
HAL Id: hal-00657901
https://hal.science/hal-00657901

Submitted on 9 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formalization of Grassmann-Cayley Algebra in COQ
and Its Application to Theorem Proving in Projective

Geometry
Laurent Fuchs, Laurent Thery

To cite this version:
Laurent Fuchs, Laurent Thery. A Formalization of Grassmann-Cayley Algebra in COQ and Its Appli-
cation to Theorem Proving in Projective Geometry. Automated Deduction in Geometry, ADG 2010,
Jul 2010, Munich, Germany. pp.51–62, �10.1007/978-3-642-25070-5_3�. �hal-00657901�

https://hal.science/hal-00657901
https://hal.archives-ouvertes.fr

A Formalization of Grassmann-Cayley Algebra

in Coq and its Application to

Theorem Proving in Projective Geometry⋆

Laurent Fuchs1 Laurent Théry2

1 XLIM-SIC UMR CNRS 6172 - Poitiers University, France,
Laurent.Fuchs@sic.univ-poitiers.fr

2 INRIA Sophia Antipolis - Méditerranée, France,
Laurent.Thery@inria.fr

Abstract. This paper presents a formalization of Grassmann-Cayley
algebra [6] that has been done in the Coq [2] proof assistant. The for-
malization is based on a data structure that represents elements of the
algebra as complete binary trees. This allows to define the algebra prod-
ucts recursively. Using this formalization, published proofs of Pappus’
and Desargues’ theorem [7,1] are interactively derived. A method that
automatically proves projective geometric theorems [11] is also translated
successfully into the proposed formalization.

1 Introduction

A well-known application of Grassmann-Cayley algebra is automated theorem
proving in projective geometry (see for example [1,4,10]). The usual method is
to translate incidence statements of projective geometry into Grassmann-Cayley
expressions. These expressions are then translated into bracket polynomials (i.e.
the ring of projective invariants [17]). Finally, the bracket polynomial is factorised
to get back an equivalent expression in Grassmann-Cayley algebra.

Our motivation in using a proof assistant such as Coq [2] is to capture in a
single system all the various aspects of Grassmann-Cayley algebra: we want an
abstract generic model on which we can not only reason but also perform both
numerical and symbolical evaluations.

Hence, our formalization lets us not only formally check the manipulations
of expressions within Grassmann-Cayley algebra but also compute with these
very same expressions. De facto, it makes explicit the link between the abstract
mathematical object and its applications. In the Coq proof assistant, proofs can
be conducted interactively step by step or, using programmed tactics, the ex-
pressions can be reduced in a systematic manner. Note that, in our setting, most
proofs are parametrized by the dimension of the algebra. So, our development is
generic.

Once the formalization of the Grassmann-Cayley algebra is achieved, two
kinds of proofs are considered. First some proofs are conducted interactively

⋆ This work has been supported by the ANR Galapagos

following step-by-step what can be found in the literature, such as the proof of
the Pappus’ theorem in [7] or the proofs of Desargues’ theorem in [1]. The second
kind of proofs are conducted automatically following a method published in [11].
All the examples proposed in [11] have been tested successfully.

In future work, we also plan to connect our formalization with other ap-
proaches of incidence geometry, such as those based over ranks [12,13,14]. So,
our work can be seen as a first step in the study of the formal correctness of
automated proof methods in incidence geometry.

This paper is organized as follows. Section 2 introduces Grassmann-Cayley al-
gebra and our choices for the formalization. Section 3 explains how the Grassmann-
Cayley is formalized, how the algebra elements are represented and how the
products are defined. Section 4 describes how the formalization can be use to
prove theorems of incidence geometry, interactively and automatically.

2 Formal Grassmann-Cayley Algebra

Usually, in the literature, the products (join and meet) of the Grassmann-Cayley
algebra are introduced by given equations defining their properties. So, they
could have been defined in Coq using such an axiomatic approach. However,
the main drawback of doing so is that we completely lose the computational
aspect of this algebra. In particular, the axiomatic approach gives no hint of
how the algebra could actually be implemented on a computer.

For this reason, we favor the definitional approach where the algebra opera-
tions are defined as recursive functions over the dimension of the algebra. First,
we define a model, i.e. a data-structure that represents elements of the algebra.
Then, on this model, we define the usual algebra operations (the join product,
the meet product and the duality) and prove that they fulfill the axioms that are
used to defined them in the literature. As this representation is quite unusual,
we spend some time to detail our data-structure and the related operations.

2.1 The underlying vector space

The Grassmann-Cayley algebra Gn is defined by adding a second product, the
meet product, to the Grassmann algebra (or exterior algebra) of a vector space
of dimension n, V , over a field K [6,1] where the join product (or the exterior
product) is defined.

In order to have a concrete representation of the vectors of V , we need to
represent them as n-tuples of Kn. This imposes a basis for V , say the canon-
ical basis ei

n
= (δi,0, . . . , δi,i, . . . , δi,n−1) where i = 0, . . . , n − 1 and δi,j is the

Kronecker symbol. Then V is seen as the set of n-tuples, Kn.

As we will see this choice also induces the definition of a basis for Gn and this
leads to an important change of view in the presentation of the algebra compared
to the usual coordinate-free presentation. The elements are represented via their
coordinates.

However, in the Coq proof assistant, this does not force us to deal only
with numerical computations. As all the axiomatic properties of the algebra
operations are proved, we can also reason symbolically using the coordinate-
free presentation. Hence, we obtain an abstract generic model on which both
numerical and symbolical evaluations can be performed.

2.2 The join product

The first step is to define the join product denoted by ∨. It is an associative
antisymmetric bilinear product and it can be defined axiomatically by:

a ∨ a = 0 λa ∨ b = λ(a ∨ b)
b ∨ a = −a ∨ b (a+ b) ∨ c = a ∨ c+ b ∨ c

(1)

where a and b are vectors of Kn.
The join product a∨ b of two vectors a and b is non-zero if and only if a and

b are linearly independent. If a ∨ b is non-zero, it is a grade 2 element of the
algebra. More generally, if {a1, . . . , ak} are linearly independent vectors of Kn

then a1 ∨ · · · ∨ ak is an element of grade k. Such elements, that are join product
of vectors, are called extensors or decomposable k-vectors. Not all elements of
grade k are extensors, they could be linear combination of extensors. In that
case they are called homogeneous vectors or k-vectors. Elements that are linear
combination of elements with different grades are the general elements of the
algebra. They are called multi-vectors.

On the basis elements {e0
n
, . . . , en−1

n
} of Kn, the join product has the following

two behaviors:

ei

n
∨ ei

n
= 0 ei

n
∨ ej

n
= −ej

n
∨ ei

n
.

This gives the graded structure of Gn. The join product of k basis elements
generates the subspace of grade k homogeneous elements. Considering G3, this
means that:

{1} generates the elements of grade 0.
{e0

3,e
1
3,e

2
3} generates the elements of grade 1.

{e0
3 ∨ e1

3, e0
3 ∨ e2

3, e1
3 ∨ e2

3} generates the elements of grade 2.
{e0

3 ∨ e1
3 ∨ e2

3} generates the elements of grade 3.

Hence, Gn can be seen as a vector space of dimension 2n. Our model is a
representation of this vector space that allows a computational definition of the
products of the Grassmann-Cayley algebra.

2.3 The meet product

Retrieving the bracket. Usual presentation of the Grassmann-Cayley alge-
bra [6,1,18] defines a bracket over the vector space V . Given n vectors a1, . . . , an
the bracket [a1, . . . , an] is a non-degenerate multilinear alternating n-form, tak-
ing its values into the field K.

The use of the canonical basis of the vector space Kn defines a bracket
implicitly. The set of elements of grade n generated by e0

n
∨· · ·∨en−1

n
is isomorphic

to the set of elements of grade 0 via the linear map defined by i(e0
n
∨· · ·∨en−1

n
) = 1.

This linear map defines a non-degenerate multilinear n-form over the vectors of
Kn that is actually a determinant.

Hence, the choice of the canonical basis defines a bracket. This allows us to
retrieve the usual definition of the Grassmann-Cayley algebra. This link is used
in section 4.2 to introduce automated proof techniques into our formalization.

The Hodge star. Moreover, as i(e0
n
∨ · · · ∨ en−1

n
) = [e0

n
, . . . , en−1

n
] = 1, the

canonical basis is said to be unimodular [1]. Then, the Hodge star defined as
follows:

∗(eρ(0)

n
∨n . . . ∨n eρ(i)

n
) = eρ(i+1)

n
∨n . . . ∨n eρ(n−1)

n

where ρ is an even permutation, satisfies the following properties (see [1]):

(i) ∗ maps extensors of grade k to extensors of grade n− k,
(ii) ∗(1) = e0

n
∨ · · · ∨ en−1

n
and ∗(e0

n
∨ · · · ∨ en−1

n
) = 1,

(iii) ∗(∗(A)) = (−1)k(n−k)A if A is of grade k.

The Hodge star realizes the duality between the meet and the join prod-
ucts [1]. Hence, the following definition of the meet product, denoted ∧, can be
adopted:

∗(A ∨ B) = ∗(A) ∧ ∗(B) and ∗ (A ∧ B) = ∗(A) ∨ ∗(B).

Thus, in the algebra G3, the meet product can be defined over the basis elements
by the table

∧ 1 e0
3 e1

3 e2
3 e0

3 ∨ e1
3 e

0
3 ∨ e2

3 e
1
3 ∨ e2

3 e
0
3 ∨ e1

3 ∨ e2
3

1 0 0 0 0 0 0 0 1
e0
3 0 0 0 0 0 0 1 e0

3

e1
3 0 0 0 0 0 −1 0 e1

3

e2
3 0 0 0 0 1 0 0 e2

3

e0
3 ∨ e1

3 0 0 0 1 0 e0
3 e1

3 e0
3 ∨ e1

3

e0
3 ∨ e2

3 0 0 −1 0 −e0
3 0 e2

3 e0
3 ∨ e2

3

e1
3 ∨ e2

3 0 1 0 0 −e1
3 −e2

3 0 e1
3 ∨ e2

3

e0
3 ∨ e1

3 ∨ e2
3 1 e0

3 e1
3 e1

3 e0
3 ∨ e1

3 e
0
3 ∨ e2

3 e
1
3 ∨ e2

3 e
0
3 ∨ e1

3 ∨ e2
3

3 Data-structures

The programming language of Coq proof assistant [3] is a functional language
with dependent types. It is then particularly suitable for the development of
abstract algebra. In order to have a generic formalization, our development is
parametrized by an abstract field K and its usual operations:

Structure FieldParams := {

K : Set ;

0 : K ;

1 : K ;

_
?
= _ : K → K → bool ;

- _ : K → K ;

_ + _ : K → K → K ;

_ * _ : K → K → K ;

_ −1 : K → K
}

Note that even if every type in Coq is equipped with a propositional equality, i.e.
for two elements x and y in K the proposition x = y expresses that they are equal
with respect to Leibnitz equality, we have an explicit equality test x ?

= y that lets
us decide on this equality. This capability is crucial when defining algorithms
over elements of K. Along with this parametric definition of K, there is an
associated set of axioms that gives the usual basic properties of the operations
(associativity, commutativity, distributivity and neutral elements).

From now on, all our definitions are taking this field K and another parameter
n for the dimension as parameters. They follow the same pattern: they are defined
recursively on the dimension n. For a data-structure D, this means that its
version Dn+1 for the n+1 dimension is going to be expressed in term of Dn. In
this work, only the primitive pairing construct of Coq is used: if a1 is of type
T1 and a2 of type T2, (a1, a2) is of type T1 × T2.

3.1 Representing the vector space K
n

As a first example, here is how the vectors of Kn are defined for n 6= 0:

Definition Kn := if n = 1 then K else K x Kn−1.

Compare to traditional programming where vectors would be represented as
arrays, here we use recursion and pairing to mimic this data-structure. The
type3 K1 is equivalent to K, K2 to K × K and K3 to K × (K × K) and an
element of K3 is represented by (x1, (x2, x3)).

Operations on this data-structure are also defined recursively. For example,
addition of two vectors of dimension n is defined recursively as follows:

Definition x +n y := if n = 1 then x + y else

let (x1,x2) := x and (y1,y2) := y in

(x1 + y1 , x2 +n−1 y2).

3 The exponent n is changed into an index for notational purpose.

If the parameter n is one, the two elements belong to K so we can add them
using the addition on K, otherwise each element can be decomposed into an
element of K and an element of one dimension less and the resulting pair can be
composed by adding the elements of K on the left and using a recursive call on
the right. To end the vector space structure, scalar multiplication can be defined
in a similar way:

Definition k .
n y := if n = 1 then k * x else

let (x1,x2) := x in (k * x1 , k .
n−1 x2).

3.2 Representing the algebra Gn

Representing elements of Gn, the Grassmann-Cayley of dimension n, follows
exactly the same schema. This time, instead of a linear data-structure, binary
trees are used:

Definition Gn := if n = 0 then K else Gn−1 x Gn−1.

The type G0 is equivalent to K, G1 to K×K, G2 to (K×K)×(K×K). Elements
of Gn are binary trees of height n. They have 2n leaves. This corresponds to the
fact that Gn is a vector space of dimension 2n.

The sum and the scalar multiplication for the vector space structure are
defined recursively over the dimension as follows:

Definition x +n y := if n = 0 then x + y else

let (x1,x2) := x and (y1,y2) := y in

(x1 +n−1 y1 , x2 +n−1 y2).

Definition k .
n y := if n = 0 then k * x else

let (x1,x2) := x in (k .
n−1 x1 , k .

n−1 x2).

The equality test is defined in the same way:

Definition x ?
=

n
y := if n = 0 then x ?

= y

let (x1,x2) := x and (y1,y2) := y in

(x1
?
=

n−1
y1) && (x2

?
=

n−1
y2).

In this definition the operator && is a special notation used in this paper for the
logical and to avoid confusion with the meet product.

Figure 1 explains how the basis components of Gn are mapped to the binary
structure. The leaves contain the coefficients. For example, the grade 2 element
of G3,

2.(e0

3 ∨ e1

3) + 3.(e1

3 ∨ e2

3)

e0
3 ∨ e1

3 ∨ e2
3

e2

3

e0
3 ∨ e1

3

e2

3
/

e1

3

e0
3 ∨ e2

3

e2

3

e0
3

e2

3
/

e1

3
/

e0

3

e1
3 ∨ e2

3

e2

3

e1
3

e2

3
/

e1

3

e2
3

e2

3

1

e2

3
/

e1

3
/

e0

3
/

Fig. 1. Mapping of the multi-vector coefficients to the leaves of the binary tree.

is represented as (((0, 2), (0, 0)), ((3, 0), (0, 0))) and the multi-vector of G3,

2.(e0

3 ∨ e2

3) + 3.e1

3 + 4.1

is represented as (((0, 0), (2, 0)), ((0, 3), (0, 4))). Here the sign sum indicates that
an element of Gn is a linear combination of the basis components.

For a tree of height n, at the level i, a move toward the left child inserts
the basis element ei

n
into the join product, while a move toward the right child

insures that this element is not present. Then, on a path from the root of the
tree to a leaf a move toward the left child increases the grade by one, while a
move toward the right child leaves it unchanged. Hence, the left-most leaf of a
tree of height n contains the grade n coefficient of an element of Gn while the
right-most leaf contains the coefficient of the grade 0 part.

This binary tree structure also allows to increase the dimension of an element
x of Gn by injecting it to Gn+1. This is done with the function injGn

by simply
pairing the binary tree of height n with all its leaves containing 0, denoted 0n,
and x:

Definition injGn x := (0n , x).

This operation does not change the grade of x, but it shifts the basis components.
The basis component ei

n
∨ · · · ∨ ei+k

n
is mapped to the basis component ei+1

n+1 ∨
· · · ∨ ei+k+1

n+1 .

From the mapping of the multi-vector coefficients and the injection function,
the pairing of two elements x and y of Gn can be interpreted in terms of an
element of Gn+1. The pair (x, y) represents the element

e0

n+1 ∨ injGn
x+n+1 injGn

y. (2)

This means that pairing two elements x and y inserts the basis component
e0
n+1 into the shifted basis component of x. This puts all the coefficients of x into

the left part of the tree.

Now, the field K is injected into the binary tree structure representing Gn

with the following functions:

Definition injn,K k := if n = 0 then k else (injn−1,K 0,injn−1,K k).

Definition 0n := injn,K 0.

Definition 1n := injn,K 1.

Hence, the tree representing zero has all its leaves set to 0, while the tree repre-
senting one has only its right-most leaf set to 1.

Using the injection of K into Gn, we can define the injection of the elements
of Kn into Gn:

Definition injKn x := if n = 0 then 0 else

if n = 1 then (x , 0) else

let (x1,x2) := x in (injn−1,K x1 , injKn−1 x2).

Note that, as K0 is not defined, a special case is introduced for n = 0 send-
ing any element to zero. Let us take a concrete example to explain how this
injection works. An element of K3 is represented by a triplet (x1, (x2, x3)). The
element (((0, 0), (0, x1)), ((0, x2), (x3, 0))) of G3 is its image by the injection. For
an element of Kn, the coordinates xi are the coefficients of the basis elements ei

n

We can also directly exhibit a base {e0
n
, e1

n
, . . . , en−1

n
} for the vectors of Gn, i.e.

the image by the injection injKn
of the base of Kn induced by the coordinates.

Again, this is defined recursively:

Definition ei
n := if n = 0 then 1n else

if i = 0 then (1n−1,0n−1) else (0n−1, ei − 1
n − 1).

If we go back to the relation between K3 and G3, the base of K3 induced by the
coordinates is {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Then, we have

e0

3
= (((0, 0), (0, 1)), ((0, 0), (0, 0))) which corresponds to (1, 0, 0),

e1

3
= (((0, 0), (0, 0)), ((0, 1), (0, 0))) which corresponds to (0, 1, 0),

e2

3
= (((0, 0), (0, 0)), ((0, 0), (1, 0))) which corresponds to (0, 0, 1).

When they are injected respectively into Gn and Gn+1, the basis elements of Kn

and Kn+1 are related by ei + 1
n + 1 = injGn

ei

n
. Hence, in terms of trees, the basis

element ei

n
is the right child of the basis element ei+1

n+1. In the previous example,
we can observe the left zero tree in the representation of e2

3 and e1
3 indicating

that e2
3 = injG2

e1
2 and e1

3 = injG2
e0
2. This is coherent with interpretation of the

pairing of two elements of Gn (see the relation (2)).

At the moment, from the point of view of the properties that can be for-
mally proved, only the usual properties of vector space for Kn and Gn and the
properties of morphism of the different injections can be derived.

3.3 Join product

The next step is to define the join product as a binary tree operation. To explain
the definition, we use equation (2) and the mandatory properties expressed by
the axioms (1) in section 2.2.

The idea is to define the join product recursively over the dimension. To do
so, we decompose the product x∨ny in terms of pairing and using the relation (2),
we obtain:

x ∨n y = (x1, x2) ∨n (y1, y2)
= (e0

n
∨n injGn−1

x1 +n injGn−1
x2) ∨n (e0

n
∨n injGn−1

y1 +n injGn−1
y2)

Then, using the axioms (1), we obtain:

(x1, x2) ∨n (y1, y2) = e0
n
∨n injGn−1

x1 ∨n injGn−1
y2

+n injGn−1
x2 ∨n e0

n
∨n injGn−1

y1
+n injGn−1

x2 ∨n injGn−1
y2.

(3)

In the second term in the sum of the right part of this latter expression, the
factor e0

n
needs to be commuted with injGn−1

x2 in order to be able to factorize
the expression with e0

n
and to get an expression that corresponds to a pairing.

However, the join product is anti commutative and we must pay attention
to sign changes into the factors. For example, if x is an homogeneous element of
grade k, we have ei

n
∨ x = (−1)k . x ∨ ei

n
. We want to generalize this property

and have a conjugate function, noted x , such that ei

n
∨ x = x ∨ ei

n
for all x in

Gn. Here is the definition of such a function:

Definition x n := if n = 0 then x else

let (x1,x2) := x in (-x1
n-1 , x2

n-1).

Now expression (3) can be rewritten as:

(x1, x2) ∨n (y1, y2) = e0
n
∨n (injGn−1

x1 ∨n injGn−1
y2

+n injGn−1
x2

n

∨n injGn−1
y1)

+n injGn−1
x2 ∨n injGn−1

y2.

(4)

Using the definition of the injection injG , we get:

(x1, x2) ∨n (y1, y2) = e0
n
∨n (injGn−1

(x1 ∨n−1 y2 +n−1 x2
n−1 ∨n−1 y1))

+n injGn−1
(x2 ∨n−1 y2).

(5)

This leads to the following recursive definition of the join product:

Definition x ∨n y := if n = 0 then x * y else

let (x1, x2) := x and (y1, y2) := y in

(x1 ∨n−1 y2 +n−1 x2
n-1 ∨n−1 y1, x2 ∨n−1 y2)

From this definition, we have proved formally that this join product verifies its
basic properties (associativity, bilinearity and anti commutativity) defined by
the axioms (1).

3.4 Meet Product

In order to define the meet product, we follow exactly the same path than for
the join product. We generalize the fact that, for an homogeneous element x of
grade k of Gn, we have ei

n
∧ x = (−1)(n−k) . x ∧ ei

n
and define a dual version

of the conjugate function, noted x d, such that ei

n
∧ x = x d ∧ ei

n
.

Definition x dn := if n = 0 then x else

let (x1,x2) := x in (x1
dn−1 , -x2

dn−1).

Again, with this auxiliary function, the meet product can be defined recursively
as follows:

Definition x ∧n y := if n = 0 then x * y else

let (x1, x2) := x and (y1, y2) := y in

(x2 ∧n−1 y2, x1 ∧n−1 y2 +n−1 x2 ∧n−1 y1
dn-1)

Note that our recursive approach avoids the use of bracket algebra to define
the meet product so that our formalization works internally and independently
from the bracket algebra framework. As for the join product, it is quite direct
to derive the basic properties of the meet product formally from its definition.

3.5 Duality

The Hodge star operator presented in section 2.3 is also defined recursively over
the dimension as follows:

Definition *n(x) := if n = 0 then x else

let (x1, x2) = x in (*n−1(x2
n-1), *n−1(x)).

Note that in our representation, upto sign flips, the Hodge star just reverses the
leaves of the binary tree. For example in G3, the dual of the element

(((x1, x2), (x3, x4)), ((x5, x6), (x7, x8)))

is the reverse element with two sign flips

(((x8, x7), (−x6, x5)), ((x4,−x3), (x2, x1))).

Because of these sign flips, the Hodge star is not an involution. For ho-
mogeneous elements, the following theorem (corresponding to property (iii) in
section 2.3) is proved into our formalization using the defined Hodge star:

Lemma dual_invo: ∀n k v, if homk
n v then *n(*n(v)) = (-1)k(n−k) .

n v.

where homk

n
tests if an element is homogeneous and is defined as follows:

Definition homk
n x := if n = 0 then (k = 0 ‖ x ?

= 0) else

let (x1,x2) := x in

(if k = 0 then x1
?
=

n−1
0n−1 else homk−1

n−1 x1) && homk
n−1 x2.

As previously, the notation ‖ is a special notation for the logical or to avoid
confusion with the join product.

Due to our choice of the underlying vector space basis, the Hodge star imple-
ments the duality between the join product and the meet product (see section 2.3
and reference [1]). Then the following theorem are proved within our Coq for-
malization:

Lemma dual_prod: ∀n v1 v2, *n(v1 ∨n v2) = *n(v1) ∧n *n(v2).

Lemma dual_dprod: ∀n v1 v2, *n(v1 ∧n v2) = *n(v1) ∨n *n(v2).

This proves that the join product and the meet product are correctly defined.
At this point, Grassmann-Cayley algebra could already be considered as for-

malized in the Coq proof assistant.

4 Theorem Proving in Projective Geometry

In this section, we first show how we can use our formalization of Grassmann-
Cayley algebra to model the geometry of incidence. Then, in a second step, we
show how proofs in this setting can be fully automatized within Coq.

4.1 Modeling the Geometry of Incidence

Now that we have Grassmann-Cayley algebra in Coq, we can use it to represent
theorems in projective geometry. All this is standard and can be found by exam-
ple in [18] or in [15] chapter 3. We just explain how this has been instantiated
to our formalization. We work over an arbitrary field K and restrict ourselves
to G3. We take a conservative approach and consider only non-degenerated con-
figurations for constructed points. In this setting, points are vectors, so in our
case we are going to use our injection from K3 to G3:

Definition point K := K3.

To define the fact that a point p1 is the intersection of the line composed of p2
and p3 and the line composed of p4 and p5, we simply implement it by saying
that using the join to create the line and the meet to perform the intersection:

Definition p1 is the intersection of [p2,p3] and [p4,p5] :=

inj3,K p1 = (injK3 p2 ∨3 injK3 p3) ∧3 (injK3 p4 ∨3 injK3 p5).

Note that the equality imposes the meet product to be a point, so the lines to
be defined and intersecting.

To define the fact that a point p1 is on the line composed of p2 and p3, we
simply implement it by saying that the line is well-defined, i.e. the join product
of p2 and p3 is not zero, and the joint product of the three points is zero:

Definition p1 is free on [p2,p3] :=

(injK3 p2) ∨3 (injK3 p3) 6= 03

and

(injK3 p1) ∨3 (injK3 p2) ∨3 (injK3 p3) = 03.

Finally, we consider the collinearity of three points and the concurrency of three
lines:

Definition {p1,p2,p3} are collinear :=

(injK3 p1) ∨3 (injK3 p2) ∨3 (injK3 p3) = 03.

Definition {[p1,p2],[p3,p4],[p4,p5]} are concurrent :=

((injK3 p1) ∨3 (injK3 p1)) ∧3

((injK3 p3) ∨3 (injK3 p4)) ∧3

((inj3,K p4) ∨3 (injK3 p5)) = 03.

With these definitions, we can start stating some classic theorems of geometry
of incidence. First, let us consider Pappus’ theorem:

Theorem Pappus: ∀ a b c a′ b′ c′ p q r: point K,

if p is the intersection of [a,b′] and [a′,b] and

q is the intersection of [b,c′] and [b′,c] and

r is the intersection of [c,a′] and [c′,a] and

{a,b,c} are collinear and {a′,b′,c′} are collinear

then {p,q,r} are collinear.

Introducing the universal quantification and eliminating the points p, q and r,
we are left with proving that4:

if a ∨ b ∨ c = 0 and a′ ∨ b′ ∨ c′ = 0 then

(a ∨ b′ ∧ a′ ∨ b) ∨ (b ∨ c′ ∧ b′ ∨ c) ∨ (b ∨ c′ ∧ b′ ∨ c) = 0

Remaining inside the algebra and applying the basic properties it is possible to
prove this statement interactively in Coq. For this, we have followed of the proof
given in [7]. This requires 10 interactions where the prover is guided in order to
apply the symbolic manipulations that leads to the proof.

A more involved proof is Desargues’ theorem. It can be stated as:

4 We voluntarily omit the injections and the indices to make the expression more
legible.

Theorem Desargues: ∀ a b c a′ b′ c′: point K,

if p is the intersection of [a,b] and [a′,b′] and

q is the intersection of [a,c] and [a′,c′] and

r is the intersection of [b,c] and [b′,c′] and

then

{p,q,r} are collinear

iff

{a,b,c} are collinear or {a,b,c} are collinear or

{[a,a′],[b,b′],[c,c′]} are concurrent.

Again, introducing the universal quantification and eliminating the points p, q
and r, we are left with proving that:

(a ∨ b ∧ a′ ∨ b′) ∨ (a ∨ c ∧ a′ ∨ c′) ∨ (b ∨ c ∧ b′ ∨ c′) = 0

iff

a ∨ b ∨ c = 0 or a′ ∨ b′ ∨ c′ = 0 or a ∨ a′ ∧ b ∨ b′ ∧ c ∨ c′ = 0

In order to prove this interactively, this time we have followed the paper proof
given in [1]. The proof is more intricate and has required 60 interactions with
the prover.

4.2 Automating Proofs

Proving the last two theorems is very satisfying because it shows that our algebra
can be manipulated symbolically within Coq but clearly we are at the limit of
what is bearable for a user to prove interactively. So, the next step is to automate
the proof of such theorems. For this, we are going to introduce bracket algebra
and follow the path of [11].

Bracket algebra and its relation with Grassmann-Cayley is a well-known
topic [6,1]. Here, we are just going to explain how it has been introduced in our
setting. For the moment, this has only been implemented for G3 but we believe
that this could be easy generalised to Gn for an arbitrarily n. In the following,
in order to increase legibility we will systematically omit the indices and the
injections, so for example (injK3 p1 ∨3 injK3 p2) will be noted (p1 ∨ p2) only. A
bracket is a function that takes three points and returns an element of our field
K. Its definition is the following:

Definition [p1,p2,p3] := dC (p1 ∨ p2 ∨ p3).

where dC stands for the dual of the constant component, i.e the left-most leaf of
the tree-structure given in Figure 1 of page 7. The usual relations between the
bracket, the join product and the meet product in G3 are derived.

Lemma bracket_defE: ∀p1 p2 p3,

p1 ∨ p2 ∨ p3 = [p1,p2,p3] . e0 ∨ e1 ∨ e2.

Lemma bracket_defl: ∀p1 p2 p3,p1 ∧ (p2 ∨ p3) = [p1,p2,p3] . 1.

We have also formally proved that it behaves as a determinant:

Lemma bracket0l: ∀p1 p2, [p1,p1,p2] = 0

Lemma bracket_swapl: ∀p1 p2 p3,[p1,p2,p3] = − [p2,p1,p3].

Lemma bracket_swapr: ∀p1 p2 p3,[p1,p2,p3] = − [p1,p3,p2].

Lemma bracket_free: ∀α β p1 p2 p3 p4 p5,

if p1 = α . p4 + β . p5

then [p1,p2,p3] = α ∗ [p4,p2,p3]+ β ∗ [p5,p2,p3].

In order to automate as described in [11], we are going to restrict ourselves
to a specific skeleton of proofs. The goals we are going to be able to prove
automatically have the following shape:

∀p1 p2 . . . pm, if H1 and . . . Hn then {pi, pj , pk} are collinear

where the His are either the construction of a free point on a line

pj is free on [pr,ps]

or the construction of an intersection

pj is the intersection of [pr,ps] and [pt,pu].

How does the automatic procedure proceed? As the conclusion is a collinearity
property, it can be turned into an equality to zero of a bracket expression by the
following lemma that is a direct consequence of the lemma bracket_defE:

Lemma collinear_bracket: ∀p1 p2,

{p1,p2,p3} are collinear iff [p1,p2,p3] = 0

Then, the constructed points are progressively eliminated from the assumptions
to obtain a bracket expression. Two lemmas are used corresponding to each
construction. In the first case, the assumption is the construction of a free point
on a line. The following lemma can be proved thanks to the conservative approach
we observed:

Lemma online_def: ∀p1 p2 p3,

if p1 is free on [p2,p3] then ∃ α β,p1 = α . p2 + β . p3

Coupled with the lemma bracket_free, this lets us remove the free point from
all bracket expressions. In the second case, the assumption is the construction of
an intersection then the second rule5 given in [11] is used to remove the point:

Lemma bracket_expand: ∀p1 p2 p3 p4 p5 p6 p7,

if p1 is the intersection of [p4,p5] and [p6,p7] then

[p1, p2, p3] = −[p4, p2, p3] ∗ [p5,p6,p7]+ [p5,p2,p3] ∗ [p4,p6,p7].

Once all the eliminations of constructed points have been performed, we get an
expression that contains sums and products of bracket of initial points and the αs
and the βs introduced by the eliminations of the free points. So for the theorem
to be true generically, this expression must be equal to zero modulo Plücker
relations (see [11]). In order to simplify the obtained expression a contraction
rule is used in [11]). In our setting it is stated as:

Lemma contraction_v0: ∀p1 p2 p3 p4 p5,

[p1,p2,p3] ∗ [p1,p4,p5]− [p1,p2,p5] ∗ [p1,p4,p3] = [p1,p2,p4] ∗ [p1,p3,p5].

Surprisingly applying this rule unrestrictively as a rewrite rule from left to right
as described in [11] is very effective. However, it is not sufficient in our setting to
prove all the given examples. To fix this problem, we implement a normalisation
method that is very expensive but is known to be complete. This captures the
remaining examples. The method is based on an implicit ordering of the initial
points p1 < p2 < · · · < pi. Applying some permutation, brackets can always be
ordered with respect to this order: [pi,pj ,pk] with pi < pj < pk.

The order can be lifted to brackets [pi,pj ,pk] ≤ [pi′ ,pj′ ,pk′] if pi ≤ pi′ and
pj ≤ pj′ and pk ≤ pk′ . The normalisation proceeds in trying to order the product
of brackets from the smallest to the largest. For this, we consider the product of
two brackets [pi,pj ,pk] ∗ [pi′ ,pj′ ,pk′]. Without loss of generality, we can suppose
that pi ≤ pi′ . There are only two situations where this product is not ordered:

1. pi < pi′ and pj′ < pj
2. pi ≤ pi′ and pj < pj′ and pk′ < pk (or equivalently pi < pi′ and pj ≤ pj′ and

pk′ < pk)

The first rewrite rule takes care of the first case and assures that the resulting
expression has every first two elements of brackets in a product properly ordered.

Lemma split3b_v1: ∀pi pi′ pj pj′ pk pk′,

[pi,pj,pk] ∗ [pi′,pj′,pk′] =

[pi,pi′,pj′] ∗ [pj,pk,pk′]− [pi,pi′,pk′] ∗ [pj,pk,pj′]+

[pi,pj′,pk′] ∗ [pj,pk,pi′].

5 This rule corresponds to the elimination of the area method [9].

The second rewrite rule takes care of the second case and insures that the re-
sulting products of brackets are all properly ordered.

Lemma split3b_v2: ∀pi pi′ pj pj′ pk pk′,

[pi,pj,pk] ∗ [pi′,pj′,pk′] =

[pi,pj,pi′] ∗ [pk,pj′,pk′]− [pi,pj,pj′] ∗ [pk,pi′,pk′]+

[pi,pj,pk′] ∗ [pk,pi′,pi′].

5 Conclusion

We have described how our formalization of Grassmann-Cayley algebra has been
achieved. It is a generic one: it is parametrized both by the underlying field K

and by the dimension n. A snapshot of the formalization with a complete zipped
archive is available at

http://www-sop.inria.fr/marelle/GeometricAlgebra.

Recursive definitions have played a central role in this formalization. Elements of
the algebra are represented as binary trees. With this representation, operations
like the meet, the join and the duality can be described as recursive functions
in a very direct way. The nice thing about defining these operations in a proof
assistant like Coq is that not only can we compute with them like in any pro-
gramming language but also we can reason about them. This lets us derive all
the standard properties of Cayley-Grassmann operations. Our implementation
is then verified: we have a certified computational model of Grassmann-Cayley
algebra.

One of the most satisfying part of this formalization is, without a doubt,
the instantiation that has been done in order to prove Pappus’ and Desargues’
theorem as proposed in [7] and [1]. We have been capable of justifying formally
every step of the paper proofs. Moreover, the method that automatically proves
projective geometric theorems proposed in [11] has also be translated successfully
into our formalization. An efficient Coq tactic has been developed. This makes
us very confident in the potential of our formalization.

In addition to the formalization of the Grassmann-Cayley algebra basics
properties, we have also considered other useful operations such as contraction
〈φ, v〉 of a linear form φ on a vector v and factorisation have also been formalized.

As already mentioned in the introduction, we are very interested in studying
the links with other formalized approaches of incidence geometry such as those
based over ranks [14,13].

Finally, we also plan to develop our formalization to capture the powerful
framework of the geometric algebra [8,5]

References

1. Barnabei, M., Brini, A., Rota, G.C.: On the Exterior Calculus of Invariant Theory.
Journal of Algebra 96, 120–160 (1985)

http://www-sop.inria.fr/marelle/GeometricAlgebra

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development,
Coq’Art: The Calculus of Inductive Constructions. Springer (2004)

3. Coq development team: The Coq Proof Assistant Reference Manual, Version 8.2.
LogiCal Project (2008), http://coq.inria.fr

4. Crapo, H., Richter-Gebert, J.: Automatic proving of geometric theorems. In: White
[16], pp. 167–196

5. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An
Object Oriented Approach to Geometry. Morgan Kauffmann Publishers (2007)

6. Doubilet, P., Rota, G.C., Stein, J.: On the foundations of combinatorial theory.
IX. Combinatorial methods in invariant theory. Studies in Applied Mathematics
53, 185–216 (1974)

7. Hawrylycz, M.: A geometric identity for Pappus’ theorem. Proceedings of the Na-
tional Academy of Sciences U.S.A. 91(8), 2909 (1994)

8. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified
Language for Mathematics and Physics, Fundamental Theories of Physics, vol. 5.
Kluwer Academic Publishers (1984)

9. Janicic, P., Narboux, J., Quaresma, P.: The Area Method : a Recapitulation. Jour-
nal of Automated Reasoning (2010), published online

10. Li, H.: Algebraic Representation, Elimination and Expansion in Automated Geo-
metric Theorem Proving. In: ADG’02. LNAI, vol. 2930, pp. 106–123 (2002)

11. Li, H., Wu, Y.: Automated short proof generation for projective geometric theo-
rems with Cayley and bracket algebras: I. Incidence geometry. Journal of Symbolic
Computation 36(5), 717–762 (2003)

12. Magaud, N., Narboux, J., Schreck, P.: Formalizing Projective Plane Geometry in
Coq. In: Proceedings of ADG’2008. pp. 1–20 (Sept 2008)

13. Magaud, N., Narboux, J., Schreck, P.: Formalizing Desargues’ theorem in Coq using
ranks. In: Proceedings of the ACM Symposium on Applied Computing SAC 2009.
ACM, ACM Press (March 2009), http://lsiit.u-strasbg.fr/Publications/

2009/MNS09

14. Michelucci, D., Schreck, P.: Incidence constraints: A combinatorial approach. In-
ternational Journal of Computational Geometry & Applications 16(5-6), 443–460
(2006)

15. Sturmfels, B.: Algorithms in Invariant Theory. Springer, New York (1993)
16. White, N.L. (ed.): Invariants Methods in Discrete and Computational Geometry.

Kluwer, Dordrecht (1995)
17. White, N.L.: A tutorial on Grassmann-Cayley algebra. In: Invariants Methods in

Discrete and Computational Geometry [16], pp. 93–106
18. White, N.L.: Geometric applications of the Grassmann-Cayley algebra. In: Hand-

book of discrete and computational geometry, pp. 881–892. CRC Press, Inc., Boca
Raton, FL, USA (1997)

http://coq.inria.fr
http://lsiit.u-strasbg.fr/Publications/2009/MNS09
http://lsiit.u-strasbg.fr/Publications/2009/MNS09

	A Formalization of Grassmann-Cayley Algebra in Coq and its Application to Theorem Proving in Projective Geometry

