx ≧ lim
t→0

∫

Br

uk,Bp(., t)ϕdx = k,

thus Y satisfies (1.7). From (3.15), Y is the unique radial self-similar VSS constructed in ??. It
satisfies (4.5), since Y (x, t) = t−a/2f(t−1/2 |x|), and limr→∞ ra−Ner

2/4f(r) > 0, from [39, Theorem
2.1], which implies (1.6). And Y is a maximal VSS, since Y is greater than any weak solution of
(1.1), (1.2), from Proposition 3.4.

In [11], a VSS U is constructed as the limit of a sequence of solutions uk of (1.1) in QRN ,∞

with initial data kδ0, constructed in [10]. The proof is based on difficult estimates of the gradient
obtained from from the Bernstein technique by derivation of equation, showing that U satisfies
(1.8), (1.9) and (1.10); and is minimal in that class, from [12, Theorem 3.8]. Here we prove again
the existence of the uk and U in a very simple way:

Lemma 4.6 (i) For any k > 0 there exists a weak solution uk of (1.1) in QRN ,∞, such that

uk ∈ L∞((0,∞);L1(RN )) and
∣

∣∇uk
∣

∣ ∈ Lq(QRN ,∞), with initial data kδ0, in the weak sense of

Mb

(

RN
)

lim
t→0

∫

RN

uk(., t)ψdx = kψ(0), ∀ψ ∈ Cb(R
N ); (4.6)

and uk = supuk,Bp, where uk,Bp is the solution of the Dirichlet problem (DBp,∞) with initial data
kδ0.

(ii) As k → ∞, uk converges in C2,1
loc (QRN ,∞) to a V.S.S U in QRN ,∞.

Proof. (i) Let k > 0 be fixed. Consider again the sequence
(

uk,Bp
)

. We have

uk,Bp(., t) ≦ Y (., t) ≦ C(1 + t−
1

q−1 ). (4.7)

from Proposition 3.3. From Theorem 2.12 the sequence converges in C2,1
loc (QΩ,∞) to a solution uk

of equation (1.1) in QRN ,∞, and u
k ≦ Y, thus uk satisfies (1.6) from (3.8). Moreover for any t > 0,

from (4.2) and (4.3),
∫

Bp

uk,Bp(., t)dx ≦ k, lim
t→0

∫

Bp

uk,Bp(., t)dx = k.
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Then from the Fatou Lemma,
∫

RN

uk(., t)dx ≦ k.

In turn from Proposition 2.18, uk(., t) converges weak∗ to a Radon measure µ, concentrated at 0,
then µ = k′δ0, k

′ > 0. Otherwise uk,Bp ≦ uk, then
∫

Bp
uk,Bp(., t)dx ≦

∫

RN u
k(., t)dx, thus

k ≦ lim inf
t→0

∫

RN

uk(., t)dx;

then limt→0

∫

RN u
k(., t)dx = k. Taking ϕp ∈ D+(RN ), with values in [0, 1] , such that ϕp = 1 on Bp,

we get
∫

Bp

uk,Bp(., t)dx ≦

∫

RN

uk(., t)ϕpdx ≦

∫

RN

uk(., t)dx

hence k′ = k; thus uk(., t) converges weak ∗ to kδ0 as t → 0. In fact the convergence holds in the
weak sense of Mb(R

N ). Indeed for any ψ ∈ C+
b (R

N ), using a function ϕ ∈ Cc(R
N ) with values in

[0, 1] such that ϕ ≡ 1 on a ball Br, we can write

∫

RN

uk(., t)ψdx =

∫

RN

uk(., t)ψϕdx +

∫

RN

uk(., t)ψ(1 − ϕ)dx,

and
∫

RN

uk(., t)ψ(1 − ϕ)dx ≦ ‖ψ‖L∞(RN )

∫

RN\Br

uk(., t)dx ≦ ‖ψ‖L∞(Ω)

∫

RN\Br

Y (., t)dx

and the right hand side tends to 0 from (4.5). From (4.4), we find

∥

∥

∥

∣

∣

∣
∇u

k,Bp
ε

∣

∣

∣

q∥
∥

∥

L1(QBp,∞)
≦ k ‖ρε‖L1(Bp)

= k,

hence
∥

∥

∣

∣∇uk,Bp
∣

∣

q∥
∥

L1(QBp,∞)
≦ k, and finally

∥

∥

∣

∣∇uk
∣

∣

q∥
∥

L1(Q
RN,∞

)
≦ k, from the convergence a.e. of

the gradients.
(ii) From (4.7) or from Proposition (3.4), there holds

uk(., t) ≦ Y (., t) ≦ C(1 + t
− 1

q−1 ). (4.8)

From Theorem 2.12, uk converges in C2,1
loc (QRN ,∞) to a weak solution U of equation (1.1). Then

uk ≦ U ≦ Y, thus U satisfies (1.7) and (4.5) as Y . Hence U is a VSS in QRN ,∞.

Next we prove the uniqueness of the VSS:

Proof of Theorem 1.3. Let us show that U is minimal VSS. Let u be any VSS in QRN ,∞.

From Proposition 3.4, and (3.7), u ∈ C2,1(QRN ,∞)∩C((0,∞);C2
b (R

N )) and u ≦ Y . For fixed k > 0

and p > 1, one constructs a sequence of functions uk0,n ∈ D+(RN ) with support in B1 such that

uk0,n ≦ u(.,
1

n
) in RN , lim

n→∞

∫

RN

uk0,ndx = k.
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Indeed ‖u(., 1/n)‖L1(RN ) tends to ∞, then, for n large enough, there exists sn,k > 0 such that
∥

∥Tsn,k
(u)(., 1/n)

∥

∥

L1(RN )
= k. And εn = ‖u(., 1/n)‖L1(RN\B1)

+ ‖u(., 1/n)‖L∞(RN\B1)
tends to 0,

from (4.5) and (3.8). Then vkn = (Tsn,k
(u)(., 1/n)−2εn)

+ has a compact support in B1, and we can

take for uk0,n a suitable regularization of vkn. Let us call u
k,Bp
n the solution of (DBp,∞) with initial

data uk0,n. Then we obtain that u
k,Bp
n (., t) ≦ u(., t+1/n) from the comparison principle. As n→ ∞,

uk0,n converges to kδ0 weakly in Mb(Bp), since for any ψ ∈ C+
b (Bp), and any r ∈ (0, 1) ,

∣

∣

∣

∣

∣

∫

Bp

uk0,nψdx− kψ(0)

∣

∣

∣

∣

∣

≦ ψ(0)

∣

∣

∣

∣

∣

∫

Bp

(uk0,n − k)dx

∣

∣

∣

∣

∣

+ 2 ‖ψ‖L∞(Bp)

∫

RN\Br

u(.,
1

n
)dx+ sup

Br

|ψ − ψ(0)|

∫

RN

uk0,ndx.

Then u
k,Bp
n converges to uk,Bp from Proposition 4.2, and uk,Bp ≦ u. From Lemma 4.6, we get

uk ≦ u ≦ Y. As k → ∞, we deduce that U ≦ u ≦ Y. Moreover U is radial and self-similar, then
U = Y = u from [39].

Finally we describe all the solutions:

Proof of Theorem 1.4. Let u be any weak solution of (1.1), (1.6). Either (1.7) holds,
then u = Y. Or there exists a ball Br such that

∫

Br
u(., t)dx stays bounded as t → 0. Then

u ∈ L∞
loc( [0, T ) ;L

1
loc(R

N )), from Corollary 2.21. From Proposition 2.18, u(., t) converges weak∗ to
a measure µ as t → 0. Then µ is concentrated at 0 from (1.6), hence the exists k ≧ 0 such that
µ = kδ0, and (1.13) holds as in Lemma 4.6, since u ≦ Y . If k = 0, then u ≡ 0 from Theorem 1.2.

Next we show the uniqueness, namely that u = uk constructed at Lemma 4.6. Here only we use
the gradient estimates obtained by the Bernstein technique. We have u ∈ C((0,∞);C2

b (R
N )) from

Proposition (3.4), and u ∈ L∞((0,∞);L1(RN )) from (3.2) or (4.5) thus u ∈ C((0,∞);L1(RN )).
From [10], [9], for any ǫ > 0, and any t ≧ ǫ, we have the semi-group formula

u(., t) = e(t−ǫ)∆u(., ǫ) −

∫ t

ǫ
e(t−s)∆ |∇u|q (s)ds in L1(RN ), (4.9)

and there exists C(q) such that for any t > 0,

|∇u(., t)|q ≦ C(q)(t− ǫ)−1u(., t).

Going to the limit as ǫ→ 0 we deduce from (1.10), since u ≦ Y,

‖∇u(., t)‖L∞(RN ) ≦ C(q)t−1/q ‖Y (., t)‖
1/q

L∞(RN )
≦ Ct−(N+2)/2q

where C = C(N, q). From (1.13) and (4.9) there holds |∇u|q ∈ L1
loc([0,∞) ;L1(RN )). Otherwise

e(t−ǫ)∆u(x, ǫ) converges to kg in C′
b(R

N ), where g is the heat kernel, then

u(., t) = kg −

∫ t

0
e(t−s)∆ |∇u|q (s)ds in C′

b(R
N ).

Then

(u− uk)(., t) = −

∫ t

0
e(t−s)∆(|∇u|q −

∣

∣

∣
∇uk

∣

∣

∣

q
)(s)ds in L1(RN ),
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∥

∥

∥
∇(u− uk)(., t)

∥

∥

∥

Lq(RN )
≦

∫ t

0

∥

∥

∥
e(t−s)∆

∥

∥

∥

L1(RN )

∥

∥

∥
|∇u(., s)|q −

∣

∣

∣
∇uk(., s)

∣

∣

∣

q∥
∥

∥

Lq(RN )
ds

≦ C

∫ t

0
(t− s)−1/2s−(q−1)(N+2)/2q

∥

∥

∥
∇(u− uk)(., s)

∥

∥

∥

Lq(RN )
ds.

Thus ∇(u − uk)(., t) = 0 in Lq
(

RN
)

, from the singular Gronwall lemma, valid since q < N+2
N+1 ;

hence u = uk.

Remark 4.7 This uniqueness result is a special case of a general one given for measure data in
[14, Theorem 3.27].

4.2 The Dirichlet problem (DΩ,∞)

Here Ω is bounded, and we consider the weak solutions of the problem (DΩ,∞) such that

lim
t→0

∫

Ω
u(., t)ϕdx = 0, ∀ϕ ∈ Cc(Ω\ {0}). (4.10)

First, we give regularity properties of these solutions.

Lemma 4.8 Any weak solution u of (DΩ,∞), (4.10), in QΩ,∞ satisfies

u ∈ C1,0(Ω\ {0} × [0,∞)) ∩C1,0(Ω× (0,∞)) ∩ C2,1 (QΩ,∞) .

Proof. We know that u ∈ C1,0(Ω × (0,∞)) ∩ C2,1 (QΩ,∞) , see Remark 4.3. Moreover u ∈
C2,1(Ω0 × [0,∞)) and u(x, 0) = 0, ∀x ∈ Ω0, from Corollary 2.21. Let Bη ⊂⊂ Ω be fixed, and
Ωη = Ω\Bη. Then u ∈ C1 (∂Bη × [0,∞)) , thus for any T ∈ (0,∞) , there exists Cτ > 0 such that
u(., t) ≦ Cτ t on ∂Bη × [0, T ) . Then the function w = u− Cτ t solves

wt −∆w = − |∇u|q − Cτ in D′
(

QΩη ,T

)

,

then w+ ∈ C((0, T );L1 (Ωη) ∩ L
1
loc((0, T );W

1,1
0 (Ωη)), and

w+
t −∆w+ ≦ 0 in D′

(

QΩη ,T

)

from the Kato inequality. Moreover, from assumption (4.10), w+ ∈ L∞((0, T );L1 (Ωη)) and w
+(., t)

converges to 0 in the weak sense of Mb (Ωη) . As a consequence, w ≦ 0, from [6, Lemma 3.4];
thus u(., t) ≦ CT t in Ωη,T . Then the function u defined by (2.29) is bounded in QΩη ,τ . Hence
u ∈ C1,0(Ωη × (−T, T )) from Theorem 2.13, thus u ∈ C1,0(Ω\ {0} × [0,∞)).

Definition 4.9 Let T ∈ (0,∞] . We call VSS in QΩ,T any weak solution u of the Dirichlet problem
(DΩ,T ), (4.10), such that

lim
t→0

∫

Br

u(., t)dx = ∞, ∀Br ⊂ Ω. (4.11)

Remark 4.10 From Remark 4.3, any VSS in QΩ,T extends as a VSS in QΩ,∞, and satisfies (2.16)
and (2.15).
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Next we prove the existence and uniqueness of the VSS. Our proof is based on the uniqueness
of the VSS in RN , and does not use the uniqueness of the function uk.

Proof of Theorem 1.5. (i) Existence of a minimal VSS. For any k > 0 we consider the
solution uk,Ω of (DΩ,∞) with initial data kδ0. By regularization as in Lemma 4.6, we obtain that
uk,Ω ≦ Y. The sequence

(

uk,Ω
)

is nondecreasing. From estimate (2.16) and Theorem 2.13,
(

uk,Ω
)

converges in C2,1
loc (QΩ,∞) ∩ C1,0

loc (Ω × (0,∞)) to a weak solution UΩ of (DΩ,∞), and then UΩ ≦ Y.
Hence UΩ satisfies (4.11), and (4.10) from (4.5), thus UΩ is a VSS in Ω. Next we show that UΩ is
minimal. Consider any VSS u in QΩ,∞. Let k > 0 be fixed. As in the proof of Theorem 1.3, one

constructs a sequence uk,Ωn of solutions of (DΩ,∞) with initial data functions uk,Ω0,n ∈ D(Ω) such that

0 ≦ uk,Ω0,n ≦ u(.,
1

n
) in Ω, lim

n→∞

∫

Ω
uk,Ω0,n dx = k.

We still find ukn,p(., t) ≦ u(., t + 1/n) from the comparison principle, valid from Lemma 4.8. As

n→ ∞, uk,Ω0,n converges to kδ0 weakly in Mb(Ω), then u
k,Ω
n converges to uk,Ω from Proposition 4.2.

Then uk,Ω ≦ u for any k > 0, thus UΩ ≦ u.

(ii) Existence of a maximal VSS. For any ball Bη ⊂⊂ Ω, we consider the function Y Ω
η defined

at Theorem 2.15. Consider again any VSS u in Ω, and follow the proof of Proposition 3.4, replacing
Br by Ω. Let ε > 0 be fixed. From Lemma 4.8, for any ball Bη ⊂⊂ Ω, setting Ωη = Ω\Bη there is
δη > 0 such that

u(x, t) < ε, in QΩη ,δη (4.12)

Next, for any δ ∈ (0, δη), from the comparison principle in QΩ,δ,τ we deduce that

u(x, t) ≦ Y Ω
2η(x, t− δ) + ε in QΩ,δ,τ .

As δ tends to 0, and then ε → 0, we deduce that u ≦ Y Ω
2η in QΩ,∞. We observe that Y Ω

η ≦ Y Ω
η′

for any η ≦ η′. From the estimates (2.16) and Theorem 2.12, Y Ω
η converges in C1,0

loc (Ω × (0,∞)) to

a classical solution Y Ω of (DΩ,∞), and u ≦ Y Ω. Moreover Y Ω satisfies (4.11), since Y Ω ≧ U, and
(4.10) since Y Ω ≦ Y, then Y Ω is a maximal VSS in Ω.

(iii) Uniqueness. For fixed k > 0, we intend to compare uk,Ω with uk, by approximation. Let
0 < η < r be fixed such that Br ⊂⊂ Ω. Consider again the function Yη defined by (3.5). Let δ > 0
be fixed. From (3.15), there exists τδ > 0 such that sup(RN\Br)×[0,τδ] Yη ≦ δ. Let (ρε) be a sequence

of mollifiers with support in Bε ⊂ Bη. Let u
k,Ω
ε be the solution of (DΩ,∞) in QΩ,∞ with initial data

kρε. For any p > 1 such that Ω ⊂ Bp, let u
k,Bp
ε be the solution of (DBp,∞) with the same initial

data. By definition of Y
Bp
η and Yη, there holds u

k,Bp
ε ≦ Y

Bp
η ≦ Yη, hence sup∂Ω×[0,τδ]

u
k,Bp
ε ≦ δ.

Applying the comparison principle to the smooth functions uk,Ωε and u
k,Bp
ε in Ω× [0,∞) , we obtain

that
u
k,Bp
ε ≦ uk,Ωε + δ in Ω× [0, τδ] .

Going to the limit as ε → 0 from Proposition 4.2 and then as p → ∞ from Lemma 4.6, we obtain
that

uk ≦ uk,Ω + δ in Ω× (0, τδ] ;
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and going to the limit as k → ∞, we find

U ≦ UΩ + δ in Ω× (0, τδ ] .

The function WΩ = Y Ω − UΩ ∈ C1,0(Ω\ {0} × [0,∞)) ∩ C1,0(Ω × (0,∞)) from Lemma (4.8), and
WΩ = 0 on ∂Ω× [0,∞). Since Y Ω ≦ Y = U, then WΩ ≦ δ in Ω× (0, τδ] . Thus W

Ω(., t) converges
uniformly to 0 as t→ 0. Then for any ε > 0, WΩ − ε cannot have an extremal point in QΩ,∞, thus
WΩ ≦ ε, hence Y Ω = UΩ.

Finally we describe all the solutions as in the case of RN :

Theorem 4.11 Let u be any weak solution of (DΩ,∞), (4.10). Then either u = UΩ, or there exists
k > 0 such that u = uk,Ω, or u ≡ 0.

Proof. Either u = Y Ω, or there exists a ball Br such that
∫

Br
u(., t)dx stays bounded as t→ 0.

Then from (4.10), u ∈ L∞
loc( [0,∞) ;L1(Ω)). From Proposition 2.18, u(., t) converges weak∗ to a

measure µ as t → 0, concentrated at {0} from (4.10). Hence the exists k ≧ 0 such that µ = kδ0,
thus

lim
t→0

∫

Ω
u(., t)ϕdx = kϕ(., 0), ∀ϕ ∈ Cc(Ω),

and it holds for any ϕ ∈ Cb(Ω), from (4.10). If k > 0, then u = uk,Ω from uniqueness, see
Proposition 4.2. If k = 0, then u ≡ 0 from Theorem 1.2.
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